
EI~qEVIER Physica D 80 (1995) 154-170

PHYSICA

Learning and complexity in genetic auto-adaptive systems
Chris Adami

W.K. Kellogg Radiation Laboratory 106-38, California Institute of Technology, Pasadena, CA 91125, USA

Received 31 March 1994; revised 10 June 1994; accepted 21 June 1994
Communicated by K. Kaneko

Abstract

We describe and investigate the learning capabilities displayed by a population of self-replicating segments of computer
code subject to random mutation: the tierra environment. We find that learning is achieved through phase transitions that
adapt the population to the environment it encounters, at a rate characterized by external parameters such as mutation rate
and population size. Our results suggest that most effective learning is achieved close to the transition to disorder, and that
learning curves of evolutionary systems are fractal.

1. Introduction

Our concept o f learning, in artificial as well as nat-
ural systems, despite a plethora of instances, appli-
cations, and model systems, has remained intuitive.
Indeed, there is as yet no general theory of learning
(except for very specific systems [1]) and this omis-
sion is apt to become more and more crucial as ex-
periments in learning become more and more varied
and diverse. One of the more elusive tasks associated
with formulating a theory of learning is the isolation
of universal characteristics of the learning process. In
fact, the very existence of a universal learning process
has yet to be established.

In this paper, we would like to shed some light
on the learning process in a very specialized artificial
system that nevertheless promises to exhibit universal
features. This system offers the possibility to study
learning from a biological, i.e. evolutionary, point of
view. Evolution of DNA is perhaps the most dazzling
instance of learning through adaptation of which we

know. Yet, it seems to be of little use for machine learn-
ing applications for a very obvious reason: Learning
through evolution is inherently slow. We hope nev-
ertheless that by studying this immensely successful
adaptive process, new insights can be gained which
can be carried over to artificial learning systems.

In the next section, we point out the qualitative dif-
ferences between evolutionary learning (as displayed
by natural genetic systems) and a variety of popular
adaptive schemes that are in use today from an abstract
point of view. The classification of learning processes
introduced there is important for those readers inter-
ested in the conceptual foundations of learning, but
may be skipped by those only interested in the results.
Section 3 introduces the tierra system that serves as
a paradigm for auto-adaptive learning throughout this
paper, while the fourth section rigorously defines ob-
servables in tierra and introduces the equations that
describe population kinetics. Section 5 then describes
universal characteristics of the tierra system emerg-
ing from extensive simulations. We describe a typical

0167-2789/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI O167-2789(94)OO157-L

C. Adami / Physica D 80 (1995) 154-170

tierra "experiment" in some detail and present results
of an investigation of the learning rate as a function
of the external mutation rate, i.e., the force that drives
evolution. We offer conclusions in the last section.

2. Learning in adaptive systems

When investigating learning, we are interested in
the macroscopic behaviour of a system in response
to external stimuli. When specifying the macroscopic
state of the system, we are faced with two possibili-
ties: We may either specify the space of macroscopic
states by enumeration (i.e., providing each state fully
formed), or else provide a set of microscopic states to-
gether with a set of rules to construct the macroscopic
ones. Either of these approaches has its advantages.
The macroscopic implementation is well suited for
complex tasks to be learned as each preprogrammed
state can in principle be of arbitrary complexity. On
the other hand, as will become clear later, flexibility
is lost and the set of possible states is necessarily fi-
nite. The microscopic approach does not suffer from
the latter problem because the microscopic rules can
be combined in an infinite number of ways to produce
a practically infinite set of macroscopic states. Find-
ing a "microscopic alphabet" in which every macro-
scopic rule can be formulated, however, appears daunt-
ing most notably due to the hierarchy problem and the
brittleness problem.

The hierarchy problem is most easily understood by
considering its analogue in natural language: the pars-
ing problem. In natural language, the meaning of a
sentence can not be a universal function of the words,
simply because words have no intrinsic meaning at
all. Rather, the meaning of a word is given by all the
possible ways it can be used in a meaningful sentence.
Thus, there is no meaning on the microscopic level,
whereas clearly there is a meaning on the macroscopic
level. The mapping between the levels cannot be per-
formed by a universal function because while words
are universal (the same set of words are used to con-
struct all sentences) the sentences are not (the mean-
ing of sentences is context-specific). Thus, in natural
language the hierarchy problem is to find a mapping

155

from the microscopic level to the macroscopic one that
is not a universal function. In learning systems, fitness
replaces meaning, microscopic states (the alphabet)
replace words, and macroscopic states (the rules) re-
place sentences. The alphabet must be devoid of in-
trinsic fitness in order to guarantee universality, i.e.,
the fitness of a certain arrangement of the microscopic
states should not be a universal function of the fitness
of each member of the alphabet, while we would like
to see fitness emerge (on the macroscopic level) that
is inherent to the context and thus nonuniversal, and
only reflects the properties of the environment, i.e. the
learning task at hand.

The brittleness problem is well-known: an arbitrary
arrangement of microscopic rules leads to nonsensical
macroscopic rules in almost all cases, and the space
of macroscopic states turns out to be mostly empty.
This problem most notably arises with computer-code
for von Neumann machines: the ratio of possible pro-
grams to workable ones is almost zero, and any arbi-
trary mutation of a working program will most likely
break it.

As a consequence of these problems, most ap-
proaches to the learning problem are based on the
macroscopic implementation. Here, the major players
in the field are Artificial Neural Networks [2], Ge-
netic Algorithms [3,4] (including Expert Systems),
and certainly Kauffman's NK-model [5]. All these
are instances of "adaptive" systems, which learn by
adapting to the fitness landscape dictated by the task
to be learned. They share the ubiquitous feature that
is the feedback mechanism: a process which modifies
parameters that determine the response of the system
to a certain input, according to the fitness, or success
rate, of the previous set of parameters. In conven-
tional adaptive systems, the mechanism to determine
the fitness of a parameter set is extraneous to the
system itself. This is of course a direct consequence
of the inability to provide a problem-independent mi-
croscopic alphabet, as the parameter-string (or set of
weights and thresholds) has no significance except
when interpreted within the context of the fitness-
function or error-function. Thus, the system can never
learn anything outside the boundaries specified by
this function: flexibility is lost. As it turns out, nature

156 C. Adami / Physica D 80 (1995) 154-170

seems to have found a solution to this problem, and
we attempt to emulate this approach.

