
ar
X

iv
:n

lin
.A

O
/0

40
50

11
 v

1
 6

 M
ay

 2
00

4

Evolution of Robust Developmental Neural Networks

Alan N. Hampton1 and Christoph Adami1,2

1Digital Life Laboratory 136-93, California Institute of Technology, Pasadena, CA 91125
2Jet Propulsion Laboratory 126-347, California Institute of Technology, Pasadena, CA 91109

adami@caltech.edu

Abstract

We present the first evolved solutions to a computational task
within theNeuronalOrganismEvolution model (Norgev) of
artificial neural network development. These networks dis-
play a remarkable robustness to external noise sources, and
can regrow to functionality when severely damaged. In this
framework, we evolved a doubling of network functional-
ity (double-NAND circuit). The network structure of these
evolved solutions does not follow the logic of human cod-
ing, and instead more resembles the decentralized dendritic
connection pattern of more biological networks such as the
C. elegansbrain.

Introduction
The complexity of mammalian brains, and the animal be-
haviors they elicit, continue to amaze and baffle us. Through
neurobiology, we have an almost complete understanding of
how a single neuron works, to the point that simulations of
a few connected neurons can be carried out with high pre-
cision. However, human designed neural networks have not
fulfilled the promise of emulating these animal behaviors.

The problem of designing the neural networkstructure
can be generalized to the problem of designing complex
computer programs because, in a sense, an artificial neu-
ral network is just a representation of an underlying com-
puter program. Computer scientists have made substantial
progress in this area, and routinely create increasingly com-
plicated codes. However, it is a common experience that
when these programs are confronted with unexpected situa-
tions or data, they stall and literally stop in their tracks.This
is quite different from what happens in biological systems,
where adequate reactions occur even in the rarest and most
uncommon circumstances, as well as in noisy and incom-
pletely known environments. It is for this property that some
researchers have embraced evolution as a tool for arriving at
robust computational systems.

Darwinian evolution not only created systems that can
withstand small changes in their external conditions and
survive, but has also enforcedfunctional modularityto en-
hance a species’ evolvability (Kirschner and Gerhart, 1998)
and long-term survival. This modularity is one of the key

features that is responsible for the evolved system’s robust-
ness: one part may fail, but the rest will continue to work.
Functional modularity is also associated with component re-
use and developmental evolution (Koza et al., 2003).

The idea of evolving neural networks is not new
(Kitano, 1990; Koza and Rice, 1991), but has often been
limited to just adapting the network’s structure and weights
with a bias to specific models (e.g., feed-forward) and us-
ing homogeneousneuron functions. Less constrained mod-
els have been proposed (Belew, 1993; Eggenberger, 1997;
Gruau, 1995; Nolfi and Parisi, 1995), most of which encom-
pass some sort of implicit genomic encoding. In particu-
lar, developmental systems built on artificial chemistries(re-
viewed in Dittrich et al. 2001) represent the least constrained
models for structural and functional growth, and thus of-
fer the possibility of creating modular complex structures.
Astor and Adami (2000) introduced theNorgev (Neuronal
OrganismEvolution) model, which not only allows for the
evolution of the developmental mechanism responsible for
the growth of the neural tissue or artificial brain, but also
has noa priori model for how the neuron computes or learns.
This allows neural systems to be created that have the poten-
tial of evolving developmental robustness as found in nature.
In this paper, we present evolved neural networks using the
Norgev model, with inherent robustness and self-repair ca-
pabilities.

Description of Norgev
Norgev is, at heart, a simulation of an artificial wet chem-
istry capable of complex computation and gene regulation.
The model defines the tissue substrate as a two-dimensional
hexagonal grid on which proteins can diffuse through dis-
crete stepped diffusion equations. On these hexagons, neu-
ral cells can exist, and carry out actions such as the produc-
tion of proteins, the creation of new cells, the growth of ax-
ons, etc. Proteins produced by the cell can be external (dif-
fusible), internal (confined within the cell and undiffusible)
or neurotransmitters (which are injected through connected
axons when the neuron is excited). Cells also produce a con-
stant rate of cell-tag proteins, which identify them to other
cells and diffuse across the substrate.

