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Abstract
High mutation rates select for the evolution of mutational robustness where populations inhabit flat fitness peaks with little 
epistasis, protecting them from lethal mutagenesis. Recent evidence suggests that a different effect protects small popula-
tions from extinction via the accumulation of deleterious mutations. In drift robustness, populations tend to occupy peaks 
with steep flanks and positive epistasis between mutations. However, it is not known what happens when mutation rates are 
high and population sizes are small at the same time. Using a simple fitness model with variable epistasis, we show that the 
equilibrium fitness has a minimum as a function of the parameter that tunes epistasis, implying that this critical point is an 
unstable fixed point for evolutionary trajectories. In agent-based simulations of evolution at finite mutation rate, we demon-
strate that when mutations can change epistasis, trajectories with a subcritical value of epistasis evolve to decrease epistasis, 
while those with supercritical initial points evolve towards higher epistasis. These two fixed points can be identified with 
mutational and drift robustness, respectively.

Keywords Epistasis · Drift robustness · Mutational robustness · Small populations

Introduction

When a population is in mutation–selection balance, it 
is able to maintain its mean fitness while still generating 
genetic variation that may increase its fit to the environment 
via adaptive mutations (Goyal et al. 2012). However, this 
balance between the evolutionary forces of selection and 
mutation can sometimes be precarious. When mutation rates 
become too high, for example, mutations can overpower 

selection leading to the extinction of a population via lethal 
mutagenesis (Bull et al. 2007). Similarly, when population 
size dwindles, selection can become so weak that deleterious 
mutations cannot be eliminated, leading to fitness decline 
via Muller’s ratchet  (Haigh 1978) or population extinc-
tion through a mutational meltdown (Lynch et al. 1993). 
Populations can adapt to high mutation rates and/or small 
population sizes by evolving “mutational robustness” (Wilke 
and Adami 2003) or “drift robustness” (Kondrashov 1994; 
LaBar and Adami 2017; Lan et al. 2017). Populations evolve 
mutational robustness by moving onto flat fitness peaks, 
where they experience a reduction in maximum fitness 
counterbalanced by an increased fraction of new mutations 
that are either neutral or have a small fitness effect (Wilke 
et al. 2001; Franklin et al. 2019); this phenomenon is often 
referred to as the “survival-of-the-flattest” effect (Wilke 
et al. 2001). Robustness to drift, on the other hand, appears 
to involve favoring fitness peaks that have steep flanks, ena-
bled by mutations that are synergistic in their deleterious 
effect (Kondrashov 1994; LaBar and Adami 2017), while 
reducing (rather than increasing) the likelihood of muta-
tions with small effect, and increasing the fraction of muta-
tions that are lethal. Interestingly, a recent re-analysis of the 
survival-of-the-flattest effect has shown that an increase in 
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the fraction of lethal mutations is also seen in the response 
to high mutation rates (Franklin et al. 2019), suggesting that 
resistance to drift and resistance to mutations are intertwined 
(see also Lan et al. 2017).

The threat of high mutation rates and small population 
sizes to genetic survival is particularly real for populations 
that periodically undergo bottlenecks during transmission 
between hosts and cannot rely on sexual recombination to 
protect against gene loss, such as the mitochondria of the 
salivarian Trypanosomes T. brucei and T. vivax (Speijer 
2006). For those organisms, population size often drops into 
the single digits (Oberle et al. 2010) while mutation rates 
are elevated due to oxidative stress (Koffi et al. 2009). High 
mutation rates and small population sizes are also important 
for viral populations. Mutational robustness (and possibly 
drift robustness) has been observed in some strains of the 
RNA virus vesicular stomatitis virus (VSV) that differ in 
the rate at which deleterious mutations accumulate at small 
population size (Sanjuán et al. 2007).

How genomes respond to mutations is determined to a 
large extent by how mutations interact. In general, the effect 
of a mutation on host fitness is influenced by the genetic 
background within which that mutation occurs, a phenom-
enon known as epistasis (Wolf et al. 2000). Epistasis has 
a direction: the effect of a pair of mutations can either be 
larger or smaller than what is expected from a single muta-
tion, so that the deleterious effect of two mutations can be 
either amplified (synergistic), or buffered (antagonistic). 
The average direction between pairs (also called directional 
epistasis, see for example Wilke and Adami 2001) plays an 
important role in determining linkage equilibria (Charles-
worth 1976; Barton 1995), canalization (Scharloo 1991; 
Gibson and Wagner 2000), as well as theoretical investiga-
tions of the origin of sex (Kondrashov 1982, 1988; Westy 
et al. 1999). Epistasis has been measured quantitatively for 
a number of model organisms, and both antagonistic and 
synergistic trends have been observed (de Visser et al. 1997; 
Elena and Lenski 1997; Bonhoeffer et al. 2004; Burch and 
Chao 2004; Sanjuán et al. 2005; Beerenwinkel et al. 2007; 
Jasnos and Korona 2007).

