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Abstract 

We describe and investigate the learning capabilities displayed by a population of self-replicating segments of computer 
code subject to random mutation: the tierra environment. We find that learning is achieved through phase transitions that 
adapt the population to the environment it encounters, at a rate characterized by external parameters such as mutation rate 
and population size. Our results suggest that most effective learning is achieved close to the transition to disorder, and that 
learning curves of evolutionary systems are fractal. 

1. Introduction 

Our concept o f  learning, in artificial as well as nat- 
ural systems, despite a plethora of  instances, appli- 
cations, and model systems, has remained intuitive. 
Indeed, there is as yet no general theory of  learning 
(except for very specific systems [ 1 ] ) and this omis- 
sion is apt to become more and more crucial as ex- 
periments in learning become more and more varied 
and diverse. One of  the more elusive tasks associated 
with formulating a theory of  learning is the isolation 
of  universal characteristics of  the learning process. In 
fact, the very existence of  a universal learning process 
has yet to be established. 

In this paper, we would like to shed some light 
on the learning process in a very specialized artificial 
system that nevertheless promises to exhibit universal 
features. This system offers the possibility to study 
learning from a biological, i.e. evolutionary, point of  
view. Evolution of  DNA is perhaps the most dazzling 
instance of  learning through adaptation of  which we 

know. Yet, it seems to be of  little use for machine learn- 
ing applications for a very obvious reason: Learning 
through evolution is inherently slow. We hope nev- 
ertheless that by studying this immensely successful 
adaptive process, new insights can be gained which 
can be carried over to artificial learning systems. 

In the next section, we point out the qualitative dif- 
ferences between evolutionary learning (as displayed 
by natural genetic systems) and a variety of  popular 
adaptive schemes that are in use today from an abstract 
point of  view. The classification of  learning processes 
introduced there is important for those readers inter- 
ested in the conceptual foundations of  learning, but 
may be skipped by those only interested in the results. 
Section 3 introduces the tierra system that serves as 
a paradigm for auto-adaptive learning throughout this 
paper, while the fourth section rigorously defines ob- 
servables in tierra and introduces the equations that 
describe population kinetics. Section 5 then describes 
universal characteristics of  the tierra system emerg- 
ing from extensive simulations. We describe a typical 
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tierra "experiment" in some detail and present results 
of an investigation of the learning rate as a function 
of the external mutation rate, i.e., the force that drives 
evolution. We offer conclusions in the last section. 

2. Learning in adaptive systems 

When investigating learning, we are interested in 
the macroscopic behaviour of a system in response 
to external stimuli. When specifying the macroscopic 
state of the system, we are faced with two possibili- 
ties: We may either specify the space of macroscopic 
states by enumeration (i.e., providing each state fully 
formed), or else provide a set of microscopic states to- 
gether with a set of rules to construct the macroscopic 
ones. Either of these approaches has its advantages. 
The macroscopic implementation is well suited for 
complex tasks to be learned as each preprogrammed 
state can in principle be of arbitrary complexity. On 
the other hand, as will become clear later, flexibility 
is lost and the set of possible states is necessarily fi- 
nite. The microscopic approach does not suffer from 
the latter problem because the microscopic rules can 
be combined in an infinite number of ways to produce 
a practically infinite set of macroscopic states. Find- 
ing a "microscopic alphabet" in which every macro- 
scopic rule can be formulated, however, appears daunt- 
ing most notably due to the hierarchy problem and the 
brittleness problem. 

The hierarchy problem is most easily understood by 
considering its analogue in natural language: the pars- 
ing problem. In natural language, the meaning of a 
sentence can not be a universal function of the words, 
simply because words have no intrinsic meaning at 
all. Rather, the meaning of a word is given by all the 
possible ways it can be used in a meaningful sentence. 
Thus, there is no meaning on the microscopic level, 
whereas clearly there is a meaning on the macroscopic 
level. The mapping between the levels cannot be per- 
formed by a universal function because while words 
are universal (the same set of words are used to con- 
struct all sentences) the sentences are not (the mean- 
ing of sentences is context-specific). Thus, in natural 
language the hierarchy problem is to find a mapping 
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from the microscopic level to the macroscopic one that 
is not a universal function. In learning systems, fitness 
replaces meaning, microscopic states (the alphabet) 
replace words, and macroscopic states (the rules) re- 
place sentences. The alphabet must be devoid of in- 
trinsic fitness in order to guarantee universality, i.e., 
the fitness of a certain arrangement of the microscopic 
states should not be a universal function of the fitness 
of each member of the alphabet, while we would like 
to see fitness emerge (on the macroscopic level) that 
is inherent to the context and thus nonuniversal, and 
only reflects the properties of the environment, i.e. the 
learning task at hand. 

The brittleness problem is well-known: an arbitrary 
arrangement of microscopic rules leads to nonsensical 
macroscopic rules in almost all cases, and the space 
of macroscopic states turns out to be mostly empty. 
This problem most notably arises with computer-code 
for von Neumann machines: the ratio of possible pro- 
grams to workable ones is almost zero, and any arbi- 
trary mutation of a working program will most likely 
break it. 

As a consequence of these problems, most ap- 
proaches to the learning problem are based on the 
macroscopic implementation. Here, the major players 
in the field are Artificial Neural Networks [2], Ge- 
netic Algorithms [3,4] (including Expert Systems), 
and certainly Kauffman's NK-model [5]. All these 
are instances of "adaptive" systems, which learn by 
adapting to the fitness landscape dictated by the task 
to be learned. They share the ubiquitous feature that 
is the feedback mechanism: a process which modifies 
parameters that determine the response of the system 
to a certain input, according to the fitness, or success 
rate, of the previous set of parameters. In conven- 
tional adaptive systems, the mechanism to determine 
the fitness of a parameter set is extraneous to the 
system itself. This is of course a direct consequence 
of the inability to provide a problem-independent mi- 
croscopic alphabet, as the parameter-string (or set of 
weights and thresholds) has no significance except 
when interpreted within the context of the fitness- 
function or error-function. Thus, the system can never 
learn anything outside the boundaries specified by 
this function: flexibility is lost. As it turns out, nature 
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seems to have found a solution to this problem, and 
we attempt to emulate this approach. 

In almost all cases of learning in natural systems, 
the fitness of a certain configuration (or "hypothe- 
sis" [ 1 ] ) is determined within the system. Thus, we 
strive for the fitness of a string (in the broad sense of 
NK-models) to emerge as a collective effect from the 
interaction of the environment (a "hard-coded" set of 
parameters) and the population. In a way, we would 
like the strings to compute their own fitness. We shall 
call systems that can perform this feat "auto-adaptive", 
to emphasize the fact that we do not provide afitness- 
or error-function. 

