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Abstract—The Evolvable Computation Group,1,2 at
NASA’s Jet Propulsion Laboratory, is tasked with
demonstrating the utility of computational engineering and
computer optimized design for complex space systems.  The
group is comprised of researchers over a broad range of
disciplines including biology, genetics, robotics, physics,
computer science and system design, and employs
biologically inspired evolutionary computational techniques
to design and optimize complex systems.  Over the past
two years we have developed tools using genetic
algorithms, simulated annealing and other optimizers to
improve on human design of space systems. We have
further demonstrated that the same tools used for computer-
aided design and design evaluation can be used for
automated innovation and design.  These powerful
techniques also serve to reduce redesign costs and schedules.
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1. INTRODUCTION

Complex engineering design problems are multi-parameter
optimizations where physics models predict the outcome
derived from a series of input parameters. Design, however,
depends on desiring an outcome and deriving the necessary
input parameters.  Generally it is not feasible to invert the
physics models to derive an optimal solution. Instead, by
parallelizing the problem into a large population with
varying input parameters and competing the results, we can
extract favorable combinations of inputs.  In the same way
biological evolution functions, this process is repeated over
many generations and uses the sophisticated biological
operators of selection, mutation, and recombination to
explore larger volumes of design space than could be
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examined by a human designer or by computational brute
force (i.e., complete enumeration, exhaustive search, or
other deterministic search algorithms).

The advantage of this approach is that it allows complex
systems to be designed for and adapted to their environment
(simulation or model) in the same way in which living and
evolving systems adapt to natural environments. Knowledge
of how the design should be optimized is not required.  The
necessary components are a good simulation of the design
environment, a framework that allows evolution and
knowledge of what requirements are desired (fitness).
Competition and selection drive the systems to higher
fitness and increased robustness.  Computationally derived
evolutionary designs have shown competitive advantages
over human created designs in complexity, creativity and
robustness. Our group has demonstrated this in the areas of
power system design, low thrust trajectory optimization,
robotic arm deployment path finding, MEMS micro-gyro
calibration, mission planning and scheduling, neural
network design, and avionics architecture design.  We have
also developed a framework for the rapid introduction and
parallelization of optimization problems in an evolutionary
environment using computer clusters.

These techniques offer an alternative approach to system
engineering of complex systems by the imposition of
design rules (Figure 1).  Whereas this has been a successful
approach for hardware systems that can rely on physics,
mathematics, material science etc. as their foundation,
software systems have largely failed to improve in
robustness by the imposition of new design rules.  The
approach of evolutionary computation uses the same
principles of variation and selection that have been so
successful in the development of natural biological systems.

2. OVERVIEW

Evolutionary Computation Framework

The strength of evolutionary computation comes from the
ability to utilize existing computer models and simulations
that predict the results of multiple input parameters.  These
types of models are now common elements of computer-
aided design (CAD) as well as scientific modeling and
forecasting.  In evolutionary computational techniques, a
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population of these models is created and input parameters
are varied.  The results are evaluated using fitness functions
and a percentage of the highest fitness individuals from one
generation is promoted to the next generation, while new
models are created through variation (e.g., by mutation or
cross-over). 

Figure 1. Complexity and Design Rules.  As complexity
increases from hardware systems to software to nature,
the formalism and number of design rules decreases. 
Current efforts in software engineering are trying to
move software systems to higher formalism. Our effort
tries to explore the creation of complexity by removing
formalism and using a biological evolutionary
approach.

In order to rapidly adopt new problems into an evolutionary
framework we have developed a graphical user interface that
enables the parallel operation of genetic algorithms and
other optimizers on a cluster computer. This framework
enables the tie-in of a variety of different applications and
the management of application inputs and outputs.  The
operation of a parallel genetic algorithm to optimize a
variety of tasks has been demonstrated.  This evolvable
software system also includes a variety of algorithms useful
for optimization such as local searches and simulated
annealing. We have baptized the framework “Parallel,
Evolvable, and Revolutionary Synthesis and Optimization
Environment (PERSON)”. The computational architecture
of PERSON is based on a package created by D. Levin at
Argonne National Lab [1]. The major contribution of
PERSON is the scriptable front-end that turned the software
into a tool.  We have a scripted approach to the integration
of applications into PERSON, which enables rapid
integration of a variety of different physical models and a
variety of different fitness functions without recompilation
of the design environment. This architecture resembles a
generalized optimization toolkit that can be applied to a
large array of physical system simulation problems that
require optimization in a huge search space.  Note, however,
that this system goes beyond the traditional optimization
approach in that truly novel synthesis and design/selection
may be performed by the genetic principles that govern the