In almost all cases of learning in natural systems,
the fitness of a certain configuration (or "hypothe-
sis" [1]) is determined within the system. Thus, we
strive for the fitness of a string (in the broad sense of
NK-models) to emerge as a collective effect from the
interaction of the environment (a "hard-coded" set of
parameters) and the population. In a way, we would
like the strings to compute their own fitness. We shall
call systems that can perform this feat "auto-adaptive",
to emphasize the fact that we do not provide afitness-
or error-function.

Fig. 1 is an attempt at schematizing adaptive and
auto-adaptive systems. We assume that the informa-
tion content of any learning system may be coded in bit
strings. In adaptive systems (Fig. la), the bit strings
are translated into macroscopic sets of rules 1. This in-
terpreter is necessarily problem-specific, and the con-
struction of the rules (the action of the interpreter)
is fast (on the time scale associated with the learning
process). The fitness of this macroscopic rule-set is
then computed via the external fitness-function, which
is also problem-specific, and fast. The result of the
fitness evaluation is used to select bit strings in the
next generation. The bit strings of auto-adaptive sys-
tems (Fig. lb) are first translated to a microscopic
rule-set. This interpreter is quasi-universal: the same
microscopic rule-set can in principle be used for any
application, although it may in most cases turn out to
be advantageous to adapt the interpreter to a specific
class of problems. The action of this interpreter is fast.
The promotion of microscopic rules to macroscopic
ones proceeds via evolution, i.e., mutation and "natu-
ral" selection 2. This process is universal, but slow on
the time scale of generations. The fitness evaluation
then does not require any more manipulation. Instead,

the fitness emerges through the (social or non-social)
interaction of the macroscopic rule-sets in the popu-
lation simply by survival. Thus, fitness is the direct
result of the actions and interactions of the members
of the population, and is automatically the vehicle for
selection of bit strings that survive in the next gener-
ation. Inevitably, for this to work the bit strings have
to self-replicate.

The only (artificial) system, that (to our knowl-
edge) is truly auto-adaptive was designed to mimic
nature in a number of important aspects. The tierra en-
vironment [6], a software package created recently by
Tom Ray, is one where a population of self-replicating
segments of computer code (alternatively called "pro-
grams", "cells", or "creatures") thrives in an environ-
ment that is managed by the tierra program itself. The
latter provides not only resources to the cells (CPU-
time and memory space), but also oversees births, mu-
tations, and deaths, along with providing the "shells"
in which the creatures live: a virtual computer for each
living cell in the population. Before we go on to de-
scribe the key aspects of the tierra system, we would
like to clarify the recurrent use of metaphors culled
from biology. In fact, tierra was designed around these
metaphors, in the sense that certain devices of the com-
puting environment were designed to play the same
role as certain devices, in the broadest sense, occur-
ring in nature. Thus, CPU-time is analogous to energy,
memory allocation is analogous to birth, machine-
language instructions (the microscopic rule-set) are
analogous to the codons of DNA 3. It turns out a pos-
teriori that such a system of analogies and metaphors
can, to the extent dictated by hardware limitations, em-
ulate the evolution of simple proto-cellular systems to
an astonishing degree [6].

The replication and mating operations, extraneous
to the population of strings in for example Genetic

1 We use the terms "rule-sets" and "states" synonymously, as
each state of a system can in fact be viewed as a set of rules to
handle input and output.

2 We put "natural" in quotes since the selection of strings is
necessarily dictated by the user-specified environment. However,
we would still like to use the term "natural" to distinguish it
from "artificial selection" based on the output of a fitness-function.
More accurate terms would be "internal" as opposed to "external"
selection.

3 DNA is coded in base 4 deoxyribonucleotides, such that any
sequence of 3 represents a codon that is translated into an amino
acid (the microscopic rule-set of nature). Thus, 43 codons are
translated into 20 amino acids, while 25 combinations of 1 's and
O's are translated into 32 instructions in tierra, some of which
turn out to be rarely used and could just as well be eliminated. In
DNA, those amino acids that are used most frequently have the
most representations in terms of codons. Such an approach could
easily be implemented in tierra also.

C. Adami / Physica D 80 (1995) 154-170 157

interpreter fitness-function
b i t string4-: __ problem specific ru le - se t problem speqfic

fast (macroscopic) fast

(a)
selection

f i tness
!
I

interpreter evolution
bit string~,,o~i....,.~,;; rule-set 0.,,er,,,~

fast (microscopic) slow

(b)
Fig. I. (a) Feedback loop for adaptive genetic systems for selection of

select ion
/

1 execution /
ru le - se t . f i tness

universal
(macroscopic) immediate

strings. (b) Selection process for auto-adaptive genetic systems.

Algorithms (GA's), is inherent to the tierra commu-
nity of cells and as such the control of these activities
is shared between the environment and the make-up
of the population. Giving up control over key param-
eters has profound consequences for the macroscopic
behaviour of the population. Loss of microscopic pre-
dictability increases the complexity of the system to
such a degree that studies of the tierra system are in
effect experiments with tierra. Concurrently, complex-
ity ensures that the collective behaviour of the popu-
lation is genuine and reproducible, and, in its general
characteristics, universal.

3. The tierra system

The notion to evolve computer programs by means
of random mutation appears doomed owing to the fact
that the ratio of working programs to possible ones is
very close to zero for most existing languages. In other
words, any random mutation of a program is likely to
break it. This has been known for some time as the
problem of "brittleness". On the other hand, mutation
does quite well in living systems, and according to
Darwinian theory, is responsible for the emergence of
complexity in natural living systems. Ray dissolved
this dichotomy by designing an assembly language
based on a number of instructions of the same order
of magnitude as the number of amino acids in the ge-
netic code. Specifically, he chose to code these instruc-
tions into five bits, such that the random mutation of
any bit would be "contained" and lead to a different

instruction of this family. This is the central idea for
surmounting brittleness, and possibly the key to auto-
adaptive systems in general. Another characteristic of
the tierran instruction set garnered from nature is the
use of templates (patterns of instructions) for address-
ing purposes rather than absolute addresses. From a
computing point of view, the 32 instructions used by
the tierran creatures are similar to machine language
instructions; an extremely reduced instruction set run-
ning on the virtual computers provided by the tierra
program. The virtual CPU is kept very simple using
four registers, a stack, input/output buffers, and an in-
struction pointer. Table 1 shows the mapping from the
tierran codons to instructions.