Fig. 1 is an attempt at schematizing adaptive and 
auto-adaptive systems. We assume that the informa- 
tion content of any learning system may be coded in bit 
strings. In adaptive systems (Fig. la),  the bit strings 
are translated into macroscopic sets of rules 1. This in- 
terpreter is necessarily problem-specific, and the con- 
struction of the rules (the action of the interpreter) 
is fast (on the time scale associated with the learning 
process). The fitness of this macroscopic rule-set is 
then computed via the external fitness-function, which 
is also problem-specific, and fast. The result of the 
fitness evaluation is used to select bit strings in the 
next generation. The bit strings of auto-adaptive sys- 
tems (Fig. lb) are first translated to a microscopic 
rule-set. This interpreter is quasi-universal: the same 
microscopic rule-set can in principle be used for any 
application, although it may in most cases turn out to 
be advantageous to adapt the interpreter to a specific 
class of problems. The action of this interpreter is fast. 
The promotion of microscopic rules to macroscopic 
ones proceeds via evolution, i.e., mutation and "natu- 
ral" selection 2. This process is universal, but slow on 
the time scale of generations. The fitness evaluation 
then does not require any more manipulation. Instead, 

the fitness emerges through the (social or non-social) 
interaction of the macroscopic rule-sets in the popu- 
lation simply by survival. Thus, fitness is the direct 
result of the actions and interactions of the members 
of the population, and is automatically the vehicle for 
selection of bit strings that survive in the next gener- 
ation. Inevitably, for this to work the bit strings have 
to self-replicate. 

The only (artificial) system, that (to our knowl- 
edge) is truly auto-adaptive was designed to mimic 
nature in a number of important aspects. The tierra en- 
vironment [ 6], a software package created recently by 
Tom Ray, is one where a population of self-replicating 
segments of computer code (alternatively called "pro- 
grams", "cells", or "creatures") thrives in an environ- 
ment that is managed by the tierra program itself. The 
latter provides not only resources to the cells (CPU- 
time and memory space), but also oversees births, mu- 
tations, and deaths, along with providing the "shells" 
in which the creatures live: a virtual computer for each 
living cell in the population. Before we go on to de- 
scribe the key aspects of the tierra system, we would 
like to clarify the recurrent use of metaphors culled 
from biology. In fact, tierra was designed around these 
metaphors, in the sense that certain devices of the com- 
puting environment were designed to play the same 
role as certain devices, in the broadest sense, occur- 
ring in nature. Thus, CPU-time is analogous to energy, 
memory allocation is analogous to birth, machine- 
language instructions (the microscopic rule-set) are 
analogous to the codons of DNA 3. It turns out a pos- 
teriori that such a system of analogies and metaphors 
can, to the extent dictated by hardware limitations, em- 
ulate the evolution of simple proto-cellular systems to 
an astonishing degree [6]. 

The replication and mating operations, extraneous 
to the population of strings in for example Genetic 

1 We use the terms "rule-sets" and "states" synonymously, as 
each state of a system can in fact be viewed as a set of rules to 
handle input and output. 

2 We put "natural" in quotes since the selection of strings is 
necessarily dictated by the user-specified environment. However, 
we would still like to use the term "natural" to distinguish it 
from "artificial selection" based on the output of a fitness-function. 
More accurate terms would be "internal" as opposed to "external" 
selection. 

3 DNA is coded in base 4 deoxyribonucleotides, such that any 
sequence of 3 represents a codon that is translated into an amino 
acid (the microscopic rule-set of nature). Thus, 43 codons are 
translated into 20 amino acids, while 25 combinations of 1 's and 
O's are translated into 32 instructions in tierra, some of which 
turn out to be rarely used and could just as well be eliminated. In 
DNA, those amino acids that are used most frequently have the 
most representations in terms of codons. Such an approach could 
easily be implemented in tierra also. 
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Algorithms (GA's), is inherent to the tierra commu- 
nity of cells and as such the control of these activities 
is shared between the environment and the make-up 
of the population. Giving up control over key param- 
eters has profound consequences for the macroscopic 
behaviour of the population. Loss of microscopic pre- 
dictability increases the complexity of the system to 
such a degree that studies of the tierra system are in 
effect experiments with tierra. Concurrently, complex- 
ity ensures that the collective behaviour of the popu- 
lation is genuine and reproducible, and, in its general 
characteristics, universal. 

3. The tierra system 

The notion to evolve computer programs by means 
of random mutation appears doomed owing to the fact 
that the ratio of working programs to possible ones is 
very close to zero for most existing languages. In other 
words, any random mutation of a program is likely to 
break it. This has been known for some time as the 
problem of "brittleness". On the other hand, mutation 
does quite well in living systems, and according to 
Darwinian theory, is responsible for the emergence of 
complexity in natural living systems. Ray dissolved 
this dichotomy by designing an assembly language 
based on a number of instructions of the same order 
of magnitude as the number of amino acids in the ge- 
netic code. Specifically, he chose to code these instruc- 
tions into five bits, such that the random mutation of 
any bit would be "contained" and lead to a different 

instruction of this family. This is the central idea for 
surmounting brittleness, and possibly the key to auto- 
adaptive systems in general. Another characteristic of 
the tierran instruction set garnered from nature is the 
use of templates (patterns of instructions) for address- 
ing purposes rather than absolute addresses. From a 
computing point of view, the 32 instructions used by 
the tierran creatures are similar to machine language 
instructions; an extremely reduced instruction set run- 
ning on the virtual computers provided by the tierra 
program. The virtual CPU is kept very simple using 
four registers, a stack, input/output buffers, and an in- 
struction pointer. Table 1 shows the mapping from the 
tierran codons to instructions. 

The intended analogy is for the strands of computer 
code to represent strands of DNA, while the tierra pro- 
gram fulfills the role that chemistry plays in nature. 
Specifically, it doles out CPU time-slices to the cells 
in the group (simulating parallel coexistence) and su- 
pervises the "aging" of the cells by arranging them in 
a "reaper queue", killing the oldest cells in the strip of 
memory reserved for the cells (the "soup") if there is 
not enough room to accommodate the new-born ones. 
Details of the operation of the queues and the observ- 
ing software which is part of the tierra program can 
be found in [6] and in the documentation of the tierra 
software [ 8 ]. 

Evolution of the population is guaranteed by a rate 
of bit mutation that affects every cell in the soup to 
the same degree (this is the analog of cosmic rays). 
Mutations in the cells due to this phenomenon and to 
random copy-errors seems to be the key mechanism 
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Table 1 
Mapping of 5-bit codons to instructions in the tierran instruction set used in the present simulations. A description of the commands can 
be found in the tierra manual [8[. 

00000 nopO 01000 pushdx 10000 dec 11000 jmp 
00001 nopl 01001 popax 10001add 11001 jmpb 
00010 movdi 01010 popbx 10010 sub 11010 call 
00011 movid 01011 popcx 10011 zero 11011 adr 
00100 movii 01100 popdx 10100 shl 11100 adrb 
00101 pushax 01101 put 10101 notO 11101 adrf 
00110 pushbx 01110 get 10110 ifz 11110 mal 
00111 pushcx 01111 inc 10111 iffl 11111 divide 

that drives the emergence of  complexity, learning, and 
diversity. The "splicing" mechanism of  mating which 
is the corner stone of  the evolution of  GA's arises in 
tierra as a secondary effect, by copying an incom- 
plete creature (incomplete due to a mistake in a cell's 
calculation of  its own length as a result of  mutation 
and flaws) into the space previously held by a defunct 
one, thus splicing these codes together and recycling 
the dead instructions. It turns out that this mechanism 
plays an important role in learning and the evolution 
of  complexity on short time scales. Also, it is an ex- 
ample of  an emergent characteristic; it was not antic- 
ipated by the designer [9] .  

