
Evolution of Differentiated Expression Pat terns
in Digital Organisms

Charles Ofria*, Christoph Adami+, Travis C. Collier^, and Grace K. Hsu

Beckman Institute
California Institute of Technology, Pasadena, California 91125, USA
tW.K. Kellogg Radiation Lab 106-38, Caltech, Pasadena, CA 91125

^Division of Organismic Biology, Ecology, and Evolution,
UCLA, Los Angeles, CA 90095

* To whom correspondence should be addressed. E-Mail: chaxles@gg.caltech.edu

Abstract. We investigate the evolutionary processes behind the devel-
opment and optimization of multiple threads of execution in digital or-
ganisms using the avida platform, a softwcire package that implements
Darwinian evolution on populations of self-replicating computer pro-
grams. The system is seeded with a linearly executed ancestor capable
only of reproducing its own genome, whereas its underlying language
has the capacity for multiple threads of execution (i.e., simultaneous
expression of sections of the genome.) We witness the evolution to multi-
threaded organisms and track the development of distinct expression pat-
terns. Additionally, we examine both the evolvability of multi-threaded
organisms and the level of thread differentiation as a function of envi-
ronmental complexity, and find that differentiation is more pronounced
in complex environments.

1 Introduction

Evolution has traditionally been a formidable subject to study due to its grad-
ual pace in the natural world. One successful method uses microscopic organisms
with generational times as short as an hour, but even this approach has diffi-
culties; it is still impossible to perforin measurements without disturbing the
system, and the time-scales to see significant adaptation remain on the order
of weeks, at best-'. Recently, a new tool has become available to study these
problems in a computational medium—the use of populations of self-replicating
computer programs. These "digital organisms" are limited in speed only by the
computers used, with generations in a typical trial taking a few seconds.

Of course, many differences remain between digital and simple biochemical
life, and we a^ldress one of the critical ones in this paper. In nature, many chem-
ical reactions and genome expressions occur simultaneously, with a system of

Populations of E.coli introduced into new environments begin adaptation immedi-
ately, with significant results apparent in a few weeks [3].

130

gene regulation guiding their interactions. However, in digital organisms only
one instruction is executed at a time, implying that no two sections of the pro-
gram can directly interact. Due to this, an obvious extension is to examine the
dynamics of adaptation in artificial systems that have the capacity for more
than one thread of execution (i.e., an independent CPU with its own instruction
pointer, operating on the same genome).

Work in this direction began in 1994 with Thearling and Ray using the pro-
gram tierra [7]. These experiments were initialized with an ancestor that creates
two threads each copying half of its genome, thereby doubling its replication
rate. Evolution then produces more threads up to the maximum allowed [11].
In subsequent papers [12,9] this research extended to organisms whose threads
are not performing identical operations. This is done in an enhanced version
of the tierra system ("Network Tierra" [8]), in which multiple "islands" of
digital organisms are processed on real-world machines across the Internet. In
these later experiments, the organisms exist in a more complex environment in
which they have the option of seeking other islands on which to place their off-
spring. The ancestor used for these experiments reproduces while searching for
better islands using independent threads. Thread differentiation persists only
when island-jumping is actively beneficial; that is, when a meaningful element
of complexity is present in the environment.

In experiments reported on here, we survey the initial emergence of multiple
threads and study their subsequent divergence in function. We then investigate
the hypothesis that environmental complexity plays a key role in the pressure
for the thread execution patterns to differentiate.

2 Experimental Details

We use the avida platform to examine the development of multi-threading in
populations exposed to different environments at distinct levels of complexity,
comparing them to each other and to controls that lack the capacity for multiple
threads.

2.1 The Avida Platform

Avida is an auto-adaptive genetic system designed for use as a platform in Arti-
ficial Life research. The avida system comprises a population of self-reproducing
strings of instructions that adapt to both an intrinsic fitness landscape (self-
reproduction) and an externahy imposed (extrinsic) bonus structure provided
by the researcher.

A standard avida organism is a single genome composed of a sequence of
instructions that are processed as commands to the CPU of a virtual computer.
This genome is loaded into the memory space of the CPU, and the execution
of each instruction modifies the state of that CPU. In addition to the memory,
a virtual CPU has three integer registers, two integer stacks, an input/output
buffer, and an instruction pointer. In standard avida experiments, an organism's

131

genome has one of 28 possible instructions at each line. The virtual CPUs are
Turing-complete, and therefore do not explicitly limit the ability for the popu-
lation to adapt to its computational world. For more details on avida, see [5].