The intended analogy is for the strands of computer
code to represent strands of DNA, while the tierra pro-
gram fulfills the role that chemistry plays in nature.
Specifically, it doles out CPU time-slices to the cells
in the group (simulating parallel coexistence) and su-
pervises the "aging" of the cells by arranging them in
a "reaper queue", killing the oldest cells in the strip of
memory reserved for the cells (the "soup") if there is
not enough room to accommodate the new-born ones.
Details of the operation of the queues and the observ-
ing software which is part of the tierra program can
be found in [6] and in the documentation of the tierra
software [8].

Evolution of the population is guaranteed by a rate
of bit mutation that affects every cell in the soup to
the same degree (this is the analog of cosmic rays).
Mutations in the cells due to this phenomenon and to
random copy-errors seems to be the key mechanism

158 C. Adami / Physica D 80 (1995) 154-170

Table 1
Mapping of 5-bit codons to instructions in the tierran instruction set used in the present simulations. A description of the commands can
be found in the tierra manual [8[.

00000 nopO 01000 pushdx 10000 dec 11000 jmp
00001 nopl 01001 popax 10001add 11001 jmpb
00010 movdi 01010 popbx 10010 sub 11010 call
00011 movid 01011 popcx 10011 zero 11011 adr
00100 movii 01100 popdx 10100 shl 11100 adrb
00101 pushax 01101 put 10101 notO 11101 adrf
00110 pushbx 01110 get 10110 ifz 11110 mal
00111 pushcx 01111 inc 10111 iffl 11111 divide

that drives the emergence of complexity, learning, and
diversity. The "splicing" mechanism of mating which
is the corner stone of the evolution of GA's arises in
tierra as a secondary effect, by copying an incom-
plete creature (incomplete due to a mistake in a cell's
calculation of its own length as a result of mutation
and flaws) into the space previously held by a defunct
one, thus splicing these codes together and recycling
the dead instructions. It turns out that this mechanism
plays an important role in learning and the evolution
of complexity on short time scales. Also, it is an ex-
ample of an emergent characteristic; it was not antic-
ipated by the designer [9] .

A typical tierra experiment starts by inoculating
empty memory by a self-replicating creature that is
hand-written by the operator using any suitable in-
struction set. Throughout, we inoculate the soup with
our equivalent of a program written and termed "the
ancestor" by Ray 4. The ancestor is a code consisting
of 82 instructions that represent Ray 's first attempt at
writing a self-replicating program for this particular
instruction set. As such, it turns out to be very inef-
ficient and is easily improved by mutation. We use it
as a progenitor for precisely this reason, since its in-
efficiency is due to the presence of redundancy in the
code. Redundancy has emerged as a necessary require-
ment for successful evolution. Also, this progenitor
possesses only the ability to replicate, and thus is not
biased towards learning other tasks. After inoculation,
the reserved space for the cells quickly fills up with

4 Our ancestor is not exactly identical to Ray's due to some slight
changes in the instruction set that we deemed advantageous. The
instruction set used in the simulations here is displayed in Table 1.

offsprings of the ancestor, largely identical to it, with
exceptions due to mutations. Once the space is filled
up, the tierra program removes the oldest cells to pro-
vide room for the next generation. As mentioned, age
is controlled by arranging the cells in a linear queue.
New-born cells are entered at the bottom while the
top creature is removed. From the moment of inocu-
lation, the fate of the population is out of the hands of
the operator, being entirely determined by the param-
eters of the tierra program and the physical environ-
ment (the "landscape") encountered by the cells (see
below). Despite the evidently deterministic relation-
ship between parameters and macroscopic behaviour,
the system is complex enough to thwart any attempt
at unraveling that connection.

4. Fitness and learning in tierra

As mentioned in the previous section, the fitness of
a member of the tierran population is not determined
by a fitness computation, but rather is a function of
the cells genotype 5 and of the rest of the population.
A universal measure of fitness in tierra, as well as
possibly all auto-adaptive systems, artificial and (in a
restricted sense) natural, is the number of off-spring
("daughters") of the organism i, di, in a suitably cho-
sen time span. In tierra, we take this span to be the

5 The genotype of a cell is given by its specific arrangement of
instructions. For programs of the same length, different genotypes
are arbitrarily labelled by a three-leuer code, in order of their
appearance in the soup. Thus, the size-82 progenitor is labelled
82aaa, its first mutation or flawed off-spring of the same size with
a different genotype is 82aab, and so forth.

C. Adami I Physica D 80 (1995) 154-170 159

lifetime of the organism, ri, measured in number of in-
structions executed. Very obviously, in the absence of
a mechanism that allows organisms to kill each other,
the genotype with the highest number of off-spring per
lifetime will dominate the population. Naturally, this
dominance can only be ephemeral as the successful
creatures' off-spring will soon compete with it.

The number of daughters (during its lifetime) of
organism i can be written as

di = 7"i/(t g) i , (1)

where (tg)i is the time it takes organism i to gestate
a single off-spring, and ri is the lifetime of this or-
ganism as defined earlier. Naturally, this must be an
integer number for any individual cell; for any geno-
type, however, di represents the average number of
off-spring of this particular genotype, which is in gen-
eral non-integer.