When faced with changed conditions, one of the ways 
in which populations can adapt is by changing the way 
information is encoded in the genome, leading to changes 
in epistasis (Gros et al. 2009). Here we study the impact of 
epistasis on both drift and mutational robustness in a simple 
model fitness landscape. We show that whether a popula-
tion predominantly displays drift or mutational robustness 
is largely determined by the average value of directional 
epistasis: populations occupying a peak with synergistic 
epistasis above a critical value will tend to evolve towards 
drift-robust peaks (by moving towards peaks with increased 
positive epistasis), while those inhabiting peaks with sub-
critical epistasis will respond by lowering epistasis until 

mutations are mostly neutral, consistent with mutational 
robustness. Thus, evolutionary trajectories for populations 
under evolutionary stress will bifurcate towards drift-robust 
or mutationally robust fixed points.

Model

We study a simple fitness landscape in which the wild-type 
genotype resides on a fitness peak with a height of 1, and the 
fitness of a k-mutant is given by

where s = − log f (1) is the mean effect of a deleterious muta-
tion to the wild type, q determines the degree of directional 
epistasis, and genotypes have a finite number of binary loci 
L (see, e.g.,  Wilke and Adami 2001)1. In such a model 
q = 1 signals absence of epistasis (i.e., the fitness land-
scape is multiplicative), q > 1 describes a peak with syn-
ergy between deleterious mutations (synergistic epistasis), 
and q < 1 is indicative of buffering mutations (antagonis-
tic epistasis). When q > 1 we sometimes speak of negative 
epistasis (because the combined two-mutant fitness is lower 
than the multiplicative expectation), while q < 1 indicates 
positive epistasis (the double-mutant is higher in fitness 
than expected on the basis of the single-mutation effect). 
Of course, a model that only treats the mean epistatic effect 
between mutations using a single parameter q has significant 
limitations. In particular, such a model cannot capture effects 
that are due to a distribution of pair-wise epistatic effects 
(something that can be delivered by an NK model, for exam-
ple Østman et al. 2012). Furthermore, we ignore here all the 
subtleties of sexual reproduction, which can also affect how 
epistasis evolves. The loss of realism is offset by our ability 
to control the parameters of such an effective model pre-
cisely (s and q), which in more sophisticated models depend 
on each other. Furthermore, an analysis in terms of asexual 
processes is warranted for those genomic stretches in strong 
linkage disequilibrium.

We can analytically calculate the evolutionary dynamics 
of a population on this fitness landscape in the weak muta-
tion limit, N𝜇 ≪ 1 , where N is the effective population 
size and � is the mutation rate per genome per generation. 
In this limit, the population is monomorphic and indi-
vidual mutations either rapidly go to fixation or are lost 
to drift (McCandlish and Stoltzfus 2014). The dynamics 

(1)f (k) = e−sk
q

,

1 The present model in which fitness declines as a function of genetic 
distance from the wild type (modulated by epistasis) gives rise to 
conclusions similar to what Fisher’s geometric model would predict, 
even though in Fisher’s model the distance from wild type is pheno-
typic rather than genetic (Tenaillon et al. 2007).
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of an evolving population in this limit can be mathemati-
cally represented as a Markov process, where the state of 
the Markov process at time t corresponds to the predomi-
nant genotype present in the population at that time, and 
a transition to a new state corresponds to the fixation of 
a new mutation (Sella and Hirsh 2005; McCandlish and 
Stoltzfus 2014). For sufficiently large times t, the Markov 
process reaches stationarity, at which point its probability 
to reside in any given state is provided by the equilibrium 
distribution pk . We can interpret pk as the probability to 
observe the population centered around a genotype carry-
ing k mutations at any point in time.

Assuming that we know the equilibrium distribution 
pk , we can calculate the population mean fitness feq by 
averaging over the stationary distribution of k-mutants,

Importantly, feq represents an average over time. It is the 
mean fitness in the population when averaged both over all 
individuals in the population and over a long period of time.