evolvable system algorithms. The software framework
development for this evolvable system effort must be
performed by an experienced team of software engineers,
computer scientists, electrical engineers, biologists, and
physicists in order to provide any hope for a reasonable
outcome compared to the high mark targets.
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Figure 2.  PERSON graphical evolutionary
computational framework.  Models can be introduced
with existing tools and simulators and are adapted into
a parallel evolutionary environment.

Genetic Algorithms

Genetic algorithms (GA), first introduced by John Holland
and his colleagues [2], are search algorithms based on the
mechanics of natural selection and sexual reproduction. GAs
are theoretically and empirically proven to provide robust
search in complex parameter spaces.  Furthermore, they are
not fundamentally limited by restrictive assumptions about
the search space such as continuity and existence of
derivatives.

The standard GA proceeds as follows:  A possible solution
of a given problem is encoded as a finite string of symbols,
known as a genome.  An initial population of the possible
solutions called individuals is generated at random or
heuristically.  At every evolutionary step, known as a
generation, the individuals in the current population are
decoded and evaluated according to some predetermined
quality criterion, referred to as the fitness. To form the next
generation, parents are selected with a probability
proportional to their relative fitness.  This ensures that the
expected number of times an individual is chosen is
approximately proportional to its relative performance in the
population.  Thus, low-fitness individuals are more likely
to disappear. 

The parent selection process is followed by genetically
inspired operators to form offspring. The most well known
operators are mutation and crossover.  The mutation
operator is introduced to prevent premature convergence to
local optima by randomly sampling new points in the
search space with some probability. Crossover is performed
with a different probability between two selected parents, by
exchanging parts of their genomes to form two offspring. In
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its simplest form, substrings are exchanged after a randomly
selected crossover point.  This operator tends to enable the
evolutionary process to move toward promising regions of
the search space quickly, by recombining partial solutions.
Genetic algorithms are stochastic, iterative processes that are
not guaranteed to converge.  The termination condition may
be specified as some fixed, maximum number of
generations or as the attainment of an acceptable fitness
level.  Further discussions of GAs have been published by
this research group with respect to algorithm details and
their application to nanoelectronic device designs [3],
microelectronic device designs [4], automated circuit
designs [5], quantum mechanical basis set selection [6],
space craft power system design [7], low thrust orbit
transfers [8], automatic tuning of MEMS devices [9] and
neural network evolution [10].

This publication is focused on the application of efficient
optimization techniques to a variety of space science
systems.  The method of operation is the repeated
application of already sophisticated physics based models
which predict reality.  We would like to mention here that
the availability of efficient optimization tools and the
ability to explore large parameter spaces also enables the
development of more sophisticated physics based models
that predict “reality” better.  One such concrete example is
the development of an advanced model to treat the
consequences of arbitrary mechanical strain distortions in
semiconductor crystals [11].  This advanced model expands
the physical parameter space dramatically, which could not
have been usefully explored without the PERSON
framework.  GAs can therefore not only seek better
engineering solutions, they can also help to refine our
physical understanding of problems.

Simulated Annealing Algorithms

Simulated annealing (SA) is a widely used and well-
established optimization technique especially for high-
dimensional configuration spaces [12,13]. The goal is to
minimize an energy function E (in the following three cases:
1) the squared distance from a start joint angle set to a target
joint angle set for the rover arm; 2) the required flight time
and propellant mass for low thrust trajectories; and 3) the
frequency split of the MEMS micro-gyro), which is a
function of N variables (in the three following cases: 1) the
4 joint angles for FIDO (Field Integrated Design and
Operations) or the 5 joint angles for the MER (Mars
Exploration Rover) rover platforms; 2) the Q-law
parameters; and 3) the 4 bias voltages for the MEMS micro-
gyros), with N being usually a large number. The
minimization is performed by randomly changing the value
of one or more of the N variables and reevaluating the
energy function E. Two cases can occur: 1) the change in the
variable values results in a new, lower energy function
value; or 2) the energy function value is higher or
unchanged. In the first scenario the new set of variable
values is stored and the change accepted. In the second
scenario, the new set of variable values is only stored with a
certain likelihood (Boltzmann probability, including an
annealing temperature). This ensures that the overall
optimization algorithm does not get stuck in local minima

