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Abstract

Flies that walk in a covered planar arena on straight paths
avoid colliding with each other, but which of the two flies
stops is not random. High-throughput video observations,
coupled with dedicated experiments with controlled robot
flies have revealed that flies utilize the type of optic flow on
their retina as a determinant of who should stop, a strategy
also used by ship captains to determine which of two ships
on a collision course should throw engines in reverse. We use
digital evolution to test whether this strategy evolves when
collision avoidance is the sole selective pressure. We find
that the strategy does indeed evolve in a narrow range of
cost/benefit ratios, for experiments in which the “regressive
motion” cue is error free. We speculate that these stringent
conditions may not be sufficient to evolve the strategy in real
flies, pointing perhaps to auxiliary costs and benefits not mod-
eled in our study.

Introduction
How animals make decisions has always been an interesting,
yet controversial, question to scientists (McFarland, 1977)
and philosophers alike. Animals obtain various types of
sensory information from the environment and then process
these information streams so as to take actions that benefit
them in survival and reproduction. The visual system plays
an important role in providing animals information about
their environment, for example when foraging for food, de-
tecting predators or prey, and when searching for potential
mates. One of the primary components of visual informa-
tion is motion detection. Motion is a fundamental percep-
tual dimension of visual systems (Borst and Egelhaaf, 1989)
and is a key component in decision making in most ani-
mals. Here, we study a very particular type of motion de-
tection and concomitant behavior (collision avoidance) in
Drosophila melanogaster (the common fruit fly), and at-
tempt to unravel the selective (i.e., evolutionary) pressures
that might have given rise to this behavior.

D. melanogaster shows a striking difference in behavior
when exposed to two different types of optical flow. Bran-
son et al. (2009) recorded the interaction of groups of fruit
flies in a planar covered arena (so that they could only walk,
not fly) and used computer vision algorithms to analyze the

walking trajectories in order to study fly behavior. Their
analysis revealed that female fruit flies stop walking when
they perceive another fly’s motion from back-to-front in
their visual field (an optical flow referred to as “regressive
motion”) whereas they keep walking when perceiving con-
specifics moving from front-to-back in their visual field (re-
ferred to as “progressive motion,” see Figure 1). Zabala et al.
(2012) further investigated this behavior and tested the “re-
gressive motion saliency” hypothesis, suggesting that flies
stop walking when perceiving regressive motion. They used
a programmable fly-sized robot interacting with a real fly to
exclude other sensory cues such as image expansion (“loom-
ing,” see Schiff et al. 1962) and pheromones. Their results
provide rigorous support for the regressive motion saliency
hypothesis.

Subsequently, Chalupka et al. (2015) coined the term
“generalized regressive motion” for optic flows in which im-
ages move clockwise on the left eye and conversely, coun-
terclockwise on the right eye (see Figure 1). They presented
a geometric analysis for two flies moving on straight, in-
tersecting trajectories with constant velocities and showed
that the fly that reaches the intersection first always per-
ceives progressive motion on its retina, whereas the one
that reaches the intersection later perceives regressive mo-
tion at all times before the other fly reaches the intersection.
They went on to suggest that this behavior is a strategy to
avoid collisions during locomotion similar to the rules that
ship captains use when moving on intersecting paths (see,
e.g., Maloney 1989).

As intriguing as this hypothesis may seem, it is not clear
a priori which selective pressures or environmental circum-
stances could give rise to this behavior. For example, it is
unclear whether collision avoidance provides a significant
enough fitness benefit. As a consequence, it is possible that
the behavior has its origin in a completely different cogni-
tive constraint that is fundamentally unrelated to collision
avoidance, or to the rules that ship captains use to navigate
the seas. While such questions are difficult to answer using
traditional behavioral biology methods, Artificial Life offers
unique opportunities to test these hypotheses directly.
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Figure 1: An illustration of regressive (back-to-front, left)
and progressive (front-to-back, right) optic flows in a fly’s
retina.