A typical tierra experiment starts by inoculating 
empty memory by a self-replicating creature that is 
hand-written by the operator using any suitable in- 
struction set. Throughout, we inoculate the soup with 
our equivalent of  a program written and termed "the 
ancestor" by Ray 4. The ancestor is a code consisting 
of  82 instructions that represent Ray 's  first attempt at 
writing a self-replicating program for this particular 
instruction set. As such, it turns out to be very inef- 
ficient and is easily improved by mutation. We use it 
as a progenitor for precisely this reason, since its in- 
efficiency is due to the presence of  redundancy in the 
code. Redundancy has emerged as a necessary require- 
ment for successful evolution. Also, this progenitor 
possesses only the ability to replicate, and thus is not 
biased towards learning other tasks. After inoculation, 
the reserved space for the cells quickly fills up with 

4 Our ancestor is not exactly identical to Ray's due to some slight 
changes in the instruction set that we deemed advantageous. The 
instruction set used in the simulations here is displayed in Table 1. 

offsprings of  the ancestor, largely identical to it, with 
exceptions due to mutations. Once the space is filled 
up, the tierra program removes the oldest cells to pro- 
vide room for the next generation. As mentioned, age 
is controlled by arranging the cells in a linear queue. 
New-born cells are entered at the bottom while the 
top creature is removed. From the moment of  inocu- 
lation, the fate of  the population is out of  the hands of  
the operator, being entirely determined by the param- 
eters of  the tierra program and the physical environ- 
ment (the "landscape") encountered by the cells (see 
below). Despite the evidently deterministic relation- 
ship between parameters and macroscopic behaviour, 
the system is complex enough to thwart any attempt 
at unraveling that connection. 

4. Fitness and learning in tierra 

As mentioned in the previous section, the fitness of  
a member of  the tierran population is not  determined 
by a fitness computation, but rather is a function of  
the cells genotype 5 and of  the rest of  the population. 
A universal measure of  fitness in tierra, as well as 
possibly all auto-adaptive systems, artificial and (in a 
restricted sense) natural, is the number of  off-spring 
("daughters") of  the organism i, di, in a suitably cho- 
sen time span. In tierra, we take this span to be the 

5 The genotype of a cell is given by its specific arrangement of 
instructions. For programs of the same length, different genotypes 
are arbitrarily labelled by a three-leuer code, in order of their 
appearance in the soup. Thus, the size-82 progenitor is labelled 
82aaa, its first mutation or flawed off-spring of the same size with 
a different genotype is 82aab, and so forth. 
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lifetime of the organism, ri, measured in number of in- 
structions executed. Very obviously, in the absence of 
a mechanism that allows organisms to kill each other, 
the genotype with the highest number of off-spring per 
lifetime will dominate the population. Naturally, this 
dominance can only be ephemeral as the successful 
creatures' off-spring will soon compete with it. 

The number of daughters (during its lifetime) of 
organism i can be written as 

di  = 7"i/( t g ) i ,  ( 1 ) 

where (tg)i is the time it takes organism i to gestate 
a single off-spring, and ri is the lifetime of this or- 
ganism as defined earlier. Naturally, this must be an 
integer number for any individual cell; for any geno- 
type, however, di represents the average number of 
off-spring of this particular genotype, which is in gen- 
eral non-integer. 

In the emulation of parallel coexistence, the main 
program allocates slices of CPU time to each cell in 
a serial manner. Let ( ta ) i  be the time allocated to 
organism i (measured in number of instructions that 
this cell will be able to execute) in each sweep through 
the population. Then 

Ni 

= ~ ( t ~ ) i O ,  (2) "gi 
j=l 

w h e r e  Ni is the number of sweeps that creature i ob- 
tains. Let us for simplicity also assume that the time 
allocated each sweep is roughly equal (or equiva- 
lently define (t~)i to be the average allocated time per 
sweep). Then 

7" i = N i ( t a )  i . ( 3 )  

In the following, we will drop the subscript i denoting 
the value of the respective quantity for organism i, 
while quantities averaged over the entire soup have 
angled brackets. I then follows that 

d = N ta/ tg  =-- Nee , (4) 

where we defined the f i tness  f rac t ion  ee. 
Indeed, this fraction is a function of the genotype of 

the organism only, and thus represents a good measure 

of absolute  f i tness.  The  total number of off-spring d 
can only be a measure of relative fitness as its value 
depends on the number of off-spring of other members 
of the population through its dependence on N. A good 
estimate for N is obtained by considering the move- 
ments in the reaper queue (RQ) due to new births 
only. As mentioned briefly earlier, every new-born cell 
is entered at the bottom of the queue, and reaches the 
top after n more births, where n is the total number of 
cells in the soup. The oldest cell in the soup is the one 
at the top of the queue, and suffers the action of the 
reaper. Since (a}n  is the average number of cells born 
each sweep, a constant population implies N ( a ) n  = n 
and thus 

N = l / (ee>.  (5) 

It then follows that 

d = ee/<ee>. (6) 

Trivially then, (d) = 1, i.e. the average number of 
off-spring is unity, as must be the case for a con- 
stant number of cells. In tierra, however, there is also 
movement in the RQ which is not due to births and 
deaths alone. If a cell attempts an illicit operation, be 
it writing on write-protected memory space (for in- 
stance space owned by another creature), or attempt- 
ing to allocate too much or too little memory 6, an 
error-flag is set, and the instruction is not executed. 
Anytime a cell commits such an illicit operation, its 
total number of error-flags ne is compared to the num- 
ber of error-flags generated by the cell just above it in 
the RQ, and switches places with it if that cell's error- 
count is larger. Thus, cells that commit more error- 
flags age faster. On the same token, a cell may be 
moved down the RQ if it accomplishes a task that the 
user feels worth rewarding. In the present implemen- 
tation of tierra, a cell moves down one position in the 
RQ after a successful memory allocation instruction 
(real), and after a successful d i v i d e  instruction. The 
number k of downward moves per lifetime (k = 2d in 
the task-neutral case) is at the discretion of the user 
and represents a means of rewarding or punishing cells 

6 The specific restrictions are set by parameters of  the tierra 
software. See the documentation for the details. 
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according to whatever task is to be accomplished. In- 
cluding these movements inside the RQ, we find the 
more general expression for the number of off-spring 

ct + ce/n ((ne) - ne) 
d = (a) + k in  [ ( ( ~ ) n e  --  ot(ne))/(ne + (ne))] " (7) 

Note that the corrections to (6) are of the order l /n ,  
and thus become more and more unimportant in sim- 
ulations with large n. This is due to the fact that the 
reaper kills the oldest cells in the entire soup, while 
a more sophisticated model would consider remov- 
ing the oldest cell in a specific neighbourhood of h 
cells [7]. 