too easily (greedy downhill optimization). The annealing
temperature directly influences the Boltzmann probability
by making it less likely to accept an energetically
unfavorable step, the longer the optimization lasts (cooling
schedule). Then the overall procedure is repeated until the
annealing temperature has reached its end value, or a preset
number of iterations has been exceeded, or the energy
function E has reached an acceptable level.

3. COMPUTER OPTIMIZED DESIGN

We have demonstrated that evolutionary computational
techniques can now be used for automatic innovation and
design, using the same computer models that are employed
to evaluate engineering designs.  Five areas, described in
this paper, demonstrate human competitive performance as
described by Koza et al. [14]. Optimizations and designs
using evolutionary techniques result in designs matching or
exceeding the performance of those derived from traditional
means by human designers.  Metrics used for this
performance evaluation include design time, robustness and
fault-tolerance, cost, and comparison to accepted and flown
designs.  The areas described in this paper are the automatic
design of power systems, robotic arm deployment path
planning, the design of low-thrust trajectories, the automatic
tuning of MEMS micro-gyroscopes, and the evolution of
neural networks.  We expect that future work will lead to
further advances in computational engineering and in the
development of Computer Optimized Design (COD) (Figure
3.).
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Figure 3.  Elements of Computer Optimized Design
(COD).  The use of an evolutionary framework coupled
to a computational simulation allows the extension of
computer aided design to rapidly and automatically
evaluate huge volumes of design space.

4. RESULTS

Automatic Design of Power Sub-systems

Early in the formulation phase of a flight project the goals
and objectives of the mission are defined and several
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plausible mission concepts are created. These preliminary
mission concepts will trade-off various elements in the
design so that project managers can choose between different
alternatives for mass, cost, performance and risk. This cycle
of goal definition, mission concept creation and design trade
study is repeated many times with each pass refining and
improving the resolution of the design. The product of this
process is a mission architecture characterized such that its
effectiveness in achieving mission objectives can be
properly evaluated.

More formally, a trade study is a process for seeking one or
more optimal solutions when there are multiple, often
conflicting, objectives. An optimal solution in this case
means that if one objective improves, other objectives are
compromised or traded off. The classic example of this is in
car buying. Buyers must make a decision between cost and
comfort since the less expensive cars are inevitably less
spacious. This hypothetical trade-off is shown in Figure 4.

Figure 4 Hypothetical Car Buying Trade-Off [15].

To make the best decision, the buyer would want to
consider solutions that are evenly distributed along the
Pareto-optimal front. While the classical weighted sum
approach is intuitive and easy to implement, creating these
solutions using this method poses some problems. The
most obvious is that since only one solution is generated at
a time, users will need to perform multiple runs in order to
obtain a set of possible solutions. More importantly, these
solutions may not be evenly distributed, as illustrated in
Figure 5. Furthermore, since evolutionary algorithms are
stochastic the method may find an optimal solution only to
lose it in later generations. Ideally, we would want to
generate all of the solutions in one run, evenly distributing
them first and then mapping them to the weightings
afterward, as shown in Figure 6. Moreover, we would want
to preserve the best solutions from both the parent and child
populations. One way to achieve this is with a Niched-
Elitist approach.

This approach uses the same reproductive cycle as described
in the Introduction. The main difference is that niches are
used to help evaluate and replace the population members.

In evolutionary computing, niching refers to forming
artificial subpopulations in the population to emphasize and
maintain multiple solutions. This can be done in either the

objective or parameter space. Since we wanted to maintain
diversity in the solutions to trade-off regardless of how
similar or different they are, we elected to niche by the
objective space.

Figure 5. Weighted Sum Approach [15]

Figure 6. Ideal Approach [15].