In this study, we tested whether collision avoidance can be
a sufficient selective pressure for the described behavior to
evolve. We also investigated the environmental conditions
under which this behavior could have evolved, in terms of
the varying costs and benefits involved. By using an agent-
based computational model (described in more detail be-
low), we studied how the interplay (and trade-offs) between
the necessity to move and the avoidance of collisions can re-
sult in the evolution of regressive motion saliency in digital
flies.

Digital evolution is currently the only technique that can
study hypotheses concerning the selective pressures neces-
sary (or even sufficient) for the emergence of animal behav-
iors, as experimental evolution with animal lines of thou-
sands of generations is impractical. In digital evolution, we
can study the interplay between multiple factors such as se-
lective pressures, environmental conditions, population size
and structure, etc. For example, Olson et al. (2013) used dig-
ital evolution to show that predator confusion is a sufficient
condition to evolve swarming behavior, but they also found
that collective vigilance can give rise to gregarious foraging
behavior in group-living organisms (Olson et al., 2015). In
principle, any one hypothesis favoring the emergence of be-
havior can be tested in isolation, or in conjunction (Olson
et al., 2015).

Methods
Markov Networks
We use an agent-based model to simulate the interaction
of walking flies with moving objects (here, potentially con-
specifics) in a two-dimensional virtual world. Agents have
sensors to perceive their surrounding world (details below)
and have actuators that enable them to move in the envi-
ronment. Agent brains in our experiment have altogether
twelve sensors, three internal processing nodes, and one out-
put node (the actuator). The brain controlling the agent is
a “Markov network brain” (MNB), which is a probabilis-
tic controller that makes decisions based on sensory inputs
and internal nodes (Edlund et al., 2011). Each node in the

Figure 2: Probabilistic logic gates in Markov network brains
with three inputs and two outputs. One of the outputs writes
into one of the inputs of this gate, so its output is “hidden.”
Because after firing all Markov neurons automatically return
to the quiescent state, values can only be kept in memory
by actively maintaining them. Probability table shows the
probability of each output given input values.

network (i.e., sensors, internal nodes, and actuators) can
be thought of as a digital (binary) neuron that either fires
(value=1), or is quiescent (value=0). Nodes of the network
are connected via Hidden Markov Gates (HMGs) that func-
tion as probabilistic logic gates. Each HMG is specified by
its inputs, outputs, and a state transition table that specifies
the probability of each output state based on input states
(Figure 2). For example, in the transition table of Figure 2
(a three-input, two-output gate), the probability p73 controls
the likelihood that the output state is 3 (the decimal equiv-
alent of the binary pattern 11, that is, both output neurons
fire) given that the input happened to be state 7 (the deci-
mal translation of 111, i.e., all inputs are active). MNBs
can consist of any number of HMGs with any possible con-
nection arrangement, given certain constrains (see for exam-
ple Edlund et al. 2011).

The number of gates, their connections, and how they
work is subject to evolution and changes across individu-
als and through generations. For this purpose, the agent’s
brains are encoded in a genome, which is an ordered se-
quence of integers, each in the range [0,255], i.e., one byte.
Each integer (or byte) is a locus in the genome and specific
sequences of loci construct genes, where each gene codes for
one HMG. The “start codon” for a gene (i.e., the sequence
that determines the beginning of the gene) in our encoding
is the pair (42,213) (these numbers are arbitrary). Each gene
encodes exactly one HMG, for example as shown in Fig-
ure 3. The gene specifies the number of inputs/outputs in
each HMG, which nodes it reads from and writes to (the con-
nectivity) and the probability table that determines the gates’
function. As shown in Figure 3, the first two bytes are the
start codon, followed by one byte that specifies the number
of inputs and one byte for the number of outputs. The bytes
are modulated so as to encode the number of inputs and out-
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Figure 3: An illustration of a portion of genome containing two genes that encode two HMGs. The first two loci represent start
codon (red blocks), followed by two loci that determine the number of inputs and outputs respectively (green blocks). The next
four loci specify which nodes are inputs of this gate (blue blocks) and the following four specify output nodes (yellow blocks).
The remaining loci encode the probabilities of HMG’s logic table (cyan blocks).