Each neural cell carries a genome which encodes its be-
havior. Genomes consist of genes which can be viewed as
a genetic program that can either be executed (expressed) or
not, depending on a genecondition(see Fig. 1). A gene con-
dition is a combination of several conditionatoms, whose
values in turn depend on local concentrations of proteins.
The gene condition can be viewed as the upstream regula-
tory region of the genetic program it is attached to, while
the atoms can be seen as different binding modules within
the regulatory region. Each gene is initially active (activa-
tion levelθ = 1) and then each condition atom acts one af-
ter another onθ, modifying it in the[0,1] range, or totally
suppressing it (θ = 0). Table 1 shows all the possible condi-
tion atoms and how they act on the gene expression levelθ
passed on to them.

C. Atom 3
Gene 1

Gene 4

Gene 3

Gene 2
N

Genome Gene 2

Expression 1 Expression 2

C. Atom 1 C. Atom 2

Figure 1: Neural cells are placed into an hexagonal grid and
then start executing their genome, which consists of a series
of conditions followed by a series of expression actions.

Cond. Atom Evaluation valueθ
SUP[CTPx] = θ, if cell is of typeCTPx
NSUP[CTPx] = θ, if cell is not of typeCTPx
ANY[PTx] = θ, if [PTx] 6= 0
NNY[PTx] = θ, if [PTx]= 0
ADD[PTx] = R1

0(θ+[PTx])
SUB[PTx] = R1

0(θ−[PTx])
MUL[PTx] = θ∗[PTx]
AND[PTx] = min(θ,[PTx])
OR[PTx] = max(θ,[PTx])
NAND[PTx] = 1−AND[PTx]
NOR[PTx] = 1−OR[PTx]
NOC[PTx] = θ, the neutral condition

Table 1: Repressive and evaluative condition atoms: The
SUP and NSUP conditions evaluate the cell-type of the cell
in which they are being executed. On the other hand, ANY
and NNY repress the gene under the influence ofany type
of protein (internal, external, cell-type or neurotransmitter),
where ’[PTx]’ stands for the concentration of proteinPTx.
The neutral condition is special and acts as a silent place
holder.R1

0() saturates the activation into the [0,1] range.

Once a gene activation valueθ has been reached, each
of the gene’s expression atoms are executed. Expression
atoms can carry out simple actions such as producing a spe-
cific protein, or they can emulate complex actions such as
cell division and axon growth. Table 2 contains a com-
plete list of expression atoms used in Norgev. A more

complete description of the Norgev model and its evolu-
tion operators (mutation and crossover) can be found in
(Astor and Adami, 2000).

Expr. Atom Action description
PRD[XY] produces substrateXY
SPL[CTPx] divide. offspring of typeCTPx
GRA[XY] grow axon followingXY gradient
GDR[XY] grow dendrite followingXY gradient
EXT excitory stimulusXY
INH inhibitory stimulusXY
MOD+[NTx] increase connection weights
MOD-[NTx] decrease connection weights
RLX[NTx] relax weights
DFN[NTx] define cells neurotransmitter
NOP null action, neutrality

Table 2: Expression atoms. Each is influenced byθ in a
different way. For PRD it states the production quantity; for
SPL, GRA and GDR the probability of execution; for EXT
and INH the stimulus amount; for MOD+, MOD- and RLX
the increase, decrease and multiply factor; and for DFN and
NOP,θ has no influence.

We know that in cellular biology, gene activation leads to
the production of a specific protein that subsequently has a
function of its own, ranging from enzymatic catalysis to the
docking at other gene regulatory sites. In this model, the
most basic expression element is the production of proteins
(local or externally diffusible) through the PRD[PTx] atom.
These can then interact and modulate the activation of other
genes in the genome. In this sense, it can be argued that they
are only regulatory proteins. However, at least abstractly,
genes in this model need not only represent genes in bio-
logical cells but can also represent the logic behind enzyme
interaction and their products. Thus, Norgev’s genome en-
codes a dynamical system that represents low level biolog-
ical DNA processes, as well as higher level enzymatic pro-
cesses including long-range interaction through diffusible
substances like hormones. However, the objective is not to
create a complete simulation of an artificial biochemistry,
and thus other expression atoms are defined that represent
more complex actions, actions that in real cells would need
a whole battery of orchestrated protein interactions to be ac-
complished.