To evaluate the fitness of a particular design and implement
the evolutionary cycle, we used a JPL power analysis tool
called MMPAT within the PERSON evolutionary
computing framework. MMPAT (Multi-Mission Power
Analysis Tool) is a tool that models the behavior of a
spacecraft’s power sources and energy storage devices as
they interact with the spacecraft loads and the environment
over a mission timeline. It is currently used in Mars
Exploration Rover (MER) operations to predict the power
subsystem resources before a sequence of activities is
uploaded. By using this tool in an evolutionary computing
framework we were able to provide a set of optimized
designs based on the anticipated performance of the
subsystem rather than using worst-case estimates.

To verify the utility of this approach we used the mission
plans from some current JPL missions and generated several
alternative designs for each. One of these tests was an
optimization of one of the Mars Exploration Rovers (MER),
a NASA mission of two rovers that landed in January 2004.
To setup the analysis we gave the PERSON optimization
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framework some initial design parameters and a valid range
of values. We also needed to define the cost and mass
constants and create an activity plan. For the MER
optimization, we varied the number of cells per string and
the number of strings per segment for the six solar array
segments, as well as the battery capacity. The PERSON
framework chose the initial population based upon a random
draw over a uniform distribution for each of the variable
power subsystem design parameters before invoking
MMPAT. As a starting point, the framework was instructed
to use the actual MER rover solar array size and battery
capacity.

The rover was placed at 14.95 degrees south latitude and
given an activity plan that lasted 90 sols. This corresponds
to the planned length of surface operations of MER-A at the
Gusev Crater landing site. The activity plan consisted of
applying a 50-watt load for six hours during local daytime
and 8 watts the rest of the day. This simulated the load on
the rover while it performed its duties during the day, and
let it conserve battery power for the heaters at night.

Using a population of 200 we ran the analysis for 177
generations.  This resulted in 35400 unique designs being
evaluated. The optimization took 18 hours using 8 Intel(R)
Xeon(TM) CPU 2.80GHz processors. As expected, this
resulted in several credible alternative solutions being
generated where each niche optimized their primary
objective while compromising the others.

Figure 7.  Deep Impact Power System Optimization [15].
Parameter values (such as battery size, solar cell array
size, etc.) are plotted by generation for a case statistically
weighted for cost and mass.  Starting values (S) are the
as designed power system for the Deep Impact mission. 
Final values (F) are after 500 generations.

An example of MMPAT parameter evolution with
generation is shown in Figure 9.  Here, starting design
parameters (S) (battery size, solar array size, etc.) for the
Deep Impact mission were used and optimized in our
evolutionary computing framework for a case statistically
weighted by mass and cost.  After about 500 generations,
the final optimized design (F) showed significant
improvements over the flight design when evaluated at the
sub-system level.

Rover Arm Path Planning

Current and future planetary exploration missions involving
landers and/or rover-type vehicles such as Mars Exploration
Rover (MER), Mars Science Laboratory (MSL), and
subsurface access missions are and will be equipped with
robotic arms with four or more joints, each joint having a
high degree of freedom (e.g., an angle range of 100 degrees
in 1 degree steps).  Fast and efficient safe rover movement
(e.g., legged rovers and cliff-climbing rovers) and rover arm
deployment algorithms, taking rover position and
surrounding ground obstacles (e.g., rocks) into account that
can be executed with onboard CPU power, will
tremendously enhance mission autonomy by cutting down
on up-/downlink events, and thus increase the useful
lifespan of a mission. This work is capable of increasing
science return of future missions and enabling support of
intelligent in-situ science experiments to be performed
autonomously.

The calculation of a collision-free rover arm deployment
path is a search in a high-dimensional configuration space.
A rover arm consisting of N joints with, e.g., on average
100 angle positions per joint, spans a configuration space of
10(2*N). With N>6, the number of possible configurations
lies beyond exhaustive search in a timely manner. To
increase the degree of complexity even more, the rover arm
deployment requires the generation/calculation of a series of
valid configurations, i.e., the safe arm deployment path.

We have created three separate software programs using a
modified simulated annealing algorithm: 1) calculation of a
safe, collision-free rover arm end configuration given a
predetermined x-y-z end position of the instrument-carrying
joint together with a surface normal at that point; 2)
calculation of a safe, collision-free deployment path from a
start rover arm configuration into the pre-calculated end
configuration (1); and 3) optimization of safe, collision-free
rover arm deployment path with respect to minimizing the
overall absolute joint angle movement. The software is
written in standard C and thus requires no special
computing platform. It runs under Linux, Unix, Windows,
DOS, and Mac OS X and requires less than 1.25MB of
RAM. The time necessary to calculate a safe deployment
path is now reduced from hours to hundreds of milliseconds
(on a Macintosh PowerBook 800MHz G4).