puts unambiguously. For example, the bytes encoding the
number of inputs is an integer in [0,255] whereas a HMG
can take a maximum of four inputs, thus we use a mapping
function that generates a number ∈ [1,4] from the value of
this byte. The next four bytes specify the inputs of the HMG,
followed by another four bytes specifying where it writes to.
The remaining bytes of the gene are mapped to construct the
probabilistic logic gate table. MNBs have been used exten-
sively in the last five years to study the evolution of naviga-
tion (Edlund et al., 2011; Joshi et al., 2013), the evolution
of active categorical perception (Marstaller et al., 2013; Al-
bantakis et al., 2014), the evolution of swarming behavior as
noted earlier, as well as how visual cortices (Chapman et al.,
2013) and hierarchical groups (Hintze and Miromeni, 2014)
form. In this work, we force the gates to be deterministic
rather than probabilistic (all values in the logic table are 0 or
1), which turns our HMGs into classical logic gates.

Experimental Configurations
We construct an initial population of 100 agents (digital
flies), each with a genome initialized with 5,000 random in-
tegers containing four start codons (to jump-start evolution).
Agents (and by proxy the genomes that determine them) are
scored based on how they perform in their living environ-
ment. The population of genomes is updated via a standard
Genetic Algorithm (GA) for 50,000 generations, where the
next generation of genomes is constructed via roulette wheel
selection combined with mutations (detailed GA specifica-
tions are listed in Table 1). To control for the effects of re-
production and similar effects, there is no crossover or im-
migration in our GA implementation.

Each digital fly is put in a virtual world for 25,000 time
steps, during which time its fitness score is evaluated. Dur-
ing each time step in the simulation, the agent perceives
its surrounding environment, processes the information with
its MNB, and makes movement decisions according to the
MNB outputs. The sensory system of a digital fly is de-
signed such that it can see surrounding objects within a lim-
ited distance of 250 units, in a 280◦ pixelated retina shown

in Figure 4. The state of each sensor node is 0 (inactive)
when it does not sense anything within the radius, and turns
to 1 (active) if an object is projected at that position in the
retina. Agents in this experiment have one actuator node that
enables them to move ahead or stop, for active (firing) and
non-active (quiescent) states respectively.

GA Parameters Environment Parameters
Population size 100 Vision range 250
Generations 50,000 Field of vision 280◦

Point mutation rate 0.5% Collision range 60
Gene deletion rate 2% Agent velocity 15
Gene duplication rate 5% Event time steps 250
Initial genome length 5,000 No. of events 100
Initial start codons 4 Moving reward 0.004
Crossover None Collis. penalty 1,2,3,5,10
Immigration None Replicates 20

Table 1: Configurations for GA and Environmental setup

In our experiment, the digital flies exist in an environ-
ment where they should move to gain fitness, representing
the fact that organisms should forage for resources, mates,
and avoiding predators. Thus, the fitness function is set so
that agents are rewarded for moving ahead at each update
of the world, and are penalized for colliding with objects.
The amount of fitness they gain for moving (the benefit) is
characteristic of the environment, and we change it in dif-
ferent treatments. The penalty for collisions represents the
importance of collision avoidance for their survival and re-
production, and we vary this cost also. Each digital fly sees
100 moving objects (one at a time) during its lifetime, and
we say that it experiences 100 “events.” The penalty-reward
ratio (PR) determines the amount of penalty of collision di-
vided by the reward for moving during the entirety of an
event. So for example, PR=1 means the agent loses all the
rewards it gained by walking during the whole event if it
collides with the object in that event:

fitness =
∑

events

(reward− PR× collision) , (1)
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Figure 4: The digital fly and its visual field in the model.
Flies have a 12 pixel retina that is able to sense surrounding
objects in 280◦ within a limited distance (250 units). The red
circle is an external object that can be detected by the agent
within its vision field. Activated sensors are shown in red,
while inactive sensors are blue. In (a) the object activates
two sensors, in (b) the object is detected in one sensor, and
in (c) the object is outside the range.

where reward ∈ [0, 1] reflects how many time steps the
agent moved during the event. Our experiments are con-
structed such that all objects that produce regressive motion
in the digital retina will collide with the fly if it keeps mov-
ing. The reason for biasing our experiments in this manner
is explained in the following section.