Another method of rewarding some actions and dis- 
couraging others is the distribution of bonuses in the 
form of extra time-slices. For an organism of length 
g, tierra doles out slices of 

t~ = (c + f )gP + tb (8) 

instructions per cell per sweep. Here, tb is the aver- 
age bonus received per sweep, p is a power that can 
be used to favour larger or smaller creatures (we set 
p = 1 for size neutrality throughout) and f is the 
"leanness" fraction of the cell, obtained by dividing 
the number of executable instructions of the cell by 
its length. This factor is introduced to discourage the 
development of unexecutable code (as occurs if e.g. a 
section of the code is jumped over by the instruction 
pointer. This would be advantageous since it reduces 
the gestation time as we shall see below). We have 
supplemented this fraction by a genotype-independent 
constant c (c = 0.3 throughout the simulations re- 
ported here). For comparison, the ancestor has f = 
0.54, but evolution has been able to increase this frac- 
tion to close to the theoretical maximum of f = 1. 
Also, new genotypes are assigned f = 0.5 at birth un- 
til this fraction can be determined after gestation of 
the first off-spring. 

Concurrently to increasing ta, cells can decrease tg 
in order to increase a. Let us divide a typical program 
into a "work" section of length gw and a copy loop of 
length gc, such that g = gw + g~ (with typically gc << 
gw). The copy loop consists of those instructions that 
have to be executed to copy instructions from mother 

to daughter. Thus, to copy g instructions, a total num- 
ber of ggc/m instructions have to be executed, where 
m is the number of instructions copied by executing 
the instructions in gc. In the ancestor m = 1 ; however, 
the cells quickly discover that increasing m reduces 
the gestation time. This technique of optimization is 
generally known as "unrolling the loop" and was ob- 
served to occur spontaneously in tierra by Ray [6]. 
To complete a gestation, the program also has to run 
through the remaining gw instructions, such that 

( [m' t g = g w + - - = g  l + g c  - (9) 
m 

and thus 

c + f + tb/e 
a = 1 + e c ( 1 / m -  1 / g )  " (10) 

For gc << g and small m (m < 3) we find a ,-, m, i.e. 
unrolling the loop is an extremely beneficial operation. 
For larger m the lengthening of the copy loop cuts 
down this advantage. Likewise, skipping a large part of 
gw would turn out to increase a substantially. However, 
this is detrimental to learning as this is precisely the 
region where the cells are supposed to develop the 
code necessary to accomplish a task. For this reason, 
the leanness factor f was introduced in (8) above. 

The mechanism that drives fitness-improvement 
in tierra is of course mutation. The soup is subject 
to independent, Poisson-random mutation (bit-flip 
events), such that the waiting times between muta- 
tions are distributed exponentially 7. The mean time 
between mutations (t,,) is related to the mutation rate 
R (mutations per site per instruction executed) and 
the soup size s via 

(tm) = R - l / S ,  ( 1 1 )  

while the probability that two mutation events are 
spaced by tm is 

p( tm)  = Rse  -Rst" = 1 e_t./(tm ) (12) 
(tin) 

7 This is an improvement over the univariate distribution in earlier 
versions of tierra. 
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We are now in a position to obtain a relationship be- 
tween the fitness of  a genotype i, ai, and the mutation 
rate. 

The number of  cells of  genotype i in the soup at 
time t + 1, ni(t -k- 1), is related to ni(t) via 

( O[i--(O[) Rgi) ni(t) (13) ni ( t+  1) = 1 + t---~-- 

Eq. (13) simply reflects that new cells of  genotype i 
are born with a rate ai/ts (ts is the time it takes to 
"sweep" through the soup once, i.e. to execute (ta)i 
instructions for each cell in the soup, t~ = n(t~)) 
while the fitness a i  is just the number of  off-spring per 
sweep) and they die with a rate (a)/ts due to births by 
other genotypes, and with a rate Rgi due to mutations. 
We can neglect here the rate of  births of  this genotype 
due to mutations affecting the rest of  the soup, since 
this is infinitesimal in most situations 8 . For simplic- 
ity, we also neglect in this equation the effect of  muta- 
tions due to copy-errors, which enters in the first term 
of  (13).  For a copy-error rate Rc (one out of  R c 1 in- 
structions are not copied correctly) the term ai/ts in 
(13) should be multiplied by ( 1 - Rcgi). In the present 
paper we set Rc = 1 x 10 -3 such that it can safely 
be ignored at medium and high background-mutation 
rates. 

Solving (13) we find for the evolution of  the pop- 
ulation 

a/ts > Rg . (16) 

In other words, there is a minimum fitness (i.e. min- 
imum replication rate) required to survive under the 
hostile circumstances of  a high mutation rate. This 
condition is similar to the error-threshold condition de- 
rived by Eigen et al. in the context of  quasi-species in 
protein-space [ 10]. Assuming ta ~ (t,) (true during 
equilibrium) gives us a more intuitive understanding 
of  the requirements for the survival of  a population. 
Since ts = n(ta) we find 

l/tg > R(g)n = l / ( tm) ,  (17) 

where (t~) is the average time between mutations af- 
fecting cells (as not all sites in the soup are actual 
living cell-sites), t~ = (s /n(g) )  tin. 

The survival condition is thus a relationship between 
the two fundamental (small) time scales in the prob- 
lem, the gestation time tg and the average time be- 
tween cell-mutations, (t~). Not surprisingly, we find 
that we must have 

tg < (t~,) , (18) 

a relation that we expect to hold quite generally. 
By the same token, Eq. (15) tells us how the mu- 

tation rate drives the fitness improvement. As equilib- 
rium always drives any genotype towards y ~ 0, we 
find 

ni( t) = ni( to)e rit , (14) 

where ni ( to)  is some starting population (e.g. ni ( to ) = 
1) and (suppressing the genotype-index) 

. _  (.) 
y - - -  Rg. (15) 

ts 

Likewise, this allows us to derive a relation for the 
maximum mutation rate that a population of  fitness a 
can sustain. The highest strain is put on a population 
at high mutation rate and the average fitness of  the 
soup is driven close to zero, (a) ~ 0. Then the soup 
can only survive if the best genotype has y _> 0 [see 
Eq. (14) ], or (assuming (tg) <~ tg) 

8 This term however is important in a consistent treatment of the 
statistical mechanics. 

A a = _ a - - ( a )  =Rgts,  (19) 

i.e., the fitness gradient is proportional to the mutation 
rate. Of course, this equality is violated during the 
phase transitions that improve the fitness, i.e. during 
learning. 