We also applied a genetic algorithm [16] to the rover arm
path planning problem, trying to mimic evolutionary
principles used by nature in applying genetic operations
such as point mutation, cross-over, and inversion to
parameter strings, called “genes” or “chromosomes”, in
order to evolve a set of parameters that achieve a high
fitness as determined by a fitness function (similar to the
energy function in simulated annealing). Our improved
algorithm for the safe rover arm deployment problem uses
the following seven-step process:

1. Start with a random initial population
2.  Determine arm extent bounding volume to prune the

search space

      S

F
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3. Define fitness function based on obstacle avoidance and
goal orientation

4 .  Perform collision detection and prune population
followed by goal orientation

5. Perform mutation with a probabilistic choice of small
variation in state or segmented path mutation followed
by another fitness evaluation

6.  Promote top 10% of the survivors to the next arm
extent bounding volume

7. Repeat steps 2 to 6 until placement point reached.
This approach will give an incremental path to the goal
position, without having to search through the entire path
from start position to end.

The simulated annealing-based rover arm path planning
algorithm as well as the GA-based algorithm have been
successfully tested both onboard the FIDO rover platform
and on the FIDO software simulator at JPL (see Figure 8).
The optimizer part came up with a novel, shortest (2-step)
deployment path from the stowed to the safe rover arm
position.

 

Figure 8.  Reachability Map for FIDO Rover:
Comparison of digital terrain maps showing
reachability of targets with the FIDO robotic arm. 
Green (light) areas are reachable with arm path
solutions.  Grey areas are not reachable and red (dark)
areas indicate no data available for a solution.  Top
image is default elbow up reachability derived from the
FIDO arm path algorithm.  This algorithm derives an
un-optimized safe path to each target.  The bottom
image is the same terrain map analyzed with a genetic
algorithm to find the safest paths to targets.  The larger
reachable area of the genetic algorithm is an indication
of the power of the technique in not only providing a
greater number of targets, but also in providing the
fittest arm path solutions with respect to safety from arm
(self and terrain) collisions. 

We are in the process of deploying both algorithms on the
MER rover software simulator and hardware platform, with

possible real-world arm deployments during the extended
NASA/JPL MER Mars Mission.  Details of this work will
be published in a future publication.

Optimization of Low-Thrust Trajectories

Future space missions DAWN and JIMO will use electric
propulsion for inter-planetary cruise and orbital operations.
The strength of electric propulsion is that in spite of its low
thrust levels, the momentum transfer to the spacecraft per
kilogram of expelled propellant is ten or twenty times
greater than for chemical propulsion. However, the control
of low-thrust spacecraft poses a challenging design problem
because perturbative forces often dominate the thrust and a
significant change of the orbit requires many revolutions.
Here we address the problem of designing low-thrust orbit
transfers between arbitrary orbits in an inverse-square gravity
field by using evolutionary algorithms to drive parameter
selection in a Lyapunov feedback control law (the Q-law).

The general goal of the design problem is to maneuver a
spacecraft with a series of thrust arcs from orbit A to orbit B
in the most fuel-efficient and simultaneously time-efficient
manner. Since the fuel efficiency and the time efficiency
often conflict, the goal of this design problem becomes to
determine the Pareto front, which is the envelope in the
objective space resulting from the trade-off between the
optimal propellant mass and the flight time; each point
along the Pareto front corresponds to one particular mission
scenario. In order to access the Pareto front with reasonable
accuracy and to provide the time history of the state
variables and the thrust vector for any chosen point of the
Pareto front, we have developed an efficient and efficacious
method. A search for the Pareto-optimal trajectories is
performed in two stages: 1) optimal thrust angles and
thrust-arc locations are determined by the Q-law, and 2) the
Q-law is optimized with two evolutionary algorithms: a
modified simulated annealing algorithm (SA) and a genetic
algorithm (GA) with non-dominated sorting [8].