Collision Probability in Events with Regressive
Optic Flow
As mentioned earlier, Chalupka et al. (2015) showed that for
two flies moving on straight, intersecting trajectories with
constant velocities, the fly that reaches the intersection first
always perceives progressive motion on its retina while the
counterpart that reaches the intersection later perceives re-
gressive motion at all times before the first fly reaches the
intersection. However, this does not imply that all objects
that produce a regressive motion on a fly’s retina will nec-
essarily collide with it. In this section we present a mathe-
matical analysis to discover how often objects that produce
regressive motion in the fly’s retina will eventually collide
with the fly if it continues walking.

Suppose a fly moves on a straight line with constant ve-
locity Vfly and an object is also moving on a straight line
with constant velocity Vobj (Figure 5-a). The fly is able to
perceive objects within distance Rvis, its vision range (Fig-
ure 5-a). The object is assumed to be a point in the plane and
the distance between this point and the center of the visual
field of the fly is defined to be the distance between them.
We define “the onset of the event” as the first time the object
is detected by the fly. At the onset of the event, the object
is at the distance Rvis of the fly at relative azimuthal angle
α ∈ [0, π2 ] (Figure 5-a). We assume that the object can be
at any relative position Rvis = (Rvis, α)1 with equal prob-

1Here and below, we represent vectors either in boldface or by
the parameters that determine them within a planar polar coordinate
system. Thus the vector R is represented by (|R|, φ), whereRx =
R cosφ and Ry = R sinφ.

Figure 5: An illustration of a moving fly at the onset of the
event.

abilities (the probability distribution of α is uniform around
the fly). The velocity of the object can be represented as
Vobj = (Vobj, θ) where θ ∈ [−π2 , π2 ] (note that Vobj is con-
stant). We also assume that the velocity of the object can
point in all directions with equal probabilities (the probabil-
ity distribution of θ is uniform). The relative velocity of the
object with respect to the fly is Vrel = Vobj − Vfly (Fig-
ure 5). Since both Vobj and Vfly are constant, Vrel is also a
constant vector.

Proposition 1. A moving object produces regressive mo-
tion on a fly’s retina if:

θ > −α+ arcsin(
Vfly

Vobj
cosα) . (2)

Proof. In order for the object to produce regressive motion
on the retina, the relative velocity should be pointed above
the center point O. The relative velocity direction γ can be
found awith Vrel = (Vrel, γ), as

γ = arctan

(
Vrely

Vrelx

)
= arctan

(
Vobj sin θ − Vfly

Vobj cos θ

)
. (3)

The angle γ should be greater than the central angle (Fig-
ure 5-b), that is, γ > −α. Replacing γ and simplifying, we
obtain:

θ > −α+ arcsin(ν cosα), ν =
Vfly

Vobj
. (4)

For smaller values of θ, the object produces progressive op-
tic flow. We thus define θmin = −α + arcsin(ν cos(α)) as
the minimum angle θ that produces regressive motion on the
retina.

Definition 1. The object remains “observable” to the fly
after the onset of the event if its relative velocity is directed
toward the inside of the fly’s vision field (to the left of the
tangent line δ1 in Figure 5-b).

Proposition 2. The object remains observable to the fly if:

θ < arccos(− Vfly

Vobj
sinα)− α . (5)
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Proof. According to the definition the sufficient condition
for observability is that γ should be less than the tangent line
δ1 angle: γ < −α + π

2 . Replacing γ and simplifying we
obtain

θ < arccos(−ν sinα)− α . (6)

For greater values of θ, the object will be out of vision range
of the fly. Thus the maximum value that θ can take on is:

θmax = arccos(−ν sinα)− α . (7)

In order for the object to produce regressive motion on fly’s
retina and also remain observable to the fly, relative velocity
should be within the arc ψ (Figure 5-b).

Definition 2. The object collides with the fly if its distance
with the fly is less than “collision range” Rcoll (Figure 5-b).