In the emulation of parallel coexistence, the main
program allocates slices of CPU time to each cell in
a serial manner. Let (ta) i be the time allocated to
organism i (measured in number of instructions that
this cell will be able to execute) in each sweep through
the population. Then

Ni

= ~ (t ~) i O , (2) "gi
j=l

w h e r e Ni is the number of sweeps that creature i ob-
tains. Let us for simplicity also assume that the time
allocated each sweep is roughly equal (or equiva-
lently define (t~)i to be the average allocated time per
sweep). Then

7" i = N i (t a) i . (3)

In the following, we will drop the subscript i denoting
the value of the respective quantity for organism i,
while quantities averaged over the entire soup have
angled brackets. I then follows that

d = N ta/ tg =-- Nee , (4)

where we defined the f i tness f rac t ion ee.
Indeed, this fraction is a function of the genotype of

the organism only, and thus represents a good measure

of absolute f i tness. The total number of off-spring d
can only be a measure of relative fitness as its value
depends on the number of off-spring of other members
of the population through its dependence on N. A good
estimate for N is obtained by considering the move-
ments in the reaper queue (RQ) due to new births
only. As mentioned briefly earlier, every new-born cell
is entered at the bottom of the queue, and reaches the
top after n more births, where n is the total number of
cells in the soup. The oldest cell in the soup is the one
at the top of the queue, and suffers the action of the
reaper. Since (a}n is the average number of cells born
each sweep, a constant population implies N (a) n = n
and thus

N = l / (ee>. (5)

It then follows that

d = ee/<ee>. (6)

Trivially then, (d) = 1, i.e. the average number of
off-spring is unity, as must be the case for a con-
stant number of cells. In tierra, however, there is also
movement in the RQ which is not due to births and
deaths alone. If a cell attempts an illicit operation, be
it writing on write-protected memory space (for in-
stance space owned by another creature), or attempt-
ing to allocate too much or too little memory 6, an
error-flag is set, and the instruction is not executed.
Anytime a cell commits such an illicit operation, its
total number of error-flags ne is compared to the num-
ber of error-flags generated by the cell just above it in
the RQ, and switches places with it if that cell's error-
count is larger. Thus, cells that commit more error-
flags age faster. On the same token, a cell may be
moved down the RQ if it accomplishes a task that the
user feels worth rewarding. In the present implemen-
tation of tierra, a cell moves down one position in the
RQ after a successful memory allocation instruction
(real), and after a successful d i v i d e instruction. The
number k of downward moves per lifetime (k = 2d in
the task-neutral case) is at the discretion of the user
and represents a means of rewarding or punishing cells

6 The specific restrictions are set by parameters of the tierra
software. See the documentation for the details.

160 C. Adami / Physica D 80 (1995) 154-170

according to whatever task is to be accomplished. In-
cluding these movements inside the RQ, we find the
more general expression for the number of off-spring

ct + ce/n ((ne) - ne)
d = (a) + k in [((~) n e -- ot(ne))/(ne + (ne))] " (7)

Note that the corrections to (6) are of the order l /n ,
and thus become more and more unimportant in sim-
ulations with large n. This is due to the fact that the
reaper kills the oldest cells in the entire soup, while
a more sophisticated model would consider remov-
ing the oldest cell in a specific neighbourhood of h
cells [7].

Another method of rewarding some actions and dis-
couraging others is the distribution of bonuses in the
form of extra time-slices. For an organism of length
g, tierra doles out slices of

t~ = (c + f)gP + tb (8)

instructions per cell per sweep. Here, tb is the aver-
age bonus received per sweep, p is a power that can
be used to favour larger or smaller creatures (we set
p = 1 for size neutrality throughout) and f is the
"leanness" fraction of the cell, obtained by dividing
the number of executable instructions of the cell by
its length. This factor is introduced to discourage the
development of unexecutable code (as occurs if e.g. a
section of the code is jumped over by the instruction
pointer. This would be advantageous since it reduces
the gestation time as we shall see below). We have
supplemented this fraction by a genotype-independent
constant c (c = 0.3 throughout the simulations re-
ported here). For comparison, the ancestor has f =
0.54, but evolution has been able to increase this frac-
tion to close to the theoretical maximum of f = 1.
Also, new genotypes are assigned f = 0.5 at birth un-
til this fraction can be determined after gestation of
the first off-spring.

Concurrently to increasing ta, cells can decrease tg
in order to increase a. Let us divide a typical program
into a "work" section of length gw and a copy loop of
length gc, such that g = gw + g~ (with typically gc <<
gw). The copy loop consists of those instructions that
have to be executed to copy instructions from mother

to daughter. Thus, to copy g instructions, a total num-
ber of ggc/m instructions have to be executed, where
m is the number of instructions copied by executing
the instructions in gc. In the ancestor m = 1 ; however,
the cells quickly discover that increasing m reduces
the gestation time. This technique of optimization is
generally known as "unrolling the loop" and was ob-
served to occur spontaneously in tierra by Ray [6].
To complete a gestation, the program also has to run
through the remaining gw instructions, such that

([m' t g = g w + - - = g l + g c - (9)
m

and thus

c + f + tb/e
a = 1 + e c (1 / m - 1 / g) " (10)

For gc << g and small m (m < 3) we find a ,-, m, i.e.
unrolling the loop is an extremely beneficial operation.
For larger m the lengthening of the copy loop cuts
down this advantage. Likewise, skipping a large part of
gw would turn out to increase a substantially. However,
this is detrimental to learning as this is precisely the
region where the cells are supposed to develop the
code necessary to accomplish a task. For this reason,
the leanness factor f was introduced in (8) above.

The mechanism that drives fitness-improvement
in tierra is of course mutation. The soup is subject
to independent, Poisson-random mutation (bit-flip
events), such that the waiting times between muta-
tions are distributed exponentially 7. The mean time
between mutations (t,,) is related to the mutation rate
R (mutations per site per instruction executed) and
the soup size s via

(tm) = R - l / S , (1 1)

while the probability that two mutation events are
spaced by tm is

p(tm) = Rse -Rst" = 1 e_t./(tm) (12)
(tin)

7 This is an improvement over the univariate distribution in earlier
versions of tierra.

C. Adami / Physica D 80 (1995) 154-170 161

We are now in a position to obtain a relationship be-
tween the fitness of a genotype i, ai, and the mutation
rate.

