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Abs t rac t .  Using an artificial system of self-replicating strings, we show a correlation 
between the age of a genotype and its abundance that reflects a punctuated rather 
than gradual picture of evolution, as suggested long ago by Willis. In support of this 
correlation, we measure genotype abundance distributions and find universal coeffi- 
cients. Finally, we propose a simple stochastic model which describes the dynamics of 
equilibrium periods and which correctly predicts most of the observed distributions. 

1 Introduction 

Species-abundance distributions have played an important  role in our understanding of the 
process of evolution on the one hand, and in the field of ecology on the other. Early on, 
Willis [1] remarked that  the frequency distribution of species within genera is markedly 
concave, i.e. there are many genera with very few species but only a few with very many 
species. In fact, it was Willis '  objective to disprove Darwin's claim that  new species arise 
through the "survival of the fittest," in a scenario where whole genera adapt  gradually. 
In such a scenario, there is no correlation between the age of a genus and the number of 
extant  species. A genus with many species may be old, or it may have adapted as a whole, 
gradually, until the differences are so large that  a new genus is formed. Then, even though 
the genus would be considerd young [2], it would show a lot of variation. Willis, on the 
contrary , believed that  nmtat ion acts on the individual, and that  any "young" genus will 
have, on average, less speciation then an "old" one. 

This view, of the origin of species per sallum, i.e. the creation of new genera by extremely 
rare mutations that  trigger an avalanche of speciation, as opposed to the gradual adaptat ion 
of species through natural  selection, was taken up by Yule [3] in a remarkable paper. He 
developed a mathematical  theory of evolution based on this picture, which matched the 
species-abundance curves obtained by Willis with high accuracy. The theory proposed was 
simple. For one ancestral genus, he assumes a certain probability for a "specific" mutat ion 
which creates a new species, as well as a (smaller) probability for a mutat ion that  gives 
rise to a new genus: a "generic" mutation. Iterating this process, he predicts (in the l imit  
of large number of species and infinite evolutionary time) a distribution for the number of 
genera N~ with n species 

1 
~g(n) ~ nl+l/p ' (t.0 

where p _~ 1 is the ratio between the probability for a "specific" to a "generic" mutat ion.  
This allowed him to fit most observed distributions with a parameter p ~. 2, which fit the 
species-abundance relations available to him (see Fig. 1). 
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Fig. 1. Number Ng of genera (binned) of Legurninosoe with ~ species, compiled by Willis 
from ~Dictiona~y of Flowering plants," as quoted by Yule [3] (errors are unavailable). The 
solid line is Yule's modal-fit (infinite time) for p -- 2.457, i.e. D, = 1.4. The ~/inite time = 
fit raises the power to D~ -- 1.5. 

Furthermore, he concluded from his model that there is indeed, as postulated by Willis, 
a relationship between age and "size" of a genus, and therefore that evolution proceeds by 
leaps and bounds, rather than by gradual Darwinism. Seventy years later we have much 
sympathy with this interpretation, since punctuated equilibrium as promoted by Gould and 
Eldredge (see, for example, [4]) has become the standard evolutionary picture. 

Ecologists, on the other hand, are interested in the abundance-distribution of species in 
a specified area, to understand the mechanisms that govern influx of new species and the 
extinction of others. The connection between these apparantly unrelated distributions is es- 
tablished via the age/"size" correlation of species or genera. Should such a correlation exist, 
the ecological distribution reflects the dynamics of competition rather than a distribution of 
resources, and those species taking up more space in the area studied are simply the older 
ones. In the following, we would like to argue that, not only is there such a relationship 
in the simple Artificial Life system that we investigate, but that most species-abundance 
distributions arise from very simple underlying dynamics governed by random processes. 
We suggest that "taxon"-abundance curves, independent of the placement in the hierarchy 
of taxonomic groups, should show universal power laws with coefficient (-3/2), based on 
the model presented in section 3. In fact, there is some evidence supporting this point of 
view from the work of Burlando [14], who compiled abundance-distributions from taxonomic 
data and the fossil record, and observed power-laws with coefficients consistent with the one 
obtained here. 

Previously [8, 9], it has been suggested that such power-laws can be understood if living 
systems are in a self-organized critical state. In this paper, we proceed from a different 
point of view. We measure, in an Artificial Life system, the most basic of the abundance 
distributions, that of genotypes. We try to establish that the power-law obtained there 
is roughly universal, by studying its dependence on system size and mutation rates. We 
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establish that  the power-law is observed for the "instantaneous" (i.e. ecological) distribution, 
by taking snapshots of it in time, and the "integrated" (i.e. historical) distribution, which 
determines the "size" of a specific genotype. We use the latter to establish the "Age-Area" 
relation. In the next step, we present a simple model that reproduces most of the features 
observed in genotype-abundance distributions, but which in principle can explain the gross 
features of abundance distributions of any taxon, instantaneous and integrated, simply by 
relabelling the probabilities. 