To allow different sections of a program to be executed in parallel, we have
implemented three new instructions. A new thread of execution is initiated with
fork-th. This thread has its own registers, instruction pointer, and a single
stack, all initialized to be identical to the spawning thread. The second stack
is shared to facilitate communication among threads. Only the new thread will
execute the instruction immediately following the fork- th; the original will skip
it enabling the threads to act and adapt independently. If, for example, a jump
instruction is at this location, it may cause the new thread to execute a differ-
ent section of the program {segregated differentiation), whereas a mathematical
operation could modify the outcome of subsequent calculations (overlapping dif-
ferentiation). On the other hand, a no-operation instruction at this position
allows the threads to progress identically (non-differentiated). We have also im-
plemented k i l l - t h , an instruction that halts the thread executing it, and id - th ,
which places a unique thread identification number in a register, allowing the
organism to conditionally regulate the execution of its genome.

We performed experiments on three environments of differing complexity,
with both the extended instruction set that allows multiple expression patterns
and the standard instruction set as a control. As individual trials can differ
extensively in the course of their evolution, each setup was repeated in two
hundred trials to gain statistical significance. The experiments were performed
on populations of 3600 digital organisms for 50,000 updates^. Mutations are set
at a probability of 0.75% for each instruction copied, and a 5% probability for
an instruction to be inserted or removed in the genome of a new offspring.

The first environment (I) is the least complex, with no explicit environmen-
tal factors to affect the evolution of the organisms; that is, the optimization
of replication rate is the only adapti-i-e pressure on the population. The next
environment (II), has collections of numbers that the organisms may retrieve
and manipulate. We can view the successful computation of any of twelve log-
ical operations that we reward^ as beneficial metabolic chemical reactions, and
speed-up the virtual CPU accordingly; more complex tasks result in larger speed-
ups. If the speed increase is more than the time expended to perform the task,
the new functionality is selected for. The final environment (III) studied is the
most complex, with 80 logic operations rewarded.

^ An update represents the execution of an average of 30 instructions per program in
tlie population. 50,000 updates equates to approximately 9000 generations and takes
about 20 hours of execution on a Pentium Pro 200. The data and complete genomes
are available at http://www.krl.caltech.edu/avida/pubs/ecal99/ .

^ The completion of a logic operation involves the organism drawing one or more 32-
bit integers from the environment, computing a bitwise logical function using one or
more nand instructions, and outputting the result back into the environment.

132

A record is maintained of the development of the population, including
the genomes of the most abundant organisms. For each trial, these dominant
genomes are analyzed to produce a time series of thread use and differentiation.

2.2 DifTerentiation Metrics

The following measures and indicators keep track of the functional differentiation
of codes. We keep this initial analysis manageable by setting a maximum of two
threads available to run simultaneously. The relaxation of this constraint does
lead to the development of more than two threads with characteristically similar
interactions.

Thread Distance measures the spatial divergence of the two instruction
pointers. This measurement is the average distance (in units of instructions)
between the execution positions of the individual threads. If this value becomes
high relative to the length of the genome, it is an indication that the threads are
segregated, executing different portions of the genome at any one time, whereas
if it is low, they likely move in lock-step (or sightly offset) with nearly identical
executions. Note, however, that if two instruction pointers execute the code offset
by a fixed number of instructions, but otherwise identically, the thread distance
is an inflated measure of differentiation because the temporal offset does not
translate into differing functionality.

Code Differentiation distinguishes execution patterns with differing be-
havior. A count is kept of how often each thread executes each portion of the
genome. The code differentiation is the fraction of instructions in the genome
for which these counts differ between threads. Thus, this metric is insensistive
to the ordering of execution.

Execution Differentiation is a more rigorous measure than code differ-
entiation. It uses the same counters, taking into consideration the difference in
the number of times the threads execute each instruction. Thus, if one thread
executes a line 5 times and the other executes it 4 times, it would not con-
tribute as much towards differentiation as an instruction executed all 9 times by
one thread, and not at all by the other. This metric totals these differences in
execution counts at each line and then divides the sum by the total number of
multi-threaded executions. Thus, if the threads are perfectly synchronized, there
is zero execution differentiation, and if only one thread exclusively executes each
line, this metric is maximized at one. An execution differentiation of 0.5 indicates
that half of the instructions did not have matched executions in each thread.