The number of cells of genotype i in the soup at
time t + 1, ni(t -k- 1), is related to ni(t) via

(O[i--(O[) Rgi) ni(t) (13) ni (t+ 1) = 1 + t---~--

Eq. (13) simply reflects that new cells of genotype i
are born with a rate ai/ts (ts is the time it takes to
"sweep" through the soup once, i.e. to execute (ta)i
instructions for each cell in the soup, t~ = n(t~))
while the fitness a i is just the number of off-spring per
sweep) and they die with a rate (a)/ts due to births by
other genotypes, and with a rate Rgi due to mutations.
We can neglect here the rate of births of this genotype
due to mutations affecting the rest of the soup, since
this is infinitesimal in most situations 8 . For simplic-
ity, we also neglect in this equation the effect of muta-
tions due to copy-errors, which enters in the first term
of (13). For a copy-error rate Rc (one out of R c 1 in-
structions are not copied correctly) the term ai/ts in
(13) should be multiplied by (1 - Rcgi). In the present
paper we set Rc = 1 x 10 -3 such that it can safely
be ignored at medium and high background-mutation
rates.

Solving (13) we find for the evolution of the pop-
ulation

a/ts > Rg . (16)

In other words, there is a minimum fitness (i.e. min-
imum replication rate) required to survive under the
hostile circumstances of a high mutation rate. This
condition is similar to the error-threshold condition de-
rived by Eigen et al. in the context of quasi-species in
protein-space [10]. Assuming ta ~ (t,) (true during
equilibrium) gives us a more intuitive understanding
of the requirements for the survival of a population.
Since ts = n(ta) we find

l/tg > R(g)n = l / (tm) , (17)

where (t~) is the average time between mutations af-
fecting cells (as not all sites in the soup are actual
living cell-sites), t~ = (s /n(g)) tin.

The survival condition is thus a relationship between
the two fundamental (small) time scales in the prob-
lem, the gestation time tg and the average time be-
tween cell-mutations, (t~). Not surprisingly, we find
that we must have

tg < (t~,) , (18)

a relation that we expect to hold quite generally.
By the same token, Eq. (15) tells us how the mu-

tation rate drives the fitness improvement. As equilib-
rium always drives any genotype towards y ~ 0, we
find

ni(t) = ni(to)e rit , (14)

where ni (to) is some starting population (e.g. ni (to) =
1) and (suppressing the genotype-index)

. _ (.)
y - - - Rg. (15)

ts

Likewise, this allows us to derive a relation for the
maximum mutation rate that a population of fitness a
can sustain. The highest strain is put on a population
at high mutation rate and the average fitness of the
soup is driven close to zero, (a) ~ 0. Then the soup
can only survive if the best genotype has y _> 0 [see
Eq. (14)], or (assuming (tg) <~ tg)

8 This term however is important in a consistent treatment of the
statistical mechanics.

A a = _ a - - (a) =Rgts, (19)

i.e., the fitness gradient is proportional to the mutation
rate. Of course, this equality is violated during the
phase transitions that improve the fitness, i.e. during
learning.

In order to gain some insight into how the mutation
rate affects the learning rate, we need to perform ac-
tual experiments with tierra. We have seen that there is
a maximum rate above which the soup cannot survive,
while obviously there can be no learning at R = 0.
We shall in fact see in the next section that, although
a learning rate cannot unambiguously be linked to a
mutation rate, they are in effect loosely correlated un-
til near the transition to chaos, which effectively dis-
solves the population: a state where the error-threshold
condition (18) is violated and self-replication stops.

162

5. Characteristics of learning

In order to observe learning in tierra, we investi-
gate a simple problem: learning to add two integer
numbers. We choose this problem as a representative
of a class of simple problems 9 that can be mastered
by a tierran soup, while anticipating that more com-
plex problems can be learned by combining such mi-
croscopic tasks. In addition, since the tierra system is
a parallel one in principle (though not in practice),
learning several tasks at once should not require the
cumulative time of learning each of them.

As opposed to e.g. learning in Neural Networks, we
do not "teach" the system using a certain set of data
only to test it with a foreign one later on. Rather, we
embed it in an environment that is biased towards a
certain task, i.e., we present it with the information that
adding is advantageous. Also, we provide numbers
in the input buffer of each CPU that the tierran cells
may choose to manipulate, but nothing more. While
the cells eventually learn to add just these numbers,
these may be exchanged with any other numbers at
any given time. Thus, the cells truly learn the concept,
not just an instance.

Our main tool to bias evolution towards accomplish-
ing the chosen task is the distribution of bonuses in
the form of extra time [cf. Eq. (8)]. We reward three
accomplishments which are formulated in as general a
manner as possible so as not to bias towards any partic-
ular solution to the problem. The first step consists in
rewarding cells that develop the correct input/output
structure for the problem at hand. Clearly, adding re-
quires a minimum of two inputs and one output. As a
consequence, any cell that develops a minimum of two
g e t and a minimum of one p u t command receives a
certain bonus at the time of gestation of an off-spring
(Table 2 lists the specific bonuses used in the experi-
ments presented here). The next step is "clearing the
channels": we reward cells that manage to echo the
values in the input buffers into the output buffers. Fi-
nally, any cell that writes a value into the output buffer
that happens to be the sum of the two previously read

9 An attempt at solving the XOR problem using tierra is described
in Ref. [11].

C. Adami / Physica D 80 (1995) 154-170

Table 2
Distribution of bonus for evolved features. A negative bonus in-
dicates that this number of instructions is subtracted from the
default allocated time-slice if this feature is not evolved.

feature bonus

input/output -50
echo 40
add 100

values is rewarded with extra time at the time of ex-
ecuting the successful p u t command. Note that any
such bonus increases the fitness o f such a cell accord-
ing to (10) resulting in more off-spring for that cell
and a subsequent perpetuation of the discovery.

The rewards are of course available simultaneously
and can in principal be discovered in any order. This
reward-structure, "soft-coded" into the instruction
set 10, constitutes the "fitness-landscape" with val-
leys, mountains, and ridges, that the soup has to adapt
to in order to thrive.