We applied our method to several types of orbit transfers
around the Earth and the asteroid Vesta. Substantial
improvements in both final mass and flight time over state-
of-the-art are found in the calculation of the Pareto front.
For example, for a low-thrust orbit transfer from a slightly-
inclined geostationary-transfer orbit to a geostationary orbit
we have obtained as much as a 15% propellant savings over
the nominal Q-law. Furthermore, the resulting Pareto front
contains the optimal trajectories found by other
optimization algorithms such as a static/dynamic control
algorithm [17] and an orbit averaging technique [18]. Figure
9 shows the substantial improvement in the estimation of
the true Pareto front by the optimized Q-law with SA and
GA over the nominal Q-law, and the comparable
performance of the optimized Q-law to other optimization
techniques. Even more  promising is that our method builds
the Pareto front within a few hours of computation time,
while other optimization algorithms require a comparable
computational effort to acquire a single optimal trajectory.
A more detailed description of our method and results is
reported elsewhere [8].
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Figure 9. Pareto front for an orbit transfer from a
slightly-inclined geostationary-transfer orbit to a
geostationary orbit.

Future plans comprise the direct optimization of low-thrust
trajectories, i.e., determination of sequence of thrust arcs,
both in space and time, and individual duration thereof,
independent of human-prescribed control laws such as Q-
law.

Automatic Tuning of MEMS Micro-Gyroscopes

The MEMS Micro-Gyro, developed by the MEMS
Technology Group at JPL, is subject to an electro-static
fine-tuning procedure, which is necessary due to
unavoidable manufacturing inaccuracies. In order to fine-
tune the gyro, 4 bias voltages, applied to 8 capacitor plates,
have to be determined independently within a range of –60V
to 15V. The fine-tuning directly correlates with the accuracy
of the gyros in later use.

In order to fully automate the time-consuming  (on the order
of several hours) manual fine-tuning process, we have
established a hardware/software test bed to the existing
manual gyro-tuning hardware-setup using commercial-off-
the-shelf (COTS) components, which includes four
programmable power supplies, one offset power supply, and
an (electronic) signal analyzer as well as driver and
analyzing software.

We developed and implemented two algorithms for
efficiently determining the bias voltages:  1) a modified
simulated annealing algorithm and 2) a dynamic hill-
climbing algorithm [9].  Both have been incorporated into
the hardware/software test bed.  We were subsequently able
to successfully fine tune both MEMS post-gyros and
MEMS disk-resonating gyros within one hour for the first
time fully automatically to a level of accuracy that is equal
to or better than what can be accomplished manually (see
Figure 10).

One of the key problems solved during the course of this
research was that of determining the resonant frequencies
along both axes of oscillation. In this closed-loop system,
the resonant frequencies were determined by scanning
through the range of likely frequencies to determine two
peaks in the amplitude of vibration.  The objective is to
reduce the difference in resonant frequencies, also called the
“frequency-split”, to zero.  The frequency split before tuning
can be seen in Figure 11. The resonant frequencies are
determined by fitting the data to two Lorentzian curves. 
The best-fit curves are seen in the inset.  The fit parameters
tell us the position of the peak, and hence the resonant
frequency.  Using this method we can accurately report the
frequency split to a resolution below 0.06Hz, which is
considerably better than the resolution determined by a
human operator.  The final tuned result can be seen in
Figure 12.

Figure 10. Frequency split as a function of Simulated

Annealing Iterations: (top) for the MEMS post-gyro;
(bottom) for the MEMS disk-resonating gyro.Figure 9. Fr equency split as a function of Simulated

Annealing Iterations: (top) for the MEMS post-gyro;
(bottom) for the MEMS disc-resonating gyro.
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Figure 11. The frequency split before tuning.  The two
Lorentzian curves are shown, as dashed and dotted
lines below the solid line indicating the sum of the
curves.  The inset shows the details of the peak data
points.

 

Figure 12. The frequency split after tuning is shown,
reduced to approximately 0.05Hz.

The novel capability of fully automated gyro tuning enables
ultra-low mass and ultra-low-power high-precision Inertial
Measurement Unit (IMU) systems to calibrate themselves
autonomously during ongoing missions, e.g., Mars Ascent
Vehicle.