3 Evolution of Mult i -Threaded Organisms

For our initial investigations, we focus on the 200 trials in environment III (the
most complex), with the extended instruction set, allowing for multi-threading.

133

Updates [xlOT Updates [xlOT

Fig. 1. The time progression of organisms learning to use multiple threads averaged
over 200 trials. (A) The fraction of trials which thread at all, and (B) The average
fraction of time organisms spend using both threads at once. The data displayed here
is for the first 5000 updates of 50,000 update experiments in environment III.

3.1 Emergence of Multiple Execution Patterns

Describing a universal course of evolution in any medium is not feasible due to
the numerous random and contingent factors that play key roles. However, there
are a number of distinct trends, which will be discussed further.

Let us first consider the transition of organisms from a purely linear execution
to the use of multiple threads. In Fig. lA, we see that most populations do
develop a secondary thread near the beginning of their evolution. Secondary
threads come into use as soon as they grant any benefit to the organisms. The
most common way this occurs is by having a f o rk- th and a k i l l - t h appear
around a section of code, which the threads thereby move through in lock-step,
performing computations twice. Multiple completions of a task provide only a
minor speed bonus, but this is often sufficient to warrant a double execution.

Once multiple execution has set in, it will be optimized with time. Smaller
blocks of duplicated code will be expanded, and larger sections will be used
more productively, sometimes even shrinking to improve efficiency. Once multiple
threads are in use, differentiation follows.

3.2 Execution Patterns in Multi-threaded Organisms

A critical question is "What effect does a secondary thread have on the process
of evolution?" The primary measure to denote a genome's level of adaptation to
an environment is its fitness. The fitness of a digital organism is measured as the
number of offspring it produces per unit time, normalized to the replication rate
of the ancestor. In all experiments, the fitness of the dominant genotype starts
at one and increases as the organisms adapt. Fitness improvements come in two
forms: the maximization of CPU speed by task completion, and the minimization
of gestation time. As all tasks must be computed each gestation cycle to maintain
a reward, this gestation time minimization includes the optimization of tasks

134

1 2 3 4
Updates [xio'*]

l U U

£ 80
O)
c
2 60
t)
E
O 40
c «i
t5 „„ 20

B //'-""'"^^''"'"''''''^
y ^

I
/

/ ^ • ^
/ ^ J '

/̂
J'

Updates [x101

Fig. 2. (A) Average fitness as a function of time (in updates) for the 200 environment
III trials. Most increases to fitness occur as a multiplicative factor, requiring fitness
to be displayed on a logarithmic scale. (B) Average sequence length for the linear
execution experiments (Solid line) and the multiple execution experiments (dashed
line).

in addition to speed-ups in the replication process. The average progression of
fitness with time is shown in Fig. 2A for both the niche with the expanded
instruction set that allows multiple threads, and the standard, linear execution
niche as a control.

Contrary to expectations, the niche that has additional threads available
gives rise to a slower rate of adaptation. However, the average length of the
genomes (Fig. 2B) reveals that the code for these marginally less fit organisms
is stored using 40% fewer instructions, indicating a denser encoding. Indeed, the
very fact that multi-threading develops spontaneously implies that it is bene-
ficial. How then can a beneficial development be detrimental to an organism's
fitness?

Inspection of evolved genomes has allowed us to determine that this code
compression is accomplished by overlapping execution patterns that differ in
their final product. Fig. 3A displays an example genome. The initial thread of
execution (the inner ring) begins in the D "gene" and proceeds clockwise. The
execution of D divides the organism when it has a fully developed copy of itself
ready. This is not the case for this first execution, so the gene fails with no effect
to the organism. Execution progresses into gene Co where computational tasks
are performed, increasing the CPU speed. Near the center of Co, a fo rk - th
instruction is executed initiating secondary execution (of the same code) at Une
27, giving rise to gene C^- The primary thread continues to line 55, the 5 gene,
where genome size is calculated and the memory for its offspring is allocated.
Next, the primary instruction pointer runs into gene R, the copy loop, where
replication occurs. It is executed once for each of the 99 instructions in the
genome (hence its dark color in the figure). When this process is complete, it
moves on through gene /Q shuffling numbers around, and re-enters gene D for a
final division.