2 Abundance-Dis tr ibut ions  and Artificial Life 

Several models for the species-abundance curve have been proposed, and fitted to data 
obtained from a variety of fauna and flora. Some, like MacArthur's "broken-stick" model [11], 
relate the species-abundance distribution to the distribution of resources and niches, while 
others invoke simple branching and mutation models (without competition) such as Yule's, 
predicting geometric series (and power laws in the limit of a large number of species). Others 
include the effects of competition (such as [12] and much later [13]), and obtain frequency 
distributions ranging from exponential to power-law. 1 

Here, we take a novel approach to the determination of species-abundance relations, 
made possible by the advent of pioneering Artificial Life systems such as the tierra system, 
developed by Ray [5], and the avida system [10], developed by our group at Caltech. Keep- 
ing in mind the caveats mentioned in the Introduction, we investigate genotype frequency 
distributions from a system of self-replicating bit-strings subject to mutation and survival 
of the fittest. Each codon (from an alphabet of 20) codes for an instruction in a special 
machine-language for simple "programs" running on virtual CPUs. The language permits 
programs that self-replicate, and the chemistry of self-replication is thus substituted by the 
execution of the program (see [5, 7, 10] for more details on the tierra and avlda systems). 
The aspects of the statistical mechanics of self-replication of the bit-strings have already 
been investigated with one approach [9], and will be investigated with another in this pa- 
per; such theoretical understanding allows us to make predictions and test them against 
the experimental results obtained with the Artificial Life systems. How much this artificial 
system resembles the global behavior of populations of self-replicating RNA will become 
known once such natural systems become available. 

2.1 D y n a m i c s  of  Se l f -Rep l ica t ing  S t r ings  

Any string in the population is characterized by its specific sequence of instructions, which 
is termed the genotype of the string. If a genotype replicates accurately, we call associate a 
replication rate e (number of offspring per unit time) with it, and the string then competes 
with neighboring strings for the placement of offspring. In avlda, strings (or "cells") are 
arranged on a two-dimensional grid of fixed size and tlle total number of cells is constant 
throughout the run. When a new cell is spawned, the offspring replaces the oldest of the 
nine cells in the neighborhood of its parent. This mechanism of placing offspring in nearest- 
neighbor sites (thereby removing potentially competing cells) constitutes the only significant 
method of interaction between cells in this system, and results in the dissipative transport 
of information contained in the genome throughout the population (see [10] for details on 
this system). 

1 see [13] for a brief review of abundance-rank relations. 
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Strings are subjected to Poisson-random "cosmic ray" mutations that replace instruc- 
tions randomly at an average rate R (mutations per site per unit time) such that the 
probability for a string of length ~ to be hit by a mutation is/?2. In the first approximation, 
then, genotypes are governed by the following "kinetic equation," which models the non- 
stochastic aspects of the time development of the occupation number (or frequency) hi(t) 
of genotype i: 

n~(t + I) - n~(t) = (~ - (~> - P~)n~(~) + C, (2.2) 

where eini is the average number of cells of genotype i born per unit time, and (e)ni is the 
average number that die (when cells of different genotypes replicate into their spot). The 
flux term C models cells mutated into genotype i from "mutationally close" genotypes j ,  
and can be neglected in most situations. 

In that case, and when the average replication rate (e) is roughly constant, Eq. (2.2) 
describes exponential growth or decline 

ni(t) = n~(O)e ; ' `  (2.3) 

where 7/is the growth factor e i -  (e)- Rs of genotype i. Any genotype with 7 < 0 experiences 
exponential decline and is soon pushed into extinction. A newly created genotype with a 
replication rate better than the old average, on the other hand, will experience exponential 
growth, quickly taking over the soup and temporarily reducing the diversity of the population 

unt i l  mutations restore it (see [8, 9] for a more complete description of the dynamics). In 
practice, we find that the system spends most of its time not in either exponential regime, 
but rather in equilibria where most genotypes have 74 ~ 0. It is this third regime which 
turns out to dictate most of the properties of genotype distributions; the properties of this 
regime will be understood below through the use of the DL model. 