The distribution pk can be calculated using the transi-
tion probability P(0 → k) in the Markov process, solving 
the detailed balance equations (Sella and Hirsh 2005). 
More precisely, detailed balance entails that in a process 
where the transitions i → j and j → i are both possible, the 
number of changes ni→j must equal the number nj→i . To 
obtain ni→j and nj→i , we calculate the number of k-mutants 
that go to fixation, starting with the wild-type sequence 
with fitness f(0), and compare this with the number of 
k-mutants that are replaced by the wild type. Using the 
Sella–Hirsh fixation formula (2005) that is appropriate for 
a haploid Wright–Fisher process, for a k-mutant with fit-
ness f(k), we find

(2)feq =

L
∑

k=0

pkf (k).

The reverse rate is then

so that the detailed balance condition becomes

In Eq. (5), p0 is the equilibrium density of the wild type, 
while pk is the (combined) equilibrium density of all indi-
vidual k-mutants. Equations (3)–(5) then lead to the solu-
tion (Sella and Hirsh 2005)

In this expression, Z is the partition function

For q = 1 we can obtain a closed-form expression for the 
equilibrium fitness,

that shows clearly the steep fitness drop with decreasing 
population size that is due to genetic drift. But different val-
ues for q affect the fitness drop differently. In Fig. 1a, we 
can see the dependence of feq on the population size for the 
multiplicative model ( q = 1 ), a model with positive epistasis 

(3)P(0 → k) =
1 − 1∕f (k)2

1 − 1∕f (k)2N
.

(4)P(k → 0) =
1 − f (k)2

1 − f (k)2N
,

(5)p0

(

L

k

)

P(0 → k) = pkP(k → 0).

(6)pk =

(

L

k

)

f (k)2N−2∕Z.

(7)Z =

L
∑

k=0

(

L

k

)

f (k)2N−2.

(8)feq =

(

1 −
1 − e−s

1 + e(2N−2)s

)L

≈

(

1 −
se−Ns

2 cosh(Ns)

)L

,

Fig. 1  a Equilibrium fitness 
Eq. (2) as a function of popula-
tion size N for strong positive 
epistasis ( q = 2.0 , dark gray), 
no epistasis ( q = 1.0 , teal), 
and strong negative epistasis 
( q = 0.5 , light gray). b Equi-
librium fitness as a function of 
epistasis q, for three different 
population sizes (red: N = 10 , 
dark red: N = 50 , black: 
N = 100 ). In both panels, we 
used s = 0.01 and L = 100 . The 
equilibrium fitness tends to 
increase with increasing N but 
displays a minimum at interme-
diate q (colour figure online)
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( q = 2.0 ), as well as the case of negative epistasis ( q = 0.5 ), 
evaluated at s = 0.01 and L = 100 . The model suggests that 
while positive epistasis protects from a fitness drop for mod-
erate population sizes (higher mean equilibrium fitness), the 
drop becomes severe once populations dwindle below 100.

In fact, plotting feq against q as in Fig. 1b reveals a fitness 
minimum as a function of q, suggesting that fitness loss via 
drift can be prevented in two different ways: high positive 
epistasis or high negative epistasis, while populations with 
weak or no epistasis appear to be the most vulnerable.

Two Regimes: Selection and Neutral Drift

The minimum in mean equilibrium fitness apparent in 
Fig. 1b can be seen as interpolating between two regimes: 
the neutral drift regime and the selection regime. To for-
malize these two regimes, we define the critical epistasis 
parameter q⋆ at which mean fitness is minimal. Then, the 
neutral drift regime corresponds to q ≪ q⋆ and the selection 
regime corresponds to q ≫ q⋆ . In the selection regime, an 
organism’s fitness declines rapidly with increasing number 
of mutations, and this rapid decline effectively limits the 
maximum number of mutations an organism can carry. By 
contrast, in the neutral drift regime additional mutations 
have increasingly smaller effects on organism fitness, and 
as a consequence selection cannot effectively purge deleteri-
ous mutations.