In the simulations presented here the environment
is extremely simple, with only three distinct explicit
bonuses. However, they can be combined in different
ways, and two of them can (in the present simula-
tions) be repeated up to three times to gain additional
bonus. Also, there is only a limited number of ways
for a cell to reduce its gestation time (resulting in
higher fitness). The introduction of the leanness fac-
tor f on the other hand already provides for a means
to improve fitness in a quasi-continuous way (up to
f = 1). Furthermore, cells can exploit the structure of
the population itself to gain fitness, a feat most impres-
sively demonstrated by the parasites (sections of code
that cannot reproduce on their own, but rather use the
copy-loop of a host cell to produce off-spring). In all
these instances of fitness-improvement, information is
"found" by a cell (through mutation) and used to gain
an advantage. This information is then reflected in the
genome of the adapted cell.

to We distinguish between the "hard-coded" part of the instruction
set, which is the same ("universal") for any problem (and could
just as well be etched into silicon) and the "soft-coded" part,
which is specific to the problem at hand, and thus represents part
of the "physical" environment that the cells live in.

C. Adami / Physica D

Clearly, the path that evolution takes in order to
achieve a given task depends on the fitness landscape,
and thus on the bonus structure. In the simple example
presented here, the solution will undoubtedly reflect
the particular bias structure we chose. However, this
is not uncommon in natural systems, nor is it unnatu-
ral to reward tasks that are not directly associated with
the final task achieved (such as in this case "echo-
ing") 11. In natural systems, the population takes ad-
vantage of every bit of information available, and of
course adaptation is not active, but rather passive. It
is beyond the scope of this article to investigate the
dependence of the learning capabilities of the system
on the bonus structure. Surely the paucity of rewards
available guides evolution towards a certain (natural)
algorithm, but it is "passive guiding", not "leading". It
is uncertain whether our selection of the bonus struc-
ture precluded the discovery of a larger diversity of
algorithms. Considering the simplicity of the prob-
lem, however, we suspect that an optimal algorithm
was developed, even though its implementation var-
ied tremendously from run to run. In the appendix, we
present a random selection of algorithms that evolved
in these simulations. From these it appears that while
naturally there are similarities in the solutions, the va-
riety is impressive and some solutions genuinely in-
sane.

Even though the environment for the adding prob-
lem is extremely simple, the space of possible fitness
improvements appears to be extremely large. Since ev-
ery genotype has a specific fitness, we can think of the
space of possible fitnesses pertaining to the problem
as meta-stable states in a continuum of fitness states
while transitions between these states are driven by
mutations. Since the number of meta-stable states is
already very large for this simple example (and should
effectively be infinite in any realistic system) the tier-
ran system will exhibit features of a self-organized

I I A well-known paradigm is the evolution of the mammalian ear
out of jaw bones. Obviously the capability to chew is unrelated
to the capability to hear, but the reward to develop the former
contributed to the development of the latter. Similarly, the particular
bonus structure for the development of the ear clearly is reflected
in its design.

8(I (199.5) 154-170 163

critical (SOC) system 12. As a consequence, the time
between transitions (or "avalanches" in the language
of SOC systems) is distributed according to a power
law (as are the sizes of fitness-jumps) and thus an
"average time between transitions" (which would al-
low a determination of the learning rate) cannot be de-
fined. Moreover, this suggests that the learning curve
(Fig. 2) of such a system would have a fractal appear-
ance, i.e., would appear similar at all scales (Devil's
staircase).

As is well-known [12], a power-law distribution
of waiting-times is due to an absence of scales in the
problem. This is true to a certain extent in tierrz since
there is no time scale of the order of the time scale of
learning (or evolution), nor is there a scale setting the
size of the avalanches 13. There are however micro-
scopic time scales [those of Eq. (18)] and these lead
to a violation of power-law behaviour. It is precisely
the presence of these scales that leads to a correlation
between (tin) (the average time between mutations)
and the learning rate. The latter is still notoriously dif-
ficult to define. One approach would be to determine
the average time taken to learn the specified task at
a fixed mutation rate, yet the measured times scatter
heavily around the average due to the stochastic nature
of the learning process. In principal there is no guar-
antee that in any specific simulation the goal will be
attained (i.e., the learning time is in principle infinite)
while in practice the goal is (at large enough mutation
rates) almost always attained (see Table 3). On the
same token, it is impossible to predict the sequence of
meta-stable states that the soup will traverse to reach
the maximum fitness (pertaining to this problem). As
a consequence, the end product (i.e., the most suc-
cessful genotype) will very seldom look similar even
for two runs with exactly the same starting conditions
(except for the random seed) and thus exactly the
same "environment". This is strong evidence for con-
tingency in the learning process for auto-adaptive ge-

12 A full investigation of self-organized criticality in tierra is out-
side of the scope of this paper and will be reported elsewhere l 13].
13 This is only approximately true in the simulations presented

here, as the paucity of rewards (see Table 2) does set a scale at
large fitness-jumps.

164 C. Adami / Physica D 80 (1995) 154-170

1.0

0.8 " ~

0.6 ~:,,.'. " . , ~
A

0.4

O.2 ~ !

0.0 t I
200 400 600 800

Million Inst ruct ions

Fig. 2. Learning curve for a simulation with R = 1.33 x 10 -8
mutations per site per instruction executed, in a soup of size 131072
instructions (a mutation probability of Rs ,~ 1.75 x 10-3). The
circles show the fitness a of the "best-of-population" while the
lower curve shows the average fitness (a) of the population.

netic systems, and possibly for evolutionary processes
in general.

Fig. 2 shows the evolution of fitness (the learning
curve) in a typical run at an intermediate mutation
rate, specifically R = 1.33 x 10 -8 with a soup-size s =
131072, which translates into an average time between
mutations of (tin) = 1 / R s ~ 572 instructions. The
upper circles denote the fitness ce (defined in Section
4) o f the "best-of population" (the genotype with the
most living copies) every million instructions, which
translates roughly into every three generations. The
lower curve shows the average fitness of the popula-
tion (a). As expected, the fitness-of-the-best increases
via jumps indicating transitions between meta-stable
states. These are most likely first-order phase transi-
tions as is evident from the coexistent phases. (A de-
tailed investigation of the statistical mechanics of this
system will appear elsewhere).