Proposition 3. An object that creates regressive optic flow
on the fly’s retina and remains observable will collide with
it if:

θ < φ+ arcsin(ν cosφ), φ = arcsin(
Rcoll

Rvis
)− α . (8)

Proof. The relative velocity of such object is within arc ψ.
This object will collide with the fly if its relative velocity
is within the arc spanned by the angle β, i.e. lower than
tangent line to collision circle (Figure 5-b). This condition
holds true if:

γ < β − α, β = arcsin(
Rcoll

Rvis
) . (9)

Let ρ = Rcoll

Rvis
and φ = β − α. Replacing γ and rearranging

gives:

θ < φ+ arcsin(ν cosφ) . (10)

For greater values of θ, the object produces regressive mo-
tion on the fly’s retina but does not collide with it. So the
threshold collision angle is given by:

θcol = φ+ arcsin(ν cosφ) . (11)

As mentioned, we assume that the probability distribution of
the direction of the object velocity, θ is uniform.

Definition 3. For an object at initial position α, the proba-
bility Πcoll is the range of velocity directions θ such that the
object collides with the fly divided by the range of directions
with which it creates regressive optic flow on fly’s retina (see
Figure 5-b):

Πcoll(α, ν, ρ) =
θcol − θmin

θmax − θmin
. (12)

Integrating this function over the range of possible initial
relative positions, the probability that an event results in a

Figure 6: Probability of collision Πcoll(ν, ρ) with an object
that creates regressive motion on the retina as a function of
the ratio of vision radius to collision radius ρ, for different
fly-object velocity ratios ν.

collision given that the object produces regressive motion
on an fly’s retina can be found as:

Πcoll(ν, ρ) =

αmax∫
αmin

Πcoll(α, ν, ρ)dα , (13)

where αmin is either 0 or the minimum value of α for which
there exists a θ with which the object can produce a regres-
sive motion on fly’s retina, and αmin is either 90 or maxi-
mum value of α for which there exists a θ with which the
object remains observable to the fly.

We calculated the integral (13) numerically and show the
results in Figure 6 for different values of fly-object veloc-
ity ratios ν and different collision range-vision range ratios
ρ. As can be seen from Figure 6, for Rvis=60 mm (Za-
bala et al., 2012) and Rcoll=15 mm (our assumption), the
collision probability is around 0.2-0.3. This implies that if
encounters are created randomly, regressive motion on the
retina is not predictive of collision, and as a consequence it
is unreasonable to expect that digital evolution will produce
collision avoidance in response, as only 1 in 5 to 1 in 3 re-
gressive motions actually lead to collisions. This was borne
out in experiments, and we thus decided to bias the events in
such a manner that all events that leave a regressive motion
signature in the retina will lead to collision. Note that this
is not necessarily an unrealistic assumption, as we have not
analyzed a distribution of realistic “events” (such as is avail-
able in the data set of Branson et al. 2009). It could very
well be that the way real flies approach each other differs
from the uniform distributions that went into the mathemat-
ical analysis presented here.

Results
We conducted experiments with five different fitness func-
tions representing different environments. Environments
differ in the amount of fitness individuals gain when moving
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and in the penalty incurred by a collision. Evolved agents
use various strategies to avoid collisions and maximize the
travelled distance, but one of the most successful strategies
they use is indeed to categorize visual cues into regressive
and progressive optic flows. We find that agents categorize
these visual cues only in some regions of the retina: the re-
gions in which collisions take place more frequently. They
then use this information to cast a movement decision: they
keep moving when seeing an object creating progressive op-
tic flow on their retina, and stop when the object creates re-
gressive optic flow on their retina. However, they do not
stop for the entire duration of the event, i.e., the whole time
they perceive regressive optic flow. Rather they stop during
only a portion of the event, which helps the agent to avoid
a collision with the object while maximizing their walking
duration and hence gaining higher fitness.

The strategy of using regressive motion as a cue for colli-
sion (Chalupka et al., 2015), similar to the observed behavior
in fruit flies (Zabala et al., 2012) evolves in our experimental
setup under some environmental circumstances (discussed
below). We refer to this strategy as regressive-collision-cue
(RCC) and we define it in our experimental setup as follows:
1) The moving object produces regressive motion on the
agent’s retina during an event and the agent stops at least
for some time during that event, or
2) The moving object produces progressive motion on the
agent’s retina during an event and the agent does not stop
during that event. The number of events (out of 100) in
which the agent uses this strategy is termed the “RCC value.”