Organism example
The best way to understand the model is probably to sit
down and create by hand a functional organism. Here we
will present a handwritten organism (Fig. 2) and explain how
it develops into a fully connected neural network that com-
putes a NAND logical function on its two inputs and sends
the result to its output.

The organism, which we namedStochastic, relies on the
random nature of the underlying chemical world to form its
tissue structure. When an organism is first created, a tissue
seed (typeCPT) is placed in the center of the hexagonal grid,

1. SUP(cpt) ANY(cpt) ⇒SPL(acpt0)
2. SUP(acpt0) ADD(apt0) SUB(cpt) ⇒SPL(acpt3)
3. SUP(acpt0) ADD(spt0) SUB(spt1) ⇒SPL(acpt1)
4. SUP(acpt0) ADD(spt1) SUB(spt0) ⇒SPL(acpt2)
5. SUP(acpt0) ADD(cpt) ⇒SPL(acpt0)
6. SUP(acpt1) ANY(spt0) ⇒GDR(spt0) DFN(NT1)
7. SUP(acpt2) ANY(spt1) ⇒GDR(spt1) DFN(NT2)
8. SUP(acpt3) ANY(apt0) ⇒GDR(acpt1) GDR(acpt2) GRA(apt0)
9. SUP(acpt3) ADD(NT1) NAND(NT2)⇒EXT0
10. ANY(eNT) ⇒EXT0

Figure 2: Genome ofStochastic

two sensor cells on the left of the grid and an actuator cell
on the right. These then diffuse their marker proteinsCPT,
SPTO, SPT1andAPT0respectively. In the first time step,
only the first gene (Fig. 2) is active in the tissue seed and
all the rest are suppressed. This gene will always be active
and step after step will split off cells of typeACPT0until all
the surrounding hexagons are occupied by these cells. Af-
ter that, the seed does not execute any further function other
than secrete its own cell type proteinCPT. The new cells
will, in turn, also split off more cells of typeACPT0(gene
5), and so make the tissue grow larger and larger (time=4 in
Fig. 3). In a sense, these cells provide a cellular support for
further development of the actual network, and could thus
be calledglial-type cells, in analogy to the supportive func-
tion glial cells have in real brains. These glial cells can split
off three different types of neurons. If the signal from the
actuatorAPT0is greater than the signal from the tissue seed
CPT, then a neuron of typeACPT3will split off with prob-
ability p > 0 (gene 2). On the other hand, if the external
protein signal of sensorSPT0is strong compared to the ex-
ternal protein of sensorSPT1, then instead a neuron of type
ACPT1will split off with p > 0 (gene 3). Last of all, if the
signalSPT1is greater thanSPT0, then it is more likely that
a neuron of typeACPT2will split off (gene 4). This is all
that these glial cells of typeACPT0do: split off more glial
cells, or any of three differentiated neuron types depending
on how close they are to the sensors or the actuators.

These three cell types (ACPT1, ACPT2andACPT3), will
then form the actual neural network that will do all the pro-
cessing. Through gene 6, cells of typeACPT1will grow a
dendrite towards sensorSPT0and define their default neu-
rotransmitter asNT1. In the same way, cells of typeACPT2
will have gene 7 active and will grow a dendrite towards
sensorSPT1and define their neurotransmitter asNT2. Last
of all, gene 8 is active in cells of typeACTP3, and will di-
rect the growth of dendrites towards cells of typeACPT1and
ACPT2and an axon towards the actuatorAPT0. In the end,
each sensorSPT0andSPT1is connected to every neuronal
cell ACPT1andACPT2, and all theACPT3neuronal cells
are connected to the actuatorAPT0 (time=120 in Fig. 3).
However, which and how manyACPT1andACPT2neurons
connect to which and how many of theACPT3neurons relies
on stochastic axonal growth, preferably connecting neurons

time = 4 time = 24

time = 40 time = 120

Figure 3: Successive stages in the developmental growth of
theStochastic neural tissue.

that are nearer on the hexagonal grid. Moreover, all neu-
rons end up connected after the axonal growth process has
finished, forming a fully functional NAND implementation.