2.2 Resul t s  

The empirical data which will be presented below were produced in a number of avida simula- 
tions. We have measured the number of genotypes nl (t) for each living genotype at different 
times (every ten updates), effectively taking "snapshots" of the genotype-abundance distri- 
bution, and averaged the 3,000 snapshots for each of twenty runs for populations of sizes 
20x20 and 40x40, as well as 3,000 snapshots for each of five runs of size 80x80, all at an 
intermediate mutation rate R = 40 x 10 -5 mutations per genome site per update. 

The distributions Ng(n) of genotypes with n living copies are shown in Fig. 2a as log-log 
plots. The slope of a straight line in a log-log plot determines the exponent in a power law, 
and we obtain from these measurements distribution functions of the form 

1 Na(n) ~ (2.4) 
n D  9 

with D, between 1.45 and 1.85 for the different sizes. 
The peculiar rise in the distribution close to the maximmn population size is due to the 

finite size of the lattice. The genotypes accumulating there are in fact the few ones that enjoy 
exponential growth after an invention that gives them an edge over all extant genotypes. 

We are also interested in the dependence of the distribution function on the mutation 
rate. For the 20x20 system, we have measured the distribution function at half and twice the 
mutation rate used in Fig. 2a; the results can be seen in Fig. 2b. The power-law exponents 
D~ for the three mutation rates fall between 1.45 and 1.64. 
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Fig. 2a. Genotype-abundance distributions (number of genotypes with n living copies), 
for three different population sizes in avida: 20x20 (squares), 40x40 (diamonds), and 80x80 
(circles). The straight lines are lea.st-squares fit to the data with power-law coe~cients of 
1.45, 1.7, and 1.84 respectively. 
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Fig. 2b. Genotype-abundanee distributions (number of genotypes with n living copies), for 
three different mutation rates in avida (small: squares, medium: diamonds, high: circles) and 
a population size 20x20. The straight lines are least-squares fit to the data with power-law 
coefl~icients 1.45, 1.60, and 1.64 respectively. 
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At the same time we measured the distribution of geno~ype ages, by recording, for each 
genotype, the time between creation (via mutation) and extinction. It was Willis' idea that 
there ought to be a correlation between genotype ages and sizes, if new species are created 
(as we now know) by an extremely rare mutation of one copy of an existing one. We can 
check this hypothesis by plotting genotype sizes (total number of cells of a genotype that 
ever lived, analogous to the total number of species that were ever produced by a genus) 
versus the age of that genotype (Fig. 3). As expected, we see a correIation between genotype 
size and age (the "Age-Area" correlation), where most of the points that lie close to the 
diagonal are in fact genotypes with a vanishing growth factor. A few genotypes in each 
run start out with a positive growth factor, i.e. a large fitness gradient. These are precisely 
those genotypes that form the nucleus of a new "generation" or "species," and therefore 
grow much faster than average genotypes. For the run used to produce Fig. 3, they have 
been marked by diamonds, and they show a large deviation from the rest of the Age-Area 
c u r v e .  
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Fig. 3. Genotype "size," as measured by sampling integrated frequency over time, as 
a function of genotype age (in units of population updates). The genotypes marked by 
diamonds had sizable growth factors, and represent mutations that  ushered in a new epoch. 
As such, they deviate from the average genotypes which have zero growth factors and ~re 
described by the DL model (below). 

In the next section, we try to understand these results by comparing them to the simplest 
model that can be used to describe species or genotype distributions. 

3 T h e  D L  M o d e l  

Analysis of genotype frequency curves as a function of time as obtained from the avida system 
reveals that these curves share many characteristics with a simple random walk. While of 
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course this cannot be the whole story (for example, it lacks the dynamics of interaction 
between genotypes present in avida), it turns out nonetheless that this simple "dumb luck" 
model of equilibrium genotype dynamics reproduces much of the universal behavior seen in 
the full avida model. 

In the DL model, a species is born with a single member, when an individual of another 
species suffers a mutation. The new species is characterized by a rate of growth, Rg, and a 
rate of shrinkage, R~, which are assumed to be constant. We rule out unbounded exponential 
growth by making the additional assumption that Rg < Rs. 

From that point on, the population n(t)  of the species increases or decreases with ran- 
domly occurring single births or deaths, given for a small time At by the probabilities 

Pg = P(one birth) = R a n ( t ) A t  , (3.5) 
P8 -- P(one death) = R s n ( t ) A t .  (3.6) 

Both births and deaths are necessarily assumed to be proportional to the number of indi- 
viduals alive at that time (as in (2.2)). The first time that n(t) becomes zero again, the 
species is extinct. The key point is that the number of individuals is always an integer, and 
changes in discrete steps according to the Poisson process described. The population n(t)  
thus takes a random walk--prosperity or plague determined by dumb luck, modified only by 
an overall species fitness parameter ( R g / R , ) .  As it turns out, this model seems to describe 
most of the equilibrium population dynamics of species in avida, where creature interactions 
are relatively unimportant and mixing takes place on a shorter time scale than evolution. 