In order to gain some insight into how the mutation 
rate affects the learning rate, we need to perform ac- 
tual experiments with tierra. We have seen that there is 
a maximum rate above which the soup cannot survive, 
while obviously there can be no learning at R = 0. 
We shall in fact see in the next section that, although 
a learning rate cannot unambiguously be linked to a 
mutation rate, they are in effect loosely correlated un- 
til near the transition to chaos, which effectively dis- 
solves the population: a state where the error-threshold 
condition (18) is violated and self-replication stops. 
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5. Characteristics of learning 

In order to observe learning in tierra, we investi- 
gate a simple problem: learning to add two integer 
numbers. We choose this problem as a representative 
of  a class of  simple problems 9 that can be mastered 
by a tierran soup, while anticipating that more com- 
plex problems can be learned by combining such mi- 
croscopic tasks. In addition, since the tierra system is 
a parallel one in principle ( though not in practice), 
learning several tasks at once should not require the 
cumulative time of  learning each of  them. 

As opposed to e.g. learning in Neural Networks, we 
do not "teach" the system using a certain set of  data 
only to test it with a foreign one later on. Rather, we 
embed it in an environment that is biased towards a 
certain task, i.e., we present it with the information that 
adding is advantageous. Also, we provide numbers 
in the input buffer of  each CPU that the tierran cells 
may choose to manipulate, but nothing more. While 
the cells eventually learn to add just these numbers, 
these may be exchanged with any other numbers at 
any given time. Thus, the cells truly learn the concept, 
not just an instance. 

Our main tool to bias evolution towards accomplish- 
ing the chosen task is the distribution of  bonuses in 
the form of  extra time [ cf. Eq. (8) ]. We reward three 
accomplishments which are formulated in as general a 
manner as possible so as not to bias towards any partic- 
ular solution to the problem. The first step consists in 
rewarding cells that develop the correct input/output 
structure for the problem at hand. Clearly, adding re- 
quires a minimum of  two inputs and one output. As a 
consequence, any cell that develops a minimum of  two 
g e t  and a minimum of  one p u t  command receives a 
certain bonus at the time of  gestation of  an off-spring 
(Table 2 lists the specific bonuses used in the experi- 
ments presented here). The next step is "clearing the 
channels": we reward cells that manage to echo the 
values in the input buffers into the output buffers. Fi- 
nally, any cell that writes a value into the output buffer 
that happens to be the sum of  the two previously read 

9 An attempt at solving the XOR problem using tierra is described 
in Ref. [11]. 

C. Adami / Physica D 80 (1995) 154-170 

Table 2 
Distribution of bonus for evolved features. A negative bonus in- 
dicates that this number of instructions is subtracted from the 
default allocated time-slice if this feature is not evolved. 

feature bonus 

input/output -50 
echo 40 
add 100 

values is rewarded with extra time at the time of  ex- 
ecuting the successful p u t  command. Note that any 
such bonus increases the fitness o f  such a cell accord- 
ing to (10) resulting in more off-spring for that cell 
and a subsequent perpetuation of  the discovery. 

The rewards are of  course available simultaneously 
and can in principal be discovered in any order. This 
reward-structure, "soft-coded" into the instruction 
set 10, constitutes the "fitness-landscape" with val- 
leys, mountains, and ridges, that the soup has to adapt 
to in order to thrive. 

In the simulations presented here the environment 
is extremely simple, with only three distinct explicit 
bonuses. However, they can be combined in different 
ways, and two of  them can (in the present simula- 
tions) be repeated up to three times to gain additional 
bonus. Also, there is only a limited number of  ways 
for a cell to reduce its gestation time (resulting in 
higher fitness). The introduction of  the leanness fac- 
tor f on the other hand already provides for a means 
to improve fitness in a quasi-continuous way (up to 
f = 1 ). Furthermore, cells can exploit the structure of  
the population itself to gain fitness, a feat most impres- 
sively demonstrated by the parasites (sections of  code 
that cannot reproduce on their own, but rather use the 
copy-loop of  a host cell to produce off-spring). In all 
these instances of  fitness-improvement, information is 
"found" by a cell (through mutation) and used to gain 
an advantage. This information is then reflected in the 
genome of  the adapted cell. 

to We distinguish between the "hard-coded" part of the instruction 
set, which is the same ("universal") for any problem (and could 
just as well be etched into silicon) and the "soft-coded" part, 
which is specific to the problem at hand, and thus represents part 
of the "physical" environment that the cells live in. 
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Clearly, the path that evolution takes in order to 
achieve a given task depends on the fitness landscape, 
and thus on the bonus structure. In the simple example 
presented here, the solution will undoubtedly reflect 
the particular bias structure we chose. However, this 
is not uncommon in natural systems, nor is it unnatu- 
ral to reward tasks that are not directly associated with 
the final task achieved (such as in this case "echo- 
ing") 11. In natural systems, the population takes ad- 
vantage of every bit of information available, and of 
course adaptation is not  active, but rather passive. It 
is beyond the scope of this article to investigate the 
dependence of the learning capabilities of the system 
on the bonus structure. Surely the paucity of rewards 
available guides evolution towards a certain (natural) 
algorithm, but it is "passive guiding", not "leading". It 
is uncertain whether our selection of the bonus struc- 
ture precluded the discovery of a larger diversity of 
algorithms. Considering the simplicity of the prob- 
lem, however, we suspect that an optimal algorithm 
was developed, even though its implementation var- 
ied tremendously from run to run. In the appendix, we 
present a random selection of algorithms that evolved 
in these simulations. From these it appears that while 
naturally there are similarities in the solutions, the va- 
riety is impressive and some solutions genuinely in- 
sane. 

Even though the environment for the adding prob- 
lem is extremely simple, the space of possible fitness 
improvements appears to be extremely large. Since ev- 
ery genotype has a specific fitness, we can think of the 
space of possible fitnesses pertaining to the problem 
as meta-stable states in a continuum of fitness states 
while transitions between these states are driven by 
mutations. Since the number of meta-stable states is 
already very large for this simple example (and should 
effectively be infinite in any realistic system) the tier- 
ran system will exhibit features of a self-organized 

I I A well-known paradigm is the evolution of the mammalian ear 
out of jaw bones. Obviously the capability to chew is unrelated 
to the capability to hear, but the reward to develop the former 
contributed to the development of  the latter. Similarly, the particular 
bonus structure for the development of  the ear clearly is reflected 
in its design. 
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critical (SOC) system 12. As a consequence, the time 
between transitions (or "avalanches" in the language 
of SOC systems) is distributed according to a power 
law (as are the sizes of fitness-jumps) and thus an 
"average time between transitions" (which would al- 
low a determination of the learning rate) cannot be de- 
fined. Moreover, this suggests that the learning curve 
(Fig. 2) of such a system would have a fractal appear- 
ance, i.e., would appear similar at all scales (Devil's 
staircase). 