We now discuss the results of an experiment in which
the RCC strategy has evolved. We take the most successful
agent at the end of that experiment and analyze its behavior.
This agent evolved in an environment with penalty-reward
ratio of 2, meaning the penalty of each collision equals twice
the maximum reward the agent can gain in 2 events. Figure 7
shows whether the agent stopped during an event, stop prob-
ability (blue triangles), as a function of the angular velocity
of the image on the agent’s retina for 100 events. In that
figure, the angular velocity of the image on agent’s retina
is negative for regressive optic flow and positive for pro-
gressive events. Simulation units are converted to plotted
values (in deg/s and mm/s) by equalizing dimensionless val-
ues ν, and ρ in simulation and actual values: Rvis=60 mm
(Zabala et al., 2012), Vfly=20 mm/s (Zabala et al., 2012),
Rcoll=15 mm (our assumption). We can see from the fig-
ure that out of all 100 events, the agent did not stop during
one event with regressive motion while for two progressive
events, it stopped. In the remaining events the agent accu-
rately uses the RCC strategy (resulting in an RCC value=97).
The average velocity of the agent during each event is also
shown (solid orange circles), which reflects the number of
time steps the agent moves during that event (and thus in-
directly how often it stops). For progressive motions, the
stop probability is zero (the agent continues to move dur-

Figure 7: The stop probability of the evolved agent vs. the
angular velocity of the image on its retina for 100 events.
Positive values of angular velocity show progressive motion
events and negative angular velocities stand for regressive
motion events. The average velocity of the agent is also
shown during each event.

ing the event) and thus the velocity of the agent is maximal
during that event. For regressive optic flow (negative angu-
lar velocities), the average velocity during each event is less
than maximum and for extreme angular velocities, as it only
needs to stop for shorter durations to avoid collisions.

In order to quantitatively analyze how using regressive
motion as a collision cue benefits agents to gain more fitness,
we traced this particular agent’s evolutionary line of descent
(LOD) by following its lineage backwards for 50,000 gen-
erations mutation by mutation until we reached the random
agent that we used to seed the initial population (see Lenski
et al. 2003 for more details on how to construct evolution-
ary lines of descent for digital organisms). Figure 8 shows
the fitness and the RCC value vs. generation for this agent’s
LOD. It is evident from these results that evolving this strat-
egy benefits agents in gaining fitness compared to the rest
of the population in this environment as high peaks of fit-
ness occur at high RCC values and conversely, the fitness
drops as the RCC value decreases. Nevertheless, this strat-
egy does not evolve all the time. Figure 9 shows the fit-
ness and RCC for all 20 replicates in the environment with
penalty-reward ratio of 2. We can see that the mean fitness
of all 20 replicates is around 20% less than the fitness of the
agent that evolved the RCC strategy. The mean RCC value
for all 20 replicates is also ≈ 20% less than that of an agent
that evolved the RCC strategy.

The difficulty to evolve the RCC strategy is not limited
to the number of runs in which this behavior evolved out
of all replicates in some environment (we also tried running
the experiment for longer evolutionary times but the results
do not change significantly). Environmental conditions also
play a key role in the evolution of this behavior. Figure 10
shows the RCC value distribution for 20 replicates in five
different environments. In order to calculate the RCC value
in each replicate, we took the average of the RCC value in
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Figure 8: Fitness and regressive-collision-cue (RCC) value
on the line of descent for an agent that evolved RCC as a
strategy to avoid collisions. Only the first 20,000 genera-
tions are shown, for every 500 generations.