Trivially, the long-time behavior of a species in this model is exponential decline whenever 
Rg < Rs, and that behavior ensures that every species will eventually become extinct. 
However, we are interested in the dynamics in the regime of low population counts, where the 
stochasticity of the model plays the dominant role. Therefore we have written a simulation 
of genotype dynamics following the DL model to compare with avida data. Some typical 
population time series of this simulation are shown in Fig. 4. 

3.1 Compar i son  w i t h  a p o s i t i v e  r a n d o m  walk 

The classical random walk problem is similar to the DL model, and studying it will give 
us some insight into the behavior of our system. In a random walk, there are constant 
probabilities P9 and P, (with P9 + P, = 1) of taking unit steps in the positive or negative 
directions, respectively, at each unit of time. If we choose variable time steps of 

1 
At - ,(t)(R~ + R,) ' (3.7) 

in the equations above, then the proportionality of growth and shrinkage rates to n is 
attained. If we further constrain the random walk to positive values (extinction being iden- 
tified with the first time the walk returns to zero), the models are alike in their essential 
characteristics. 

For the positive random walk, the probability of ending up at position n after exactly 
N steps can be calculated analytically; it is 

( 2n [ g ~D(g+n)/2D(g-n)[2 
P ( N ,  n) = ) ~gg ~(N+n)/~/ a  9 s for n > 0 

I 1 [  g "~pN/2DN/2 (3.8) 
~.2(N-I)Pg~N/~J 9 ~,  f o r n = O ,  

where N + n must be even. Although the expression does not hold rigorously for the DL 
model, it is a good approximation and will help illuminate several points. 
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Fig. 4. Time-series of 5 independently run DL simulations of genotype abundances. Each 
species has the same fitness Rg/R, = 0.999, so the surprising success of the one can only 
be attributed to "dumb luck." 

3.2 To ta l  h i s t o r i ca l  g e n o t y p e  p o p u l a t i o n s  

The positive random walk and DL models make identical predictions for the distribution of 
the total historical genotype population (the total number of individuals of a genotype that  
have ever been born). Since each time step coincides with either a single birth or a single 
death, the sum of births and deaths equals the number of t ime steps. Since the genotype 
starts and ends with zero members, moreover, the number of births and the number of 
deaths must be equal. The probability that a genotype has a total number  Nb births during 
its whole history is therefore given by P(2N~, 0) from Eq. (3.8)--for large N~, approximately 

1 1 P(2Nb, O) ~ Pg4x/~ g~/2 (4Pgps)Nb" (3.9) 

This expression has two interesting limits. First, for creatures with low fitness (Pg << 
P, ~ 1), there is an exponential suppression (4Pg)/% of large historical populations (see 
Fig. 5). This is nothing more than the tendency of an unfit species towards exponential 
decline. This is one reason why unfit creatures do not have a big effect in observed data. 

In a realistic avida run, however, mutations that are not fatal are usually neutral, and 
thus the most important  case is Pg ~ P, ~  89 In this limit, the exponential factor is 
negligible, and the distribution is dominated by the power law N~ "3/2. This is indeed the 
behavior seen in the DL model simulations (see Fig. 5), avida population data (Figs. 2a,b), 
and also in many studies of biological species abundances [3]. 

The universal exponent ( - 3 / 2 )  relies only on the assumption that  populations of species 
are noninteracting; it is a property of any species which evolves stochastically. In particular, 
it does not depend on the mutation rate (rate of creation of new genotypes), in contrast to 
the model of Yule. Thus, the fact that his fits to observational data  produce an exponent of 
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Fig. 5. Distribution of total number N of random DL walkers with Nb total births, with 
fitness parameter p = Rg/R~ = 0.999 (upper curve), 0.8 (middle curve), and 0.5 (lower 
curve). The distributions are fit using the parameters obtained by the theoretical estimate 
N oc N[3/214p/(1 + p)2]Nb above. This models the "integrated," or "histOrical," distribu- 
tions. 

roughly ( - 3 / 2 )  should not be seen as a property of the biological systems that  he studied, 
but rather as a universal property accidentally uncovered in his analysis of the data. 