As is well-known [12], a power-law distribution 
of waiting-times is due to an absence of scales in the 
problem. This is true to a certain extent in tierrz since 
there is no time scale of the order of the time scale of 
learning (or evolution), nor is there a scale setting the 
size of the avalanches 13. There are however micro- 
scopic time scales [those of Eq. (18) ] and these lead 
to a violation of power-law behaviour. It is precisely 
the presence of these scales that leads to a correlation 
between (tin) (the average time between mutations) 
and the learning rate. The latter is still notoriously dif- 
ficult to define. One approach would be to determine 
the average time taken to learn the specified task at 
a fixed mutation rate, yet the measured times scatter 
heavily around the average due to the stochastic nature 
of the learning process. In principal there is no guar- 
antee that in any specific simulation the goal will be 
attained (i.e., the learning time is in principle infinite) 
while in practice the goal is (at large enough mutation 
rates) almost always attained (see Table 3). On the 
same token, it is impossible to predict the sequence of 
meta-stable states that the soup will traverse to reach 
the maximum fitness (pertaining to this problem). As 
a consequence, the end product (i.e., the most suc- 
cessful genotype) will very seldom look similar even 
for two runs with exactly the same starting conditions 
(except for the random seed) and thus exactly the 
same "environment". This is strong evidence for con- 
tingency in the learning process for auto-adaptive ge- 

12 A full investigation of self-organized criticality in tierra is out- 
side of the scope of this paper and will be reported elsewhere l 13 ]. 
13 This is only approximately true in the simulations presented 

here, as the paucity of  rewards (see Table 2) does set a scale at 
large fitness-jumps. 
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Fig. 2. Learning curve for a simulation with R = 1.33 x 10 -8 
mutations per site per instruction executed, in a soup of size 131072 
instructions (a mutation probability of Rs ,~ 1.75 x 10-3). The 
circles show the fitness a of the "best-of-population" while the 
lower curve shows the average fitness (a) of the population. 

netic systems, and possibly for evolutionary processes 
in general. 

Fig. 2 shows the evolution of  fitness (the learning 
curve) in a typical run at an intermediate mutation 
rate, specifically R = 1.33 x 10 -8 with a soup-size s = 
131072, which translates into an average time between 
mutations of  (tin) = 1 / R s  ~ 572 instructions. The 
upper circles denote the fitness ce (defined in Section 
4) o f  the "best-of population" (the genotype with the 
most living copies) every million instructions, which 
translates roughly into every three generations. The 
lower curve shows the average fitness of  the popula- 
tion (a).  As expected, the fitness-of-the-best increases 
via jumps indicating transitions between meta-stable 
states. These are most likely first-order phase transi- 
tions as is evident from the coexistent phases. (A de- 
tailed investigation of  the statistical mechanics of  this 
system will appear elsewhere). 

The first transition in Fig. 2 (at around t = 80 mil- 
lion executed instructions) is in fact due to the un- 
rolling of  the loop mentioned earlier, which literally 
halves the gestation time of  the cell. Consequently, 
a jumps by roughly a factor 2. The transition at t = 
100M involves a minor rearrangement of  code, while 
at t = 185M the copy-loop is unrolled to m = 3. 
The input/output structure (first bonus in Table 2) 
is achieved around t = 290M but appears as only a 
small increase in fitness. This is due to the bonus be- 

ing distributed over several sweeps, which entails that 
the average gain per gestation-period is rather small. 
Echoing is learned at 340M (this time is defined as 
the time when a cell that discovered echoing domi- 
nates the population for the first time). The transition 
at t = 409M simply makes echoing more efficient, and 
prepares the ground for the transition at t = 453M, 
when the best-of-population simultaneously triggers 
the bonus for adding a n d  echoing. This is not a rare 
scenario, as cells often first develop the capacity to 
echo twice in a gestation period thus earning a bonus 
of  80, only to transform one of  the echoing sections 
of  code into an adding one. The later transitions sim- 
ply accumulate echo's and add's (mainly by splicing 
together sections of  code containing the pertinent se- 
quence) so as to trigger the maximum bonus. 

The complexity of  the cell dominating the popula- 
tion at around t = 800M is intriguing. Not only has 
it evolved the capacity to successfully manipulate the 
numbers in the input buffers by adding them several 
times per gestation period, but it also optimized its re- 
production loop to gestate off-spring three times faster 
than the ancestor 14. While the cells will always at- 
tempt to do the latter, we could have chosen to re- 
ward an entirely different task, and consequently the 
final genotype would reflect that in its genome in- 
stead. In fact, after the cells learn to write the content 
of  the input buffers into the output buffers, an inspec- 
tion of  the output buffers of  all coexisting cells at that 
moment shows that all kinds of  operations are per- 
formed on these numbers. The majority of  the cells re- 
turn the input-numbers untouched so as to trigger the 
"echoing" reward, some however subtract them, add 
all three, subtract the number 4, and so forth. The re- 
ward structure simply weeds out those cells with mu- 
tations that allow them to add two numbers out of  the 
zoo of  creatures that perform a litany of  tasks, entirely 
accidentally. In this sense, the actual nature o f  the task 
is irrelevant for the general characteristics of  learning 
in the tierra system. 

14 With our current version of tierra, 800M instructions are on 
average reached after 5 hours of CPU time on an HP 9000/750 
workstation. 
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Fig. 3. Learning curve for a simulation with R = 0.67 x 10 -8, same 
soup size as in Fig. 2. This run shows a long plateau at a ~ 0.2 
indicating trapping of the population in a meta-stable state. Note 
the difference in time and fitness scale as opposed to Fig. 1. 

T 
0 

© 

o~ 

E 

0~ 

4.0 

3.5 

5.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

0.5 
0.0 

I 

0.5 

I q 

1.0 1.5 2.0 2.5 3.0 
Mutat ion Rote EIO ~] 

Fig. 4. Average learning rate as a statistical average of inverse 
learning times versus mutation rate. The error bars are 1 o- standard 
deviation. 

We have performed this type of  experiment ten 
times for each of  eight different mutation rates, at a 
constant soup size. The mutation rates were chosen to 
range from very low, where adding is achieved only 
very late ( if  at all), to very high rates where the popu- 
lation effectively "melts" (ceases to reproduce). This 
happens at around thepoint where tg > (tin) as derived 
earlier, i.e., when on average a cell is hit by a mutation 
before it can generate its first off-spring. Clearly then, 
a cell cannot on average propagate its genome, and the 
information contained in it. For each mutation rate, the 
learning time fluctuates strongly due to the statistical 
nature o f  the learning process and to the presence of  
meta-stable states in the system that can trap the pop- 
ulation. The time it takes for the population to escape 
such a trap then determines the learning time. In most 
such cases we were unable to wait long enough to see 
this happen. Fig. 3 shows a learning curve for half 
the mutation rate in Fig. 2, where the population was 
stuck in a meta-stable level of  fitness a ~ 0.2, before 
breaking out of  it at around t = 1900M and learning to 
add almost instantly after. The time it takes to escape 
such a state should be considerably reduced by choos- 
ing a larger soup size, which would allow for a more 
heterogeneous population exploring different regions 
of  the landscape at the same time. In tierra, the soup 
size (reserved memory space for cells) cannot easily 
be enlarged past a certain size, which entails that the 
population can equilibrate into a homogeneous phase 

rather easily. Consequently, it is important to investi- 
gate learning characteristics for different soup sizes. 