135

Fig. 3. A: Execution patterns for an evolved avida genome. The inner ring displays
instructions executed by the initial thread, and the outer ring by the secondary thread.
Darker colors indicate more frequent execution. B : Genome structure of the phage
#X174. The promoter sequence for gene A* is entirely within gene A, causing the
genes to express the same series of amino acids from the portion overlapped. Genes B,
E, and K are also entirely contained within others, but with an offset reading frame,
such that different amino acids are produced.

During this time, the secondary thread executes gene C2 computing a few
basic logical operations. C2 ends with a jump-f (jump forward) instruction tha t
initially fails. Passing through gene / i , numbers are shuffled within the thread
and the jump at line 72 diverts the execution back to the beginning of the
organism. Prom this point on, its execution loops through Ci and C2 for a total of
10 times, using the results of each pass as inputs to the next, computing different
tasks each t ime. Note tha t for this organism, the secondary thread is never
involved in replication. Similar overlapping pat terns appear in natura l organisms,
particularly viruses. Pig. 3B exhibits a gene map of the phage #X174 containing
portions of genetic code tha t are expressed multiple times, each resulting in a
distinct protein [13]. Studies of evolution in the overlapping genes of <?X174
and other viruses have isolated the primary characteristic hampering evolution.
Multiple encodings in the same portion of a genome necessitate tha t mutat ions
be neutral (or beneficial) in their net effect over all expressions or they are
selected against. Fewer neutral mutations result in a reduced variation and in
turn slower adaptat ion. It has been shown tha t in both viruses [4] and Avida
organisms [6], overlapping expressions have between 50 and 60% of the variation
of the non-overlapping areas in the same genome, causing genotype space to be
explored at a slower pace.

In higher organisms, multiple genes do develop tha t overlap in a portion
of their encoding, but are believed to be evolved out through gene dupHcation
and specialization, leading to improved efficiency [2]. Unfortunately, viruses and
avida organisms are both subject to high mutat ion rates with no error correction

136

Updates [x10]̂ Updates [x10*]

Fig. 4. Differentiation measures averaged over all trials for each experiment. (A)
Thread Distance, (B) Fractional Thread Distance, (C) Code Differentiation, (D) Ex-
pression Differentiation. Experiments from environment III (solid line), environment II
(dashed line), and environment I (dotted line)

abilities. This, in turn, causes a strong pressure to compress the genome, thereby
minimizing the target for mutations. As this is an immediate advantage, it is
typically seized, although it leads to a decrease in the adaptive abilities of the
population in the long term.

3.3 Envi ronmenta l Influence on Differentiation

Now that we have witnessed the development of multiple threads of execution
in avida, let us examine the impact of environmental complexity on this process.
Populations in all environments learn to use their secondary thread quite rapidly,
but show a marked difference in their ability to diverge the threads into distinct
functions. In Fig 4A, average Thread Distance is displayed for all trials in each
environment showing a positive correlation between the divergence of threads
and the complexity of the environment they are evolving in.

More complex environments provide more information to be stored within
the organism, promoting longer genomes [1], and possibly biasing this measure.
To account for this, we consider this average thread distance normalized to the
length of the organisms, displayed in Fig 4B. When threads fully differentiate,
they often execute neighboring sections of code, regardless of the length of the
genome they are in, biasing this measurement in the opposite direction. Longer
genomes need their threads to be further spatially differentiated in order to
obtain an equivalent fractional thread distance. Thus, the fact that more com-

137

plex environments give rise to a marginally higher fractional distance is quite
significant.

Interestingly, Code Differentiation (Fig 4C) does not firmly distinguish the
environments, averaging at about 0.5. In fact, the distribution of code differ-
entiation turns out to be nearly uniform. This indicates that the portion of
the genomes that are involved with the differentiated threads are similarly dis-
tributed between complexity levels. Execution Differentiation (the measure of
the fraction of executions that occurred differently between threads, shown in
Fig 4D), however, once again positively correlates environments with thread di-
vergence. The degree of differentiation between the execution patterns is much
more pronounced in the more complex environments.

4 Conclusions

We have witnessed the development and differentiation of multi-threading in dig-
ital organisms, and exhibited the role of environmental complexity in promoting
this differentiation. Although this is an inherently complex process, the ability
to examine almost any detail and dynamic within the framework of avida pro-
vides insight into what we believe are fundamental properties of biological and
computational systems.