We still need to understand how the neurons actually pro-
cess the signals passing through them. This is mediated
through genes 9 and 10. NeuronsACPT1andACPT2act
as relays of the sensor signals through gene 10. That is,
whenever they receive any neurotransmitter of typeeNT(de-
fault sensor neurotransmitter) they will become excited and
inject their gene-defined neurotransmitters through theirax-
ons. Neuronal cells of typeACPT3will then compute the
NAND evaluative action on the amount of neurotransmit-
tersNT1andNT2 injected into their cell bodies and activate
accordingly (gene 9). Their activity causes the default neu-
rotransmitter to be injected into the actuator, thus finalizing
the simulated input-output NAND computation.

Robustness of Stochastic

While Stochastic’s neural tissue will always look different
every time it is grown because of the stochastic nature of
neuronal splitting, it always forms a processing network that
correctly computed the NAND function. This confers some
robustness to the phenotype of the network in spite of the
stochastic, but genetically directed, growth process.

However, the developmental process is far more robust
than that. For example, we can manually kill (remove) neu-
rons of a fully developed tissue and have a similar functional
(but somewhat scarred) tissue grow back. Fig 4 shows an ex-
ample where we even removed the tissue seedCPT, which
has an important role in the organisms development (without
its external signal, glial cells of typeACPT0do not prolif-
erate). While the morphology of the self-repaired tissue has
changed, it still computes the NAND function. More than

Figure 4: Robustness ofStochastic under cell death. Half
the neural tissue from Fig. 3 was removed (left). After 80
time steps a different, but functional tissue arises (right).

anything, this observation helps illustrate the potentialcapa-
bilities of developmental processes in artificial chemistries
to create robust information processing neural tissues even
under the breakdown of part of their structure. Note that the
self-repair property ofStochasticwas not evolved (or even
hand-coded), but rather emerged as a property of the devel-
opmental process. Naturally, these robustness traits can be
augmented and exploited under suitable evolutionary pres-
sures.

Evolution of organisms in Norgev
Here, we present the evolutionary capabilities of Norgev,
that is, how its genetic structure and chemistry model al-
low for the evolution of developmental neural networks that
solve pre-specified tasks. In the previous section we pre-
sented theStochastic organism, which grew into a neural
tissue that computed a NAND function on its inputs. Our
goal was to study how difficult it would be todoublethe tis-
sue’s functionality and compute a double NAND on three in-
puts, and send the result to two outputs (Fig. 5). Because one
of the mutational operators used in the Genetic Algorithm is
gene doubling(see Astor and Adami, 2000), we surmised
that there was an easy route through duplication and subse-
quent differentiation. Because of the universality of NAND,
showing that more complex tissues can evolve fromStochas-
tic suggests that arbitrary computational tissues can evolve
in Norgev.

The input signal was applied for four time steps (the time
for the input to pass through the tissue and reach the out-
put), and then the output was evaluated by a reward function
R= 1−

√
∑

i(yi(x)− ti(x))2 wherex is the input,y the tis-
sue’s output, andt the expected output. Organisms were
then selected according to a fitness function given by the
average reward over 400 time steps, and a small pressure
for small genome sizes and neuron numbers. Mutation rates
were high and evolution was mainly asexual. Details of the
experiments will appear elsewhere (Hampton and Adami, in
preparation).

We evolved organisms that obtained the double NAND
functionality in two separate runs on massively parallel clus-
ter computers, over several weeks. The two solutions were

Figure 5: Evolution objective: todoublethe functionality of
the original organism.

very different in both structure and algorithm. The simplest,
Stochastic A, evolved the fastest with the more straightfor-
ward morphology (Fig. 6). Its genome is short (Fig. 7) when
compared to evolved organisms in other runs, but is substan-
tially more difficult to understand compared to its ancestor.

Figure 6: Stochastic A neural tissue expressing 6 different
cell types. Most of the axonal connections that spread out
from the central sensor are not utilized. Instead, the actual
computation takes place in a compact area near the center.