The first transition in Fig. 2 (at around t = 80 mil-
lion executed instructions) is in fact due to the un-
rolling of the loop mentioned earlier, which literally
halves the gestation time of the cell. Consequently,
a jumps by roughly a factor 2. The transition at t =
100M involves a minor rearrangement of code, while
at t = 185M the copy-loop is unrolled to m = 3.
The input/output structure (first bonus in Table 2)
is achieved around t = 290M but appears as only a
small increase in fitness. This is due to the bonus be-

ing distributed over several sweeps, which entails that
the average gain per gestation-period is rather small.
Echoing is learned at 340M (this time is defined as
the time when a cell that discovered echoing domi-
nates the population for the first time). The transition
at t = 409M simply makes echoing more efficient, and
prepares the ground for the transition at t = 453M,
when the best-of-population simultaneously triggers
the bonus for adding a n d echoing. This is not a rare
scenario, as cells often first develop the capacity to
echo twice in a gestation period thus earning a bonus
of 80, only to transform one of the echoing sections
of code into an adding one. The later transitions sim-
ply accumulate echo's and add's (mainly by splicing
together sections of code containing the pertinent se-
quence) so as to trigger the maximum bonus.

The complexity of the cell dominating the popula-
tion at around t = 800M is intriguing. Not only has
it evolved the capacity to successfully manipulate the
numbers in the input buffers by adding them several
times per gestation period, but it also optimized its re-
production loop to gestate off-spring three times faster
than the ancestor 14. While the cells will always at-
tempt to do the latter, we could have chosen to re-
ward an entirely different task, and consequently the
final genotype would reflect that in its genome in-
stead. In fact, after the cells learn to write the content
of the input buffers into the output buffers, an inspec-
tion of the output buffers of all coexisting cells at that
moment shows that all kinds of operations are per-
formed on these numbers. The majority of the cells re-
turn the input-numbers untouched so as to trigger the
"echoing" reward, some however subtract them, add
all three, subtract the number 4, and so forth. The re-
ward structure simply weeds out those cells with mu-
tations that allow them to add two numbers out of the
zoo of creatures that perform a litany of tasks, entirely
accidentally. In this sense, the actual nature o f the task
is irrelevant for the general characteristics of learning
in the tierra system.

14 With our current version of tierra, 800M instructions are on
average reached after 5 hours of CPU time on an HP 9000/750
workstation.

C. Adami / Physica D 80 (1995) 154-170 165

. T]

4

t',w-" ~ ~ 7. - ! - _ -2 ~ : _ : ~ . . . ~ ".3[t "7 x

> 40c- ~8(y,j 1200 1600 , , , J }
M i ! l i c r l I r / s (r u c t i o n s

Fig. 3. Learning curve for a simulation with R = 0.67 x 10 -8, same
soup size as in Fig. 2. This run shows a long plateau at a ~ 0.2
indicating trapping of the population in a meta-stable state. Note
the difference in time and fitness scale as opposed to Fig. 1.

T
0

©

o~

E

0~

4.0

3.5

5.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
0.0

I

0.5

I q

1.0 1.5 2.0 2.5 3.0
Mutat ion Rote EIO ~]

Fig. 4. Average learning rate as a statistical average of inverse
learning times versus mutation rate. The error bars are 1 o- standard
deviation.

We have performed this type of experiment ten
times for each of eight different mutation rates, at a
constant soup size. The mutation rates were chosen to
range from very low, where adding is achieved only
very late (if at all), to very high rates where the popu-
lation effectively "melts" (ceases to reproduce). This
happens at around thepoint where tg > (tin) as derived
earlier, i.e., when on average a cell is hit by a mutation
before it can generate its first off-spring. Clearly then,
a cell cannot on average propagate its genome, and the
information contained in it. For each mutation rate, the
learning time fluctuates strongly due to the statistical
nature o f the learning process and to the presence of
meta-stable states in the system that can trap the pop-
ulation. The time it takes for the population to escape
such a trap then determines the learning time. In most
such cases we were unable to wait long enough to see
this happen. Fig. 3 shows a learning curve for half
the mutation rate in Fig. 2, where the population was
stuck in a meta-stable level of fitness a ~ 0.2, before
breaking out of it at around t = 1900M and learning to
add almost instantly after. The time it takes to escape
such a state should be considerably reduced by choos-
ing a larger soup size, which would allow for a more
heterogeneous population exploring different regions
of the landscape at the same time. In tierra, the soup
size (reserved memory space for cells) cannot easily
be enlarged past a certain size, which entails that the
population can equilibrate into a homogeneous phase

rather easily. Consequently, it is important to investi-
gate learning characteristics for different soup sizes.

Table 3 shows the result for all 80 runs, used in
Fig. 4, at soup size 131072 instructions 15. The number
of cells in such a soup is variable, but is of the order
of magnitude of 800 cells of length 80.

Each column in Table 3 contains the learning times
(defined as the time a genotype that successfully adds
first dominates the population, i.e., has the most liv-
ing copies in the soup), or in case adding was not
achieved, the time the simulation was interrupted, pre-
ceded by a "greater than" symbol. Each run was taken
to a minimum of 2 billion instructions executed. An
entry "e.c." implies that the run died soon after inoc-
ulation due to the error-catastrophe.

Averaging the inverse learning times (learning
rates) from each column of Table 3 yields Fig. 416
As expected, the scattering of the data, implying
large standard deviations, does not allow for definite
conclusions on the behaviour of the learning rate.
However, we can define a "learning fraction" by de-
termining the fraction f x of runs at a given mutation
rate that achieved learning at a time t < tc = X, where
tc is a cut-off that reflects the time-scale of learning
in this environment for this task. As an example,
the learning fraction with cut-off 1000 (million) at

15 For technical masons, the soup size has to be a power of 2.
16 Runs that did not achieve learning were given an infinite learning

time, i.e., a learning rate of zero.

166 C. Adami / Physica D 80 (1995) 154-170

Table 3
Learning times (in million instructions executed) for mutation rates from 0.5 x 10 -8 to 2.5 × 10 -8 for soup size s = 131072 instructions.
An entry preceded by a "greater than" sign signifies that the task was not learned before that time and the run was interrupted. An entry
"e.c" means that the population ceased to reproduce due to the "error catastrophe" as mentioned above.