Figure 9: Mean values of fitness and regressive-collision-
cue (RCC) over all 20 replicates vs. evolutionary time in
the line of descent in the environment with penalty-reward
ratio of 2. Standard error lines are shown with shaded areas
around mean values. Only the first 20,000 generations are
shown, for every 500 generations.

the last 1,000 generations on the line of descent to compen-
sate for fluctuations. We observe that the RCC strategy only
evolves in a narrow range of penalty-reward ratio, namely
for PR=2 and PR=3. According to Figure 10, higher val-
ues of penalty on the one hand discourage the agents from
walking in the environment (they simply choose to remain
stationary), and therefore prevent them from exploring the
fitness landscape. Lower values for the penalty, on the other
hand, result in indifference to collisions and thus, the opti-
mal strategy (probably the local optimum) in these environ-
ments is to keep walking and ignore all collisions. For lower
values of the penalty, the RCC value is≈ 55%, which means
they evolve to stop in obvious cases that end up in collision
(if they keep moving, the RCC value should be 50).

Discussion
We used an agent-based model of flies equipped with MNBs
that evolve via a GA to study the selective pressures and en-
vironmental conditions that can lead to the evolution of col-
lision avoidance strategies based on visual information. We
specifically tested cognitive models that invoke “regressive
motion saliency” and “regressive motion as a cue for colli-
sion” to understand how flies avoid colliding with each other
in two-dimensional walks. We showed that it is possible to
configure the experiment in such a manner that “regressive-
collision-cue” (RCC) evolves as a strategy to avoid colli-
sions. However, the conditions under which the RCC strat-
egy evolved in our experiments are limited: the strategy only
evolved in a narrow range of environmental conditions and
even in those environments, it does not evolve all the time.
In addition, we showed that from general principles, only a
small percentage of events in which an agent perceives re-
gressive optical flow eventually leads to a collision, so that
RCC as a sole strategy is expected to have a large false pos-
itive rate, leading to unnecessary stops.

As discussed in the Methods section, our experimental
implementation is biased in such a way that all regressive
motion events lead to a collision if the agent does not stop
during that event. If the moving object’s velocity direction
is distributed uniformly randomly in all directions, the prob-
ability that a regressive event ends up in a collision is rather
low (≈ 20% in our implementations). Because the false pos-
itive rate of using regressive optical flow as the only predic-
tor of collisions is liable to thwart the evolution of an RCC
strategy, we biased our setup in such a way that the false-
positive rate is zero, a bias that does not significantly influ-
ence the outcome of our experiments. Consider an environ-
ment in which only a percentage of events with regressive
motion end up in collision. This is similar to an environ-
ment with a lower penalty for collisions (as long as the strat-
egy evolves at all) since the agent’s fitness is scored at the
end of its lifetime (all 100 events) not during each event.

However, there is a difference between a lower percentage
of collisions in regressive events and lower penalty for col-
lisions, namely a lower probability of collision in regressive
motion events is equivalent to a higher amount of noise in
the cue that the agent takes from the environment, compared
to the case of lower penalties for collision. In other words,
if 100% of all regressive motion events lead to collisions,
the agent associates regressive motion events with collisions
with certainty. Thus, implementing the experiments with
100% collisions in regressive motion events is tantamount
to eliminating the noise in sensory information, which gen-
erally aids evolution. Compensating for noise in sensory in-
formation could also be achieved if we scored agents in ev-
ery single event, and informed them about their performance
in that event (feedback learning). We did not use feedback
learning here, but plan to do so in future experiments.

We conclude that the evolution of “regressive motion
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Figure 10: RCC value distribution in environments with dif-
ferent penalty-reward ratios. Each box-plot shows the RCC
value averaged over the last 1000 generations on the line of
descent for 20 replicates.

saliency” is unlikely to have happened only due to colli-
sion avoidance as the selective pressure. It is important to
remember that walking is not the most frequent activity in
fruit flies. Further, flies do not usually live in high density
colonies and therefore do not find themselves on collision
courses very often. It may be the case that components
of this strategy (namely categorizing the optic flow as re-
gressive or progressive) have evolved under different selec-
tive pressures entirely unrelated to the present test situation,
and was further evolved to enhance collision avoidance with
conspecifics while moving (a type of exaptation). For exam-
ple, detecting predators is a strong selective pressure in the
evolution of visual motion detection, including the catego-
rization of that cue so as to take appropriate actions. It may
be interesting to study the behavior of flies interacting with
animals or objects that are not perceived as conspecifics.
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