When q ≪ q⋆ , selection cannot effectively purge deleteri-
ous mutations, and consequently the evolutionary dynamics 
are dominated by neutral drift. We can estimate the mean 
equilibrium fitness in the neutral regime by using

that is, the distribution given by Eq. (6) but with f (k) ≡ 1 . To 
calculate the mean fitness under this distribution, we insert 
this expression for pk into Eq. (2), but note that we need to 
keep the original expression for f(k) in Eq. (2). The idea is 
that in the drift regime fitness differences are sufficiently 
small that they have no influence on the mutant distribution 
pk . This does not mean, however, that all organisms have a 
fitness of 1. The result of this derivation is the dashed line 
in Fig. 2, which agrees with the full model for sufficiently 
small q.

On the other hand, when epistasis between deleteri-
ous mutations is synergistic ( q ≫ q⋆ ), we are operat-
ing in the limit of strong selection: In this limit, fitness 
declines super-exponentially with increasing k, so that fit-
ness is effectively 0 for sufficiently large k. Consequently, 
genotypes with k exceeding some number kmax can be 
ignored, because they are removed by selection and do 

(9)pk =

(

L

k

)

∕Z,

not contribute to mean fitness. We can model this effect 
by truncating the sum over k in the expression for mean 
fitness,

where kmax < L . We see that the truncated mutation model 
agrees with the full solution for large q (Fig. 2, dotted line).

One of the most striking features of the interplay between 
the neutral regime and the selection regime is the appearance 
of a minimum mean fitness (as a function of epistasis) where 
the drop of fitness is largest. The location of this minimum 
q⋆ (reflecting the amount of directional epistasis that leads 
to the largest fitness loss) depends on the population size, the 
mean deleterious effect of mutations, and the number of loci 
(Fig. 3). Another less pronounced fitness minimum appears 
at significantly higher q ( q > 4 ) because epistasis this high 
essentially leads to truncation selection, limiting the num-
ber of mutations that contribute to the equilibrium fitness 
to just one (a “selection-driven” model as the one shown 
in Fig. 2, but with kmax = 1 ). In principle, this minimum 
gives rise to another attractive fixed point that is separated 
from the stronger attractor at lower q by an unstable fixed 
point. Because epistasis levels this high are rarely (if ever) 
observed in nature, we do not consider these additional fixed 
points any further.

(10)f sel
eq

=

kmax
∑

k=0

f (k)pk,

Fig. 2  Equilibrium fitness as a function of the epistasis parameter 
q for N = 10 , s = 0.01 , and L = 100 . The solid black line repre-
sents the full model, Eq.  (2), while the dashed blue line represents 
the drift-driven approximation, Eq.  (9), and the dotted brown line 
represents the selection-driven approximation, Eq. (10) with a maxi-
mum number of mutations kmax = 20 . For q ≲ 0.8 , the solid black 
line lies exactly on top of the dashed blue line, and for q ≳ 1.7 , the 
solid black line lies exactly on top of the dotted brown line. Thus, the 
two approximations represent the full model well in the two limits of 
small and large q, respectively (colour figure online)
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To estimate the epistasis coefficient at which the steady-
state fitness is at its minimum, we analyze the stationary dis-
tribution of fitness, Eq. (6), which apart from the normaliza-

tion constant Z consists of two factors, 
(

L

k

)

 and 

f (k)2N−2 = exp[−skq(2N − 2)] . As discussed in the deriva-
tions to Eqs. 9 and 10, these two factors represent neutral drift 
and selection, respectively. Importantly, for most values of k 

the binomial coefficient 
(

L

k

)

 is much larger than 1, whereas 

the selection term exp[−skq(2N − 2)] is much smaller than 1. 
Further, to the left of the minimum the binomial coefficient 
dominates the product, whereas to the right of the minimum 
the selection term dominates. Thus, at the minimum we expect 
the two factors to cancel, i.e., have a combined value of ∼ 1 . 
To arrive at an expression that is independent of k, we maxi-

mize 
(

L

k

)

 by setting k = L∕2 . Then, the condition for maxi-

mal fitness loss (where drift maximally balances selection) 
becomes

We can solve this equation for q⋆ by using the Stirling 
approximation ( log n! = n log n − n ) to expand the binomial 
coefficient. We obtain for the minimum q⋆ that

We test this estimate by comparing it to the numerically 
inferred minimum obtained via numerically minimiz-
ing Eq. (2) and find that Eq. (12) generally performs well, 
though it has a tendency to overestimate the true value of q⋆ 

(11)1 =

(

L

L∕2

)

e−s(L∕2)
q⋆ (2N−2).