Table 3 shows the result for all 80 runs, used in 
Fig. 4, at soup size 131072 instructions 15. The number 
of  cells in such a soup is variable, but is of  the order 
of  magnitude of  800 cells of  length 80. 

Each column in Table 3 contains the learning times 
(defined as the time a genotype that successfully adds 
first dominates the population, i.e., has the most liv- 
ing copies in the soup), or in case adding was not 
achieved, the time the simulation was interrupted, pre- 
ceded by a "greater than" symbol. Each run was taken 
to a minimum of 2 billion instructions executed. An 
entry "e.c." implies that the run died soon after inoc- 
ulation due to the error-catastrophe. 

Averaging the inverse learning times (learning 
rates) from each column of  Table 3 yields Fig. 416 
As expected, the scattering of  the data, implying 
large standard deviations, does not allow for definite 
conclusions on the behaviour of  the learning rate. 
However, we can define a "learning fraction" by de- 
termining the fraction f x  of  runs at a given mutation 
rate that achieved learning at a time t < tc = X, where 
tc is a cut-off that reflects the time-scale of  learning 
in this environment for this task. As an example, 
the learning fraction with cut-off 1000 (million) at 

15 For technical masons, the soup size has to be a power of 2. 
16 Runs that did not achieve learning were given an infinite learning 

time, i.e., a learning rate of zero. 
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Table 3 
Learning times (in million instructions executed) for mutation rates from 0.5 x 10 -8  to 2.5 × 10 -8  for soup size s = 131072 instructions. 
An entry preceded by a "greater than" sign signifies that the task was not learned before that time and the run was interrupted. An entry 
"e.c" means that the population ceased to reproduce due to the "error catastrophe" as mentioned above. 

R (10 -8)  0.5 0.667 1.0 1.333 1.667 2.0 2.222 2.5 

#1 1586 843 242 453 1052 836 e.c. e.c. 
#2 2802 1765 196 1601 606 1414 e.c. 397 
#3 1220 696 995 263 >2002 240 293 e.c. 
#4 1413 >3144 1201 >2026 586 596 >2022 e.c. 
#5 1136 >2023 1041 407 406 507 343 e.c. 
#6 >2025 1927 >2019 357 380 270 809 e.c. 
#7 >2090 1922 330 520 625 327 225 e.c. 
#8 901 1273 442 271 624 587 e.c. e.c. 
#9 1353 1374 >2251 >2094 >2117 e.c. e.c. e.c. 

#10 2252 1233 581 >2087 406 222 803 e.c. 
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Fig. 5. Learning fractions f x  as defined in the text versus mutation 
rate for various cutoffs. (a) Cutoff X = 500 million instructions, 
(b) X = 700, (c)  X = 1000, and (d)  X = 2000. 

mutation rate R = 1.0 × 10 -8 is f]0o0(1.0) = 0.6 
i.e., six out of  ten runs resulted in a population that 
successfully added before 1000 million instructions 
were executed. Tl'/is procedure allows us to obtain the 
curves presented in Fig. 5. 

Clearly, choosing the cut-off scale too low would 
not reflect the learning characteristics of  the soup, and 
neither would a high choice. In fact, this procedure 
implicitly determines simultaneously the window in 

mutation rate when learning is most effective, and an 
estimate for the time-scale of  learning for this partic- 
ular system and task. 

Choosing the cut-off time scale (in units of  million 
instructions executed) to be 700 < t¢ < 1000, the 
behaviour of the learning fraction in Fig. 5 suggests 
that learning becomes more and more effective as the 
mutation rate is increased up to a point where the 
soup dissolves as a result of  the error catastrophe. The 
time-scale for learning determined here, however, is 
certainly not universal but depends on soup-size, initial 
creature, and bonus structure. These dependencies will 
be investigated in the near future. 

6. Conclusions 

The evolutionary learning displayed by the artifi- 
cial system presented here has a number of  fascinat- 
ing characteristics that it may share with the natural 
genetic system that gave rise to bacterial DNA. As a 
learning system for practical applications tierra falls 
short in many respects, as must any auto-adaptive sys- 
tem at this stage. More complicated tasks than the one 
analyzed here will require a more elaborate informa- 
tion environment. As in animal husbandry, the breed- 
ing of a specific trait may require a certain amount of  
experimentation with the reward structure, and suc- 
cess cannot be guaranteed. Clearly, those tasks that 
are easily transcribed into the instruction set used will 
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develop most easily. We hope to in the future attack 
problems that require a far more complex informa- 
tion landscape. We have little doubt that this complex- 
ity will ultimately be reflected in the genome of the 
adapted population. On the other hand, we fully ex- 
pect limitations imposed by the instruction set, and the 
linear execution of code as opposed to the typically 
parallel approach of nature. 

We have tried in this paper to extract universal 
characteristics of the auto-adaptive learning process, 
characteristics that should be reproducible by any 
software that incorporates the basic ingredients for 
auto-adaptive systems described earlier. Naturally, 
besides the universal characteristics there are features 
that must depend on the specifics of the implemen- 
tation; it is the investigators task to isolate them. 
Particularly, the size and dimensionality of the tierran 
soup, i.e., the physical memory that the cells inhabit, 
has an influence on the global, and critical, behaviour 
of the population. In its present configuration, the 
tierran soup is multi-dimensional (even though in 
physical memory each cell has only two neighbours) 
because each cell can potentially interact with every 
other one via the reaper queue, making the system 
non-local. This may be the most important limitation 
of tierra as it affects growth, and information trans- 
fer through the population, which in turn determines 
equilibration times, diffusion coefficients, and self- 
organized behaviour. These aspects will be addressed 
for a manifestly two-dimensional genetic system with 
local interactions in the near future [7]. 
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Appendix A 

In this appendix we present a few selected genomes 
of evolved successful algorithms, and display the sec- 
tion of the genome that is related to the "phenotype" 
of interest: adding. Each such genome is identified by 
the code assigned to it by the genebanking system, 
which consists of a four digit number indicating the 
size of the genome, and a three letter code which is 
unique for every run, but not across runs. We give the 
mnemonic code of the instruction as well as the in- 
struction number. We only display those instructions 
that are directly responsible for the input, output, and 
manipulation of numbers leading to the successful ac- 
complishment of the task. Below is a description of 
the commands used by the algorithms. Note that the 
commands pu t  and imp differ from Ray's commands 
only in the selection of registers. 
ge t  reads a number in the input buffer and transfers 

it into the DX register. 
pu t  writes the contents of the CX register into output 

buffer and clears the CX register. 
add adds contents of DX register to contents of CX 

register and writes result into CX register (CX + 
DX ---* CX). 

sub CX - DX --~ CX. 
inc  increases CX by one, 
dec decreases CX by one. 
pushxX pushes contents of xX register onto stack. 
popxX pops top of stack into xX register. 