After careful analysis of the genome, paired with an eval-
uation of the physical connections present in the neural tis-
sue, we came to the conclusion that the organism had not
reusedanygenomic material to double the NAND function,
but had insteadcompletelyrewritten its code to implement a
shorter and more efficient algorithm when compared to the
ancestor we wrote. Let us embark once again in a quick
step-by-step genome analysis. Gene 1 is active in the tissue
seed, which then splits off a cell of typeACPT0andAPT2.
After this, the gene is forever shut off because of the repres-
siveNNY(apt2)condition. CellACPT0then splits off cells
of type ACPT1, ACPT2andACPT3through gene 2. This
gene is always active, and thusACPT0cells are always in an
inhibitive activation state (due to action atomINH1). Gene 6
makesACPT1cells grow a dendrite to sensorSPT0and have

1. MUL(cpt) NNY(apt2) SUB(ep2) ⇒ SPL(acpt0) SPL(apt2) GRA(ep2) DFN(NT1)
2. SUP(acpt0) SUB(spt3) SUB(ep2) ⇒ SPL(acpt2) SPL(acpt1) INH1 GRA(acpt5) MOD-(NT1) SPL(acpt3)
6. SUP(acpt1) ANY(spt0) ADD(cpt) MUL(NT1) ADD(acpt2) ⇒ GDR(spt0) SPL(acpt1) GRA(ep2) GRA(acpt5) MOD-(NT1)
7. SUP(acpt2) NAND(spt1) NSUP(spt1) ADD(acpt0) ⇒ GDR(spt1) DFN(NT2) GRA(ep2) GRA(apt1)
8. SUP(acpt3) ANY(apt0) ⇒ GDR(acpt1) GDR(acpt2) GRA(apt0)
10. NAND(eNT) OR(ep2) ⇒ EXT0 PRD(ip0)
11. ANY(acpt3) NSUP(acpt3) MUL(acpt1) NAND(NT2) AND(acpt0) NNY(rfp) ⇒ DFN(eNT)INH1 MOD-(NT1) GRA(apt0)

Figure 7: Genome of evolvedStochastic A organism. Gene numbering is maintained from the ancestral genome, and gene 11
is a new gene which was randomly created. Gene atoms in light gray appear to be useless and are considered “junk”.

same-type daughter cells. These are the cells that cover the
whole substrate in Fig. 6. Gene 7 causesACPT2cells to
grow a dendrite towards sensorSPT1, an axon towards actu-
atorAPT1and define its neurotransmitter asNT2. Through
gene 8,ACPT3cells grow a dendrite to sensorSPT2, a den-
drite to cellsACPT2, and an axon to actuatorAPT1. Gene
11 is the most cryptic. This gene is only active in the first
∼3 time steps of the organism’s life, and effectively makes
cells of typeACTP0, ACPT1(only the ones in the center, not
all the rest) andACPT2grow an axon towards the actuator
APT0. Once the tissue has developed, gene 10 is used by all
cells for processing sensory information (neurotransmitter
eNT), on which it performs a NOT function.

Figure 8: Effective neural circuit grown byStochastic A.
Dashed axonal connections grow due to gene 11, which is
only active during the first moments of the organisms life.
Axons and neurons that have no influence on the final com-
putations are rendered in light gray.

The effective neural circuit is shown in Fig. 8. The result
is processed in three time steps instead of the incorrectly
postulated minimum of four time steps. This is due to an
implicit OR function computed by the actuator cells that we
did not anticipate, but which was discovered and exploited
by the organism. The neural tissue is applying a NOT func-
tion at a relay of its inputs, and then an OR on the actuators
to arrive at the double NAND (Fig. 9). The resulting sim-
plicity of the organism is apparent from the fact that only

gene 10 is used for neural processing once the tissue has de-
veloped, and it thus has a structure more conducive to further
function doubling.

Figure 9: The computation carried out byStochastic A.

Another organism that solved the problem wasStochas-
tic B, which took considerably longer to evolve, and that
turned out to be highly complex and difficult to understand.
In Fig. 10, cellular structures can clearly be seen in which
stripe-like patterns of two different neural types succeedone
another. These stripes were different for each organism, and
reflect a stochastic development. The axonal connections
linking all these neurons are so interwoven that it is difficult
to believe that this organism is actually acting on its inputs
instead of undergoing some recurrent neuronal oscillation.