(12)q⋆ ≈
log (L log 2[s(2N − 2)]−1)

log (L∕2)
.

by a few percent (Fig. 3). Importantly, Eq. (12) captures the 
correct functional relationship between q⋆ and the model 
parameters. In particular, the location of q⋆ is primarily 
determined by the product of s and N, and not by their indi-
vidual values. Further, because the product sN enters the 
expression for q⋆ logarithmically, q⋆ changes slowly even if 
sN changes by orders of magnitude.

Increased Mutation Rate Exacerbates Fitness Loss 
in the Selection Regime

The theoretical results shown above were derived in the 
weak mutation limit where every mutation is either lost or 
goes to fixation before another mutation occurs in the popu-
lation. In this section we study how finite mutation rates 
modify those results.

We simulate finite populations on a single-peak fitness 
landscape at finite mutation rates � using stochastic simula-
tion. The population evolves asexually, and the population 
size is held constant over time for all simulations. For each 
combination of mutation rates and epistasis parameters, we 
simulated populations sizes N = 10 and N = 100 , as well as 
selection coefficients s = 0.01 and s = 0.001 . We recorded 
the mean fitness of the population over a period of time after 
a population reached steady state (see Methods), as a proxy 
for this equilibrium fitness feq . The simulations of the evo-
lutionary process on the fitness landscape defined by Eq. (1) 
recover the theoretical results well for small mutation rates, 
as expected. As the mutation rate increases, we see notable 
departures from the weak mutation limit for the selection 
regime (larger q), while the neutral (drift) regime is largely 
unaffected by the increased rates (Fig. 4).

In particular, we notice that the minimum of the equilib-
rium fitness shifts towards higher q (Fig. 4). Furthermore, 
while for small mutation rates an increased epistasis protects 
from the loss of fitness due to genetic drift (mean fitness 
does not drop appreciably), it is clear that higher mutation 
rates negate this effect, and instead exacerbate the loss of 
fitness. Indeed, the increased mutation rate mimics the effect 
of a smaller population size (see Fig. 1b), which is expected 
as the effective population size decreases with mutation rate.

While the depressed equilibrium fitness suggests that 
there are two routes to withstand genetic drift at small popu-
lation sizes, it is not clear whether evolutionary trajectories 
could indeed bifurcate.

Bifurcation Analysis of Survival Strategies

The minimum in feq at q⋆ suggests that if q were a dynamical 
variable, then q⋆ represents an unstable fixed point of the 
evolutionary dynamics. While q is not a dynamical variable 
in the usual sense, we can simulate it by endowing each 
genotype with a particular value of q that can be changed 

0.0

0.5

1.0

1.5

2.0

2.5

0.0001 0.001 0.01 0.1
s

q*

N
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1000

Fig. 3  Relationship between the critical epistasis value q⋆ and the 
selection coefficient s, for different population sizes N ( L = 100 
throughout). The lines represent analytically derived q⋆ , as given by 
Eq. (12). The dots represent q⋆ values obtained by numerically mini-
mizing Eq. (2). Throughout the entire parameter range, Eq. (12) pro-
vides a good approximation to the true location of the minimum



 Journal of Molecular Evolution

1 3

via mutation. In such a simulation, the statistics of the muta-
tional process affecting q (the rate of change �q as well as the 
mean change per mutation Δq ) matter, so we test multiple 
different values for each.

It is worth pointing out that a genotype-dependent q 
appears to contradict the idea of fitness optimization in a 
landscape with a fixed fitness function such as Eq. (1). Such 
a function suggests that as a population climbs this peak, the 
parameters q and s are unaffected by this climb. While this 
is true for such a simple fitness function, it does not hold for 
more realistic evolutionary landscapes (for example in digi-
tal life Adami 1998; Adami et al. 2000; Wilke and Adami 
2001; Ofria et al. 2009), where the mean effect of mutations 
s and the directional epistasis q are not fixed properties of 
the landscape, but instead emerge as properties of the local 
neighborhood in genetic space. As a consequence, moving 
in this space (via mutations) will affect both s and q. We 
attempt to simulate part of that dynamics by allowing q to 
adapt (while keeping s fixed). If selection favors a particular 
value of epistasis, we should see a gradual change in the 
mean epistasis q̄ of a population.