In Table A. l we display the skeleton genome of 
a number of algorithms that we extracted from the 
genebank ("fossil record"). The provenance of the cell 
is denoted by the inverse mutation rate and run number 
(as defined in Table 3), with the time of origin of the 
genotype appended (in units of millions of executed 
instructions) in parentheses. Thus, 0118aay [ 1,33/1 
(451)] denotes cell 0118aay of run number 1 of the 
batch run at mutation rate R -1 = 1.33 x 10 -8, born 
at 451M. All cells displayed were the first "adders" to 
dominate the population in their respective runs, thus 
those that triggered a major phase transition. Of the 
54 "first-adders", the following three were chosen at 
random. 
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Oll8aay [1.33/1(451)] O127ara [0.5/2(2799)1 O070chw [2.0/1(832)] 

003 add 002 inc 001 pushdx 
004 ge t  004 dec 005 get  
009 add 016 pushdx 007 popcx 
013 dec 017 popcx 008 add 
015 inc 018 get  009 put 
016 put 022 add 047 get  
024 ge t  025 sub 048 pushdx 
026 pushdx 027 add 049 popdx 
033 popcx 030 put 
034 put 101 get  
075 ge t  

Cell 0118aay is the first adding creature of the run 
displayed in Fig. 2, responsible for the phase transi- 
tion at t = 453M. The first command 3 add adds DX 
to CX, which in case CX is empty is an effective way 
of transferring the contents of DX into CX. Since this 
command is at the beginning of the cell, this is usually 
the case. However, note that 16 pu t  results in correct 
addition only when the program has run once, loading 
the DX register with 75 got .  Otherwise (first run of 
the program) this sequence results in echoing. Note 
also that even though the sequence (13,15) is super- 
fluous, it is most likely going to survive because single 
mutations will only destroy one of the instructions, re- 
suiting in incorrect addition. The following sequence 
(24,26,33,34) is a nearly perfect echoing sequence. 
Without 75 get ,  the algorithm displayed echoes twice 
per gestation period to record a bonus of 80. We sus- 
pect that 0118aay developed from such a cell sim- 
ply by turning one of the neutral instructions just be- 
fore the copy-loop into got .  Unfortunately the "fossil 
record" is not extensive enough to verify this. 

Cell 0127ara is a creature that developed much 
"later", from a run with lower mutation rate. Inter- 
estingly, a strategy similar to the one employed by 
0118aay developed, where in the first run through the 
program only "echoing" is achieved, until the DX reg- 
ister is loaded with 101 get .  The pair (2,4) again 
is superfluous, after which the contents of DX are 
shifted into CX by the pair (16,17). After a surpris- 
ing a d d / s u b / a d d  the result is written into the output 
with 030, at which time the bonus is earned. 

Cell 0070chw was formed in a run with high mu- 
tation rate. We leave it to the reader to discover its 
strategy. 

Finally, we would like to display the skeleton 
genome of 0071bno[2.0/2(1754)].  Since its algo- 
rithm is more complicated than the ones encountered 
so far, we have to describe more commands. 
c a l l  jump to the complementary pattern of the tem- 

plate immediately following the command and push 
the address of the instruction immediately follow- 
ing the template (not the complementary template) 
onto the stack. In case of absence of template, push 
address of instruction following command on stack, 
but do not jump. 

imp jump to the complementary template of the pat- 
tern just following the command, or, in the absence 
thereof, jump to the address stored in the BX reg- 
ister. 
The commands c a l l  and jrap are used by this cell 

to create a devious adding-loop which is run through 
five times, performing the task each time. In Table A.2 
we display the complete segment of genome from in- 
struction 43 to 66. 

Instructions 43-55 constitute the copy-loop. Earlier 
commands have placed the address of the mother in 
the BX register, the address of the daughter in AX, 
and the length of the mother in CX. movi i  writes the 
instruction at address BX + CX to location AX + CX. 
Thus, the mother is copied into the daughter starting 
with the last instruction of the mother, moving to the 
beginning of the mother with the sequence dec mov±2 



Table A.2 

0071bno [2.0/2(1754)] 

43 nopl  56 add 
44 nop0 57 pushbx 
45 dec 58 d i v i d e  
46 movii  59 ge t  
47 ifz 60 add 
48 imp 61 nopl  
49 nopl  62 popax 
50 ge t  63 popbx 
51 dec 64 popbx 
52 movii  65 put  
53 c a l l  66 imp 
54 hop0 
55 nopl  

i f  z. The latter of the commands checks whether CX is 
zero and executes the next command if it is, but skips 
it otherwise. This checks whether copying is complete 
and exits the loop in that case. Command 50 ge t  serves 
no apparent purpose, but since it continually reads 
the input into DX has either once served a purpose, 
or can be used fruitfully in the future. Instructions 
51, 52 accomplish the copying of two instructions per 
iteration of the copy-loop, the result of an "unrolling" 
operation as described in the text. 

The intriguing command is 53 c a l l .  Indeed, this 
is used to return to the top of the copy-loop (in- 
struction 43), but at the same time the address of the 
command following the template, 56 add, is pushed 
on the stack. Since this is executed 36 times during 
the copy-procedure, the stack (of size 10) is filled 
with the address of this instruction. Once the mother 
is fully copied into the daughter, 48 imp is executed 
which jumps to instruction 55, the instruction follow- 
ing the template nop0, which is the complimentary 
template to nopl which followed the imp command 
(incomplete templates are recognised). Then, the con- 
tents of the DX register are transferred to CX via 
56 add, as the CX register was empty since all the 
copying was finished. Following is 57 pushbx which 
pushes the mother's beginning address onto the stack 
(this will become important later on), while command 
58 divide releases the daughter and terminates the 
mother's write access to the daughter's space. Instruc- 
tions 59 ge t  and 60 add place the sum of the two most 
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recently read values into CX. Important is the follow- 
ing 64 popbx command, since it places the address of 
instruction 56 into BX (by popping it off the top of 
the stack). After 65 put ,  which triggers the adding- 
bonus, the subsequent 66 jrap command, since it is 
not followed by a template, jumps to the instruction 
whose location is in the BX register, i.e. 56 add! Since 
DX still contains the last read input value, it is trans- 
ferred to CX via 56 add since again CX is empty (by 
virtue of the pu t  command which clears CX). After 
ge t  add, the stack is popped three times again, which 
together with 57 pushbx (which now also pushes the 
address of 56 add on the stack, unlike the first time 
it was invoked) makes a total of two pops per run 
through this unique adding-loop. As the stack is only 
of size 10, this loop can be run through five times un- 
til the stack cycles (the bottom of the stack becomes 
the top of the stack) and the top of the stack is the 
mother's beginning address, which was placed on the 
stack by the first execution of 57 pushbx. Thus, af- 
ter 5 iterations of the adding-loop, 64 popbx places 
the mother's beginning address in BX, such that the 
following 66 imp moves the instruction pointer to the 
beginning of the cell, to restart the whole process. 

The evolution of such an elaborate scheme, while 
manifestly "insane", does encourage the belief that 
more complicated tasks can be bred using the auto- 
adaptive scheme. 
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