3.3 I n s t a n t a n e o u s  a b u n d a n c e  d i s t r i b u t i o n  

The distribution of instantaneous abundances n(t) for the positive random walk is found 
to be roughly exponential: P(n) oc e x p ( - a n ) .  In this case the connection to the DL model  
can be made exactly: since its t ime steps are dilated by a factor of n(t) during periods of 
higher abundances, those points are systematically oversampled by the same factor, and the 
instantaneous abundance distribution for the DL model is roughly 

P ( n )  ~ ~ ( 3 . 1 o )  
n 

(see Fig. 6a). 
This distribution is heavily influenced by one factor present in avida but not included 

in the naive DL model: the effect of genotypes with high fitness (P~ > P,) ,  which appear 
occasionally and take over a large fraction of the soup. While neutral genotypes spend 
exponentially little t ime at high abundances, high fitness genotypes spend much of their 
t ime there. Therefore, when comparing avida data to theory, we omit ted in each case the 
contribution of any genotype which ever filled more than 10% of the soup; this removes 
most of the high-fitness genotypes. (The cut also removes a significant number of neutral 
growth rate genotypes that  happen to cross that  threshold, but it does so equally for both 
data  sets.) The result is that theory matches avida data  quite well, as seen in Fig. 6b. 
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Fig. 6a. Genotype abundance distribution in a DL model obtained by sampling genotype 
frequencies (such as in Fig. 4) every 10 time units ("instantaneous," or "ecological" distribu- 
tion). The upper curve was obtained for a simulation of genotypes with p = Pg/Po = 0.999 
(almost neutral growth rates); the middle curve, p = 0.9; and the lowest curve, p = 0.8 
(significantly inferior). The solid lines are fits to the data,  of the form Ng(t) ~ exp -an~n, 
with ~ parameters 0.001, 0.11, and 0.24 respectively. 
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Fig. 6b. Oenotype abundance distribution (ecological) from avida, omitting the "lead- 
ing," fast replicating (high-fitness) creatures and compensating for that  skewing on the 
neutral fitness abundance distribution. We have plotted here the genotype abundance dis- 
tribution for genotypes with less than 40 members, in a 40 x 40 population, for small (di- 
amonds), medium (crosses), and large (circles) mutation rates, semi-logarithmically. The 
short-dashed, long-dashed, and solid lines are the theoretical estimates from the DL model, 
with R,  = Rg and no other free parameters except the normalization. 
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3.4 Age-area  in  the  DL mode l  

One can also make an age-area plot, comparable to Fig. 3, with data from the DL model 
simulation (see Fig. 7). Again, the data show that larger genotypes are older ones, consistent 
with evolution by infrequent jumps as opposed to gradual evolution. Comparison with Fig. 3 
also highlights the fact that the vast majority of genotypes are neutrally fit, and explained 
well by the DL model. The few that lie above the "neutral" curve are the exceptional 
genotypes which have discovered some competitive advantage---and they are as unimportant 
to most statistical measures of diversity as they are fundamental to the process of evolution. 

Fig. 7. 
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Genotype age v s .  integrated abundance for the DL model (analogous to Fig. 3). 

4 Conclus ions  

Measuring abundance distributions in any living system is notoriously difficult, as witnessed 
by the limited amount of data in the literature, and reflected in a continuing uncertainty as 
to the nature of the distributions. The advent of Artificial Life systems analogous to simple 
natural systems has introduced the ability to study the old unanswered questions but with 
new methods and tools. 

With Artificial Life it is now possible to gather huge amounts of population data from 
simple artificial evolving systems. From a simulation of an artificial world, not only the cur- 
rent ecology, but also the complete "paleontological" history can be recorded and examined 
in full detail. Parameters such as mutation rates and carrying capacities can also be adjusted 
easily. 

In this paper we have re-examined some of the old questions by measuring both abun- 
dance distributions and the area-age relation in an Artificial Life system. Although it is 
currently not possible to distinguish species in these RNA-type systems, we are able to 
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produce genotype abundance distributions showing universal behavior, and to speculate 
that  the genotype distributions are the very foundation of the ubiquitous (-3/2) power-laws 
in species abundance curves obtained already in 1922 by Willis, and later throughout the 
taxonomic system and the paleontological record by Burlando. 

Finally, we used our experience with the avida system to develop the DL stochastic model 
of population dynamics. This surprisingly simple model explains most of the dynamics of 
equilibrium periods, which in turn occupy the vast majori ty  of the t ime of the simulations. 
It  also provides accurate quantitative predictions for effects seen both in avida and in nature. 
In the future, we expect to refine the DL model to more accurately incorporate the spatial 
and finite-size effects present in the avida system, in order to isolate the unique features of 
an adaptive, evolving system. 
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