In Fig. 5, we show how the mean epistasis parameter q̄ 
(averaged over sequences in the population) changes over 
time when populations are seeded with different seed 
organisms with fixed initial q. A bifurcation is indicated 
when trajectories move to different future fixed points 
given different initial states. While we can see clear signs 
of a bifurcation when plotting the mean trajectory in 
q-space over time (Fig. 5), viewing each trajectory sepa-
rately reveals significant variation among them. In par-
ticular, for trajectories that are initialized with a q above 
the unstable fixed point q⋆ , some trajectories still move 
towards the low-q fixed point, yet the mean of trajectories 
may appear constant or nearly so (for example, the third 
panel in Fig. 6). We also emphasize that for q near or 
above q⋆ , the evolution of q proceeds extremely slowly, 
over hundreds of millions of generations, so that we cannot 
guarantee that populations are ever fully equilibrated in 
our simulations. It is possible that if we ran simulations for 
billions or trillions of generations, all populations would 
eventually reach the absorbing boundary at q = 0.

Fig. 4  Comparison between 
theoretical equilibrium fitness 
and simulated equilibrium fit-
ness. The black line represents 
theoretical fitness of the popula-
tion at steady state, Eq. (2). The 
dots represent mean fitness of a 
population at steady state over 
ten simulations for different 
mutation rates (see legend). The 
error bars represent the standard 
error. For almost all cases, error 
bars are smaller than the symbol 
size. a–d Theoretical fitness and 
simulated fitness for different 
population sizes (N), epistasis 
coefficient (q), and selection 
coefficient (s). Mutation rate 
seems to have no effect on 
equilibrium fitness to the left of 
the fitness minimum, but to the 
right higher mutation rates lead 
to systematically lower equilib-
rium fitness values



Journal of Molecular Evolution 

1 3

Discussion

The dynamics of evolution in asexual population is well 
understood in the common population-genetic limits, 
namely vanishingly small mutation rate and large popula-
tion (weak mutation and strong selection). When mutation 
rates are high and selection is weak, the classic theoreti-
cal results are undermined by new effects such as muta-
tional robustness (effect of large mutation rate) and drift 
robustness (effect of small population size), as anticipated 
by generalized population-genetic models such as “free-
fitness” evolution  (Iwasa 1988; Aita et al. 2004; Sella 
and Hirsh 2005; Barton and Coe 2009). Such theoretical 

models posit that Darwinian evolution does not optimize 
reproduction rate, but rather a combination of terms (the 
“free fitness,” in analogy to the free energy concept of sta-
tistical physics) that includes the reproduction rate as well 
as a term proportional to the inverse of population size and 
one proportional to mutation rate. In such theories, it is 
possible to increase the free fitness by trading reproduction 
rate for robustness to mutations, to drift, or both.

In most populations, we expect both mutational and drift 
robustness to contribute to survival. For example, when the 
mutation rate is large, the effective population size is dimin-
ished, so that both mutational and drift robustness are bound 
to be intertwined. The mean directional epistasis between 
mutations plays a role in both effects. While fitness peaks 

Fig. 5  Mean epistasis q as a function of time t for different combi-
nations of �q and Δq in simulations with evolving q. Each line cor-
responds to the mean over ten replicates. The labels on top of each 
panel specify the mutation rate of q, �q , and the mutation step size, 
Δq . The different colors correspond to different starting points of 
q. Each population had a fixed q until t = 200, 000 , for equilibra-

tion, and then q was allowed to evolve. Other simulation parameters 
were � = 0.01 , N = 100 , s = 0.01 , and L = 100 . We observe bistable 
behavior, such that populations with a mean q below the critical value 
experience continued decline in mean q, whereas populations with a 
mean q above the critical value do not (colour figure online)

Fig. 6  Individual population trajectories for the simulations shown in 
the middle panel of Fig. 5 ( �q = 0.001,Δq = 0.001 ). Thin gray lines 
correspond to the evolution of individual populations, and the thick 

colored lines trace the mean among the replicate populations, as in 
Fig. 5. The labels on top of each panel indicate the initial population 
epistasis q(t = 0) in that panel (colour figure online)
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for mutationally robust populations tend to be flatter with lit-
tle epistasis between mutations, we also observe something 
akin to truncation selection (Wilke et al. 2001; Franklin et al. 
2019). In drift robustness, we observe both an increase in 
neutral mutations as well as an increase in strongly dele-
terious and lethal mutations, mediated by strong negative 
epistasis ( q > 1).