We were unable to describe the development and internal
workings of this organism due to its complexity. However, a
complete description is in principle always possible because
of our access to all of the organism’s internal state variables,
and more importantly, to its genetic code: the source of its
dynamics. Taking the first steps in that direction, we studied
the neuronal activation under each of the eight possible input
configurations (Fig. 10). We can clearly see neuronal activ-
ity that follows the striped pattern on the right-hand side of
the tissue (for inputs of the formx0x→ 11). Remarkably, the
left side of the tissue does not follow the same organization
and thus we theorize that although they have the same cell
type, they have differentiated internally even further depend-
ing on their position on the tissue. We came to the conclu-
sion that this organism is not performing the same internal
computation asStochastic A. We can see this by inspect-
ing input 110→ 01, and noticing that no tissue neurons are
activated, and thus there is no neuron performing the NOT

000→ 11 001→ 11 010→ 11 011→ 10

100→ 11 101→ 11 110→ 01 111→ 00

Figure 10: Neuronal activity of aStochastic B neural tissue under the eight possible binary input combinations, where active
neurons are shaded, and inactive neurons white. This activity only reflects neurotransmitters that will be injected by active
neurons down their axonal branches.

function on the last input.

Conclusions

Biology baffles us with the development of even seemingly
simple organisms. We have yet to recreate insect neural
brains that perform such feats as flight control. As an even
simpler organism, the flatwormC. elegans, has a nervous
system which consists of 302 neurons, highly interconnected
in a specific (and mostly known) pattern, and 52 glial cells,
but whose exact function we still do not understand. Within
Norgev, we have shown that such structural biocomplexity
can arisein silico, with dendritic connection patterns sur-
prisingly similar to the seemingly random patterns seen in
C. elegans. And we might have been baffled at the mecha-
nism of development and function of our in silico neural tis-
sue if it were not for our ability to probe every single neuron,
study every neurotransmitter or developmental transcription
factor, and isolate every part of the system to understand its
behavior. Thus, we believe that evolving neural networks
under a developmental paradigm is a promising avenue for
the creation and understanding of robust and complex com-
putational systems that, in the future, can serve as the ner-
vous systems of autonomous robots and rovers.

Acknowledgements

Part of this work was carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, supported bythe
Physical Sciences Division of the National Aeronautics and
Space Administration’s Office of Biological and Physical
Research, and by the National Science Foundation under
grant DEB-9981397. Evolution experiments were carried
out on a OSX-based Apple computer cluster at JPL.

References
Astor, J. and Adami, C. (2000). A developmental model for

the evolution of artificial neural networks.Artificial Life,
6:189–218.

Belew, R. R. (1993). Interposing an ontogenetic model be-
tween genetic algorithms and neural networks. InNIPS5
ed J Cowan (San Mateo), CA: Morgan Kaufmann.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistries–A review.Artificial Life, 7:225–275.

Eggenberger, P. (1997). Creation of neural networks based
on developmental and evolutionary principles. InProc.
ICANN’97, Lausanne, Switzerland, October 8-10, 1997.

Gruau, F. (1995). Automatic definition of modular neural
networks.Adaptive Behaviour, 3:151–183.

Kirschner, M. and Gerhart, J. (1998). Evolvability.Proc.
Natl. Acad. Sci. USA, 95:8420–8427.

Kitano, K. (1990). Designing neural network using genetic
algorithm with graph generation system.Complex Sys-
tems, 4:461–476.

Koza, J. R., Keane, M. A., and Streeter, M. J. (2003). The
importance of reuse and development in evolvable hard-
ware. In5th NASA/DoD Workshop on Evolvable Hard-
ware, Chicago, IL, USA. IEEE Computer Society.

Koza, J. R. and Rice, J. P. (1991). Genetic generation of both
the weights and architecture for a neural network.IEEE
Intl. Joint Conf. on Neural Networks, 2:397–404.

Nolfi, S. and Parisi, D. (1995). Evolving artificial neural
networks that develop in time. InAdvances in Artificial
Life, Proceedings of the Third European Conference on
Artificial Life, pages 353–367. Springer.

	Introduction
	Description of Norgev
	Organism example
	Robustness of Stochastic
	Evolution of organisms in Norgev
	Conclusions
	Acknowledgements