Evolution of Neural Networks

Spacecraft and rovers are conventionally controlled by
software systems that determine attitude, position,
direction, and speed as a function of environmental
variables. To some extent, such controllers perform the
same function as the nervous system of animals, a standard
example being the fruit fly Drosophila melanogaster.
Because of the analogy to nervous systems, robotic

controllers can also be cast in the language of neural
networks, which perform the computation of output
variables as a function of input variables. Historically,
neural networks have been designed according to standard
rules from abstract neurons connected to each other.
However, artificial brains based on standard neural network
architectures failed to deliver on the initial promise, and
have faded from use. We have started a research program in
which not only the structure of neural networks is being
evolved, but also the rules for growth and learning, within a
software environment called “Norgev” (Neural Organism
Evolution) [19]. This program is proceeding in four steps:

1 .  Proof of principle by evolving networks that
perform complex logical input/output functions in
a robust manner exceeding human-design standards

2 .  Evolution of neural networks that control
simulated test robots (Khepera) better than human-
designed controllers

3. Transfer and optimization of evolved controllers to
real test robots

4 .  Application of technique to mission rovers and
spacecraft.

We have finished step one, and were able to demonstrate the
evolution de novo of sequences that encode extremely robust
networks that perform complex logical functions. The
structure of these networks (Figure 13) is unlike any
designed by humans, and resembles instead the
decentralized structure of animal nervous systems, such as
that of the flatworm Caenorhabditis elegans. The network
in Figure 13, because it is derived from a growth process, is
reconstituted automatically even if more than half of the
cells that make up its tissue are removed [10]. We are now
proceeding with step 2, by evolving Khepera controllers
within the Webots 4 simulation platform linked to the
Norgev software.

Figure 13: Evolved complex computational tissue
solving a logical 3-input/2-output task [10]. Neurons are
colored according to their level of expression of specific
simulated chemicals. Connections are colored according
to their activity.
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Mission Operations Planning and Scheduling

The Mission Operations Planning and Scheduling problem
is comprised of a large number of events that may be
scheduled if the resources and constraints permit in an
allotted time period, also referred to as the planning
horizon.  The goal of this study is to use the genetic
algorithm (GA) technique to find the schedule that would
globally minimize the amount of time it takes for all events
to complete within the planning horizon and also to enable
more high priority events to be scheduled.  It was found
that the GA technique alone does not enable one to achieve
global optima.  However, it is capable of quickly finding a
population whose spans are sufficiently close to the global
optima (Figure 14).  In contrast, it is also observed that
sequential quadratic programs (SQP) such as those found in
Matlab using FMINCON are able to find the global optima
more rapidly but require the search to start with a set of
viable initial schedules.  Therefore, the GA technique can be
used in conjunction with SQP to find the whole set of
globally optimal solutions such that the solutions from the
GA can serve as viable initial guesses for the SQP.  This
coupling of GA with SQP can produce the global optima
more quickly and accurately than just using one of the
techniques alone. Details of this work will be published in
another publication in the future.

Figure 14: Plot of viable schedule at each generation
and their makespan

Architecture Synthesis Tool

The purpose of the Architecture Synthesis Tool (AST) is to
automatically generate functionally viable architectures for
spacecraft Command and Data Handling (C&DH)
subsystems that will adapt to frequently changing system
requirements during the early phase of a flight project.
These changes in requirements frequently lead to weeks of
labor spent on redesign, and it would be highly beneficial to
have a tool that is sensitive to such requirement changes and
able to respond to these changes with viable architectures in
a matter of hours. 

The AST consists of an Architecture Generator and a
Functionality Evaluator.  The Architecture Generator

employs genetic algorithms to generate populations of
C&DH architectures and the Functionality Evaluator uses
the availability of the components required by system
functions to evaluate the fitness of these architectures.  In
preliminary tests, the AST has produced viable architectures
that were optimal within the design space defined by the
database inputs.  Details of this work will be published in
another publication in the future.

5. CONCLUSIONS

We have demonstrated that evolutionary computational
techniques can be applied to the design and optimization of
space systems.  Generally, these applications offer better
performance (in the range of at least 10%) than traditional
techniques and show faster design times. Additionally,
changing fitness requirements and redesign, which
inevitably occurs in real systems and generally causes great
fiscal and schedule disruption, can be accommodated at
relatively low cost.

Our future work will consider the optimization of multiple
sub-systems into full spacecraft optimizations. We are also
evolving mission plans and schedules and hope to integrate
this work into the co-design of a spacecraft optimized to the
mission plan.
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