Here, we have calculated the mean equilibrium fitness of 
a population in the limit of small mutation rates using a sim-
ple fitness function with variable epistasis and tunable muta-
tion effect-size, and we have found a minimum as a function 
of the mean directional epistasis parameter q that depends 
on population size. Stochastic simulations of adaptation on 
this landscape suggest that the minimum also depends on 
mutation rate. The model further suggests that there are two 
attractive fixed points for evolutionary dynamics, namely 
small q where mutations become nearly neutral, and large 
q where deleterious mutations interact synergistically. The 
low-q fixed point2 can be identified with mutational robust-
ness ( q ≈ 0 ). In contrast, the q > 1 fixed point is reminiscent 
of drift robustness.

While the existence of a minimum in equilibrium fitness 
is suggestive of an unstable fixed point q⋆ at which evolu-
tionary trajectories bifurcate towards a low-q and a high-q 
fixed point, an agent-based simulation of such trajectories 
in a bit-string fitness model implementing Eq. (1) but with 
variable q paints a more complicated picture. It is clear 
from inspection of Eq. (1) that for every single sequence, a 
reduction of q while keeping k constant increases fitness (as 
𝜕f∕𝜕q < 0 ), no matter what the mean q of the population. 
This means that the population will sense an evolutionary 
pressure to reduce q independently of the mean population 
epistasis. However, if q > q⋆ , a secondary selective pressure 
appears that acts via the fitness distribution of a sequence’s 
offspring. For sequences with q > q⋆ , sequences with higher 
q have on average offspring with higher fitness than those 
with lower q, leading to a second-order selective pressure 
to increase q. However, in any particular fitness trajectory, 
there is a chance that a sequence with q < q⋆ is among the 
offspring. Such a sequence may then go to fixation and abro-
gate the evolutionary trajectories leading towards a q > q⋆ , 
even though the selective pressure towards higher q is still 
present. We also expect that the likelihood of mutations 
that create sequences with q < q⋆ in the offspring distribu-
tion depends on �q as well as Δq . This is precisely what we 
observe in Figs. 5 and 6: while for small q < q⋆ the trend 
towards the mutationally robust fixed point is evident, at 
q > q⋆ the mean epistasis across ten replicate experiments 

often shows a decrease (or remains constant) even though 
theoretically we expect an approach towards the drift-robust 
fixed point. The distribution of fitness trajectories shown 
in Fig. 6 shows that while some trajectories indeed move 
towards higher q, the possibility of mutating towards q < q⋆ 
leads to trajectories in which the secondary selective pres-
sure towards higher q is muted. Indeed, trajectories towards 
q > q⋆ are absent among the replicates with initial q < q⋆ , 
reinforcing the conclusion that a critical amount of epista-
sis separates a population’s response to evolutionary stress 
either in a mutationally robust, or a drift-robust manner.

Throughout this work, we have used relatively small pop-
ulation sizes around N = 100 or less, as any investigation of 
drift robustness necessitates sufficiently small populations 
sizes such that drift can play a significant role in the evolu-
tionary dynamics. However, our analytical results provide 
a more nuanced picture of the conditions under which our 
results may be relevant. First, we can see from Eq. (12) that 
the location of q⋆ depends only on the product sN (i.e., the 
scaled selection coefficient) for sufficiently large N. Thus, 
drift robustness can act even for very large population sizes 
as long as s is sufficiently small. However, this is only true 
with one additional caveat: There can only be a fitness mini-
mum separating the drift and selection regimes if the number 
of sites L is sufficiently large (on the order of 1/s), so that a 
large number of deleterious mutations can accumulate. By 
contrast, if both s and L are small, then the mean fitness is 
always approximately 1 and whether mutations are present 
or absent in a genotype makes virtually no difference.

While it is difficult to extrapolate results obtained using 
the abstract fitness function Eq. (1) to more complex land-
scapes in which many different peaks with different effect 
sizes and directional epistasis exist at the same time, our 
results support the notion that mutational robustness and 
drift robustness are indeed two different effects, which are 
likely to be intertwined in realistic scenarios. In particu-
lar, it would be interesting to study the response of experi-
mental populations exposed to different mutation rates and 
populations, something that is possible using strains of T. 
brucei, for example. In those eukaryotic parasites, the direc-
tional epistasis between mutations in mitochondrial genes 
is controlled in part by RNA editing leading to overlapping 
genes (Kirby and Koslowsky 2017). Because the rate of gene 
overlap strongly correlates with directional epistasis, the pre-
sent theory predicts that strains that differ in the number of 
overlapping genes could take different evolutionary trajec-
tories when subjected to severe bottlenecks. While experi-
mental evolution over prolonged time with parasites through 
controlled bottlenecks is difficult, such experiments might 
reveal to us these hidden dimensions of genomic adaptation.