The patterns of expression (lock-step, overlapping, and spatial differentia-
tion) are selected by balancing the "physiological" costs of execution and differ-
entiation against the implicit effects of mutational load. Clearly, multiple threads
executing single regions of the genome provides for additional use of that region.
The benefit is in the form of additional functionality and a reduction in the mu-
tational load required for that functionality. Within the context of this thinking,
the correlation between environmental complexity and the usage of multiple
threads makes a great deal of sense: multiple threads are advantageous only if
they can provide additional functionality.

However, we have witnessed the cost side in this equation: when a gene or gene
product is used in multiple pathways, variations are reduced as the changes to
each gene must result in a net benefit to the organism. We observed a negative
correlation between rates of adaptation and use of multiple threads. Further-
more, the ability to analyze the entropy of each site in the genome quantifies the
loss in variability predicted by this hypothesis. This entropy analysis has been
carried out in a biological context by Schneider [10], opening up opportunities
to verify our results.

Imphcations of this work with potentially far reaching consequences for Com-
puter Science involve the study of how the individual threads interact and what
techniques the organisms implement to obtain mutually robust operations. The
internal interactions within computer systems lack the remarkable stability of
biological systems to a noisy, and often changing environment. Life as we know it
would never have reached such vast multi-cellularity if every time a single com-
ponent failed or otherwise acted unexpectedly, the whole organism shut down.

138

Clearly, we are still taking the first steps in developing systems of computer
programs tha t interact on similarly robust levels. Here we have performed ex-
periments on a simple evolutionary system as a step towards deciphering these
biological principles as applied to digital life. In the future, we plan to add ex-
plicit costs for multi-threading tha t depend on the local availability of resources
for thread execution. Systems at levels of integration anywhere near tha t of bio-
logical life are still a long way off, but more concrete concepts such as applying
principles from gene regulation to develop self-scheduling parallel computers may
be much closer.

Acknowledgements
This work was supported by the National Science Foundation under Grant No.
PHY-9723972. G.H. was supported in part by a SURF fellowship from Caltech.
Access to a Beowulf system was provided by the Center for Advanced Computing
Research at the California Insti tute of Technology. We would like to thank an
anonymous referee for useful comments.

References

1. Adartii C, Introduction to Artificial Life (Telos Springer-Verlag, New York, 1998).
2. Keese P and Gibbs A, Origins of genes: "Big bang" or continuous creation?, Proc.

Natl. Acad. Sci. 89: 9489-9493 (1992).
3. Lenski RE and Travisano M, Dynamics of adaptation and diversification: A 10,000

generation experiment with bacterial populations, Proc. Nat. Acad. Sci. 91 : 6808-
6814 (1994)

4. Miyata T and Yasunaga T, Evolution of overlapping genes, Nature 272: 532 (1978).
5. Ofria C, Brown CT, and Adami C, The Avida User's Manual, in [1] 297-350 (1998).
6. Ofria C and Adami C, Evolution of genetic organization in digital organisms, Proc.

of DIMACS Workshop on Evolution as Computation, Jan 11-12, Princeton Univer-
sity, Landweber L and Winfree E, eds. (Springer-Verlag, NY, 1999).

7. Ray TS, An approach to the synthesis of life, in Proc. of Artificial Life 11, Langton
CG, Taylor C, Farmer JD, and Rasmussen S, Eds. (Addison Wesley, Redwood City,
CA, 1992), p. 371.

8. Ray TS, A proposal to create a network-wide biodiversity reserve for digital organ-
isms, ATR Technical Report TR-H-133 (1995).

9. Ray TS and Hart J, Evolution of differentiated multi-threaded digital organisms,
in Proc. of Artificial Life VI, Adami C, Belew RK, Kitano H, and Taylor CE, eds.
(MIT Press, Gambridge, MA, 1998), p. 295.

10. Schneider TD, Stormo GD, Gold L, and Ehrenfeucht A, Information content of
binding sites on nucleotide sequences J. Mol. Biol. 188: 415-431 (1986).

11. ThearUng K and Ray TS, Evolving multi-cellular artificial life, in Proc. of Artificial
Life IV, Brooks RA and Maes P, Eds. (MIT Press, Cambridge, MA, 1994), p. 283.

12. ThearUng K and Ray TS, Evolving parallel computation, Complex Systems 10:
229-237 (1997).

13. Watson JD, et al., Molecular Biology of the Gene (Fourth Ed., Benjamin Cum-
mings, Menlo Park, 1987).