2 Note that while technically the low-q fixed point is q = 0 , this value 
cannot be attained in any realistic population as such a landscape is 
completely neutral ( f = 1 ) in this limit.
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Methods

Evolutionary Model with Fixed Epistasis

For all simulations, we used an individual-based model 
using Wright–Fisher sampling for reproduction. Individu-
als in the population are represented by bit strings of length 
L, where each bit can either be in the wild-type state (0) or 
in the mutated state (1). The fitness of an individual is given 
by the number of 1s in the bit string. We refer to this number 
as k, with 0 ≤ k ≤ L , and write fitness as f (k) = e−sk

q , where 
s is the selection coefficient and q is the epistasis coefficient.

A population of individuals is represented as a vector 
V of a length L + 1 . Each component Vk of the vector cor-
responds to a bin counting the number of individuals with 
k mutations. Reproduction occurs in discrete generations, 
and the number of offspring is drawn from a multinomial 
distribution, such that the probability of reproduction for 
each mutation number k is given by the number of indi-
viduals in bin k, Vk , and their fitness f(k). Population size N 
is held constant at all times. After reproduction, mutation 
events move individuals up or down one or more bins. To 
simplify the mutation process, we limit the total number of 
mutations that can occur to a single individual during one 
reproductive event. For most simulations, this limit is set to 
3. However, for very high mutation rates, � = 1 , we set the 
maximum number of mutations to 4. (The mutation rate � 
is defined as the expected number of mutations per genome 
per duplication.)

The probability that an individual carrying k mutations 
mutates into an individual carrying j mutations is given by

where u is the per-site mutation rate, u = �∕L.
We simulated population sizes of N = 100 and N = 10 . 

We set selection coefficients to 0.01 and 0.001. We used 
mutation rates � of 0.1, 0.01, 0.001, and 0.0001. For each 
combination of population size, selection coefficient, and 
mutation rate, we simulated ten replicates, each for 2.5 mil-
lion generations. We used the first 1.5 million generations 
for equilibration, and we used the subsequent 1 million time 
steps to measure the mean fitness of the population for the 
given parameter settings.

Evolutionary Model with Evolving Epistasis

Similarly to simulations with fixed epistasis, we employed 
an individual-based bit-string model to simulate populations 
with evolving epistasis. In these simulations, a population 
is represented by two vectors, each of length N. Individu-
als are represented by the components of these two vectors. 

(13)
max(L−j,k)
∑

i=max(0,k−j)

(

k

i

)(

L − k

i − k + j

)

u(j−k+2i)(1 − u)(L+k−j−2i),

The first vector keeps track of the number of mutations k of 
each individual, and the second vector keeps track of the 
epistasis coefficient q of each individual. Fitness is again 
given by f (k) = e−sk

q.
Replication again is implemented as Wright–Fisher sam-

pling. After reproduction, each individual is subjected to a 
two-step mutation process. First, an individual either gains 
a mutation ( k → k + 1 ), loses a mutation ( k → k − 1 ), or 
does not mutate, with probabilities for these events given 
by Eq. 13. Second, each individual’s epistasis parameter q 
may mutate. The probability that the q mutates is given by a 
second mutation rate, �q . When such a mutation even occurs, 
q either increases or decreases by a fixed amount ( Δq ), with 
equal probability. Δq remains constant for all individuals 
and across all generations within each simulation trajectory. 
However, epistasis is only set to evolve after an initial equili-
bration phase, which we set to 200,000 generations.

Data Analysis and Code

We wrote our simulations in Python (Python Software 
Foundation 2019), using the NumPy (Oliphant 2006) and 
SymPy (Meurer et al. 2017) libraries for numeric and sym-
bolic manipulations of matrices, respectively. Downstream 
data analysis and visualization was performed in R (R Core 
Team 2019), making extensive use of the tidyverse family of 
packages (Wickham et al. 2019). Our simulation and analy-
sis code is available at https ://githu b.com/claus wilke /epist 
asis_evolu tion/ and it is archived on Zenodo at https ://doi.
org/10.5281/zenod o.35588 02. Simulation datasets generated 
with this code are archived in the Texas Data Repository at 
https ://doi.org/10.18738 /T8/GUNX7 6.
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