R (10 -8) 0.5 0.667 1.0 1.333 1.667 2.0 2.222 2.5

#1 1586 843 242 453 1052 836 e.c. e.c.
#2 2802 1765 196 1601 606 1414 e.c. 397
#3 1220 696 995 263 >2002 240 293 e.c.
#4 1413 >3144 1201 >2026 586 596 >2022 e.c.
#5 1136 >2023 1041 407 406 507 343 e.c.
#6 >2025 1927 >2019 357 380 270 809 e.c.
#7 >2090 1922 330 520 625 327 225 e.c.
#8 901 1273 442 271 624 587 e.c. e.c.
#9 1353 1374 >2251 >2094 >2117 e.c. e.c. e.c.

#10 2252 1233 581 >2087 406 222 803 e.c.

1.0
0.9
0.8
0.7
0.6
0 5
0.4
0.3
0.2
0.1

0 . 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Mutation Rote [10 -8]

1.0 i i i J i
0.9
0.8
0.7 ~ j
0.6
0.5
0 . 4

0 . 3

0 . 2

0.1

0.0
0.0 0.5 1,0 1.5 2.0 2.5

Mutation Rote [10 -e]

1.0
0.9
0.8
0,7
0.6
0.5
0.4
0.3

r i ~ i ,

0.2
0,1

0 . 0 i J t i J
0 . 0 0.5 1.0 1.5 2.0 2.5 3.0

Mutotion Rate [10 -~]

1.0 i i i i q

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0 I I I i I

0.0 0.5 1.0 1.5 2.0 2.5
Mutotion Rote [10 -~]

3 . 0

3 . 0

Fig. 5. Learning fractions f x as defined in the text versus mutation
rate for various cutoffs. (a) Cutoff X = 500 million instructions,
(b) X = 700, (c) X = 1000, and (d) X = 2000.

mutation rate R = 1.0 × 10 -8 is f]0o0(1.0) = 0.6
i.e., six out of ten runs resulted in a population that
successfully added before 1000 million instructions
were executed. Tl'/is procedure allows us to obtain the
curves presented in Fig. 5.

Clearly, choosing the cut-off scale too low would
not reflect the learning characteristics of the soup, and
neither would a high choice. In fact, this procedure
implicitly determines simultaneously the window in

mutation rate when learning is most effective, and an
estimate for the time-scale of learning for this partic-
ular system and task.

Choosing the cut-off time scale (in units of million
instructions executed) to be 700 < t¢ < 1000, the
behaviour of the learning fraction in Fig. 5 suggests
that learning becomes more and more effective as the
mutation rate is increased up to a point where the
soup dissolves as a result of the error catastrophe. The
time-scale for learning determined here, however, is
certainly not universal but depends on soup-size, initial
creature, and bonus structure. These dependencies will
be investigated in the near future.

6. Conclusions

The evolutionary learning displayed by the artifi-
cial system presented here has a number of fascinat-
ing characteristics that it may share with the natural
genetic system that gave rise to bacterial DNA. As a
learning system for practical applications tierra falls
short in many respects, as must any auto-adaptive sys-
tem at this stage. More complicated tasks than the one
analyzed here will require a more elaborate informa-
tion environment. As in animal husbandry, the breed-
ing of a specific trait may require a certain amount of
experimentation with the reward structure, and suc-
cess cannot be guaranteed. Clearly, those tasks that
are easily transcribed into the instruction set used will

C. Adami / Physica D 80 (1995) 154-170 167

develop most easily. We hope to in the future attack
problems that require a far more complex informa-
tion landscape. We have little doubt that this complex-
ity will ultimately be reflected in the genome of the
adapted population. On the other hand, we fully ex-
pect limitations imposed by the instruction set, and the
linear execution of code as opposed to the typically
parallel approach of nature.

We have tried in this paper to extract universal
characteristics of the auto-adaptive learning process,
characteristics that should be reproducible by any
software that incorporates the basic ingredients for
auto-adaptive systems described earlier. Naturally,
besides the universal characteristics there are features
that must depend on the specifics of the implemen-
tation; it is the investigators task to isolate them.
Particularly, the size and dimensionality of the tierran
soup, i.e., the physical memory that the cells inhabit,
has an influence on the global, and critical, behaviour
of the population. In its present configuration, the
tierran soup is multi-dimensional (even though in
physical memory each cell has only two neighbours)
because each cell can potentially interact with every
other one via the reaper queue, making the system
non-local. This may be the most important limitation
of tierra as it affects growth, and information trans-
fer through the population, which in turn determines
equilibration times, diffusion coefficients, and self-
organized behaviour. These aspects will be addressed
for a manifestly two-dimensional genetic system with
local interactions in the near future [7].

Acknowledgement

I would like to thank Steve Koonin for the initial
suggestion that led to this work, as well as for contin-
uing support and encouragement. This work was sup-
ported in part by NSF grant # PHY91-15574 and by
a Caltech Divisional fellowship.

Appendix A

In this appendix we present a few selected genomes
of evolved successful algorithms, and display the sec-
tion of the genome that is related to the "phenotype"
of interest: adding. Each such genome is identified by
the code assigned to it by the genebanking system,
which consists of a four digit number indicating the
size of the genome, and a three letter code which is
unique for every run, but not across runs. We give the
mnemonic code of the instruction as well as the in-
struction number. We only display those instructions
that are directly responsible for the input, output, and
manipulation of numbers leading to the successful ac-
complishment of the task. Below is a description of
the commands used by the algorithms. Note that the
commands pu t and imp differ from Ray's commands
only in the selection of registers.
ge t reads a number in the input buffer and transfers

it into the DX register.
pu t writes the contents of the CX register into output

buffer and clears the CX register.
add adds contents of DX register to contents of CX

register and writes result into CX register (CX +
DX ---* CX).

sub CX - DX --~ CX.
inc increases CX by one,
dec decreases CX by one.
pushxX pushes contents of xX register onto stack.
popxX pops top of stack into xX register.

In Table A. l we display the skeleton genome of
a number of algorithms that we extracted from the
genebank ("fossil record"). The provenance of the cell
is denoted by the inverse mutation rate and run number
(as defined in Table 3), with the time of origin of the
genotype appended (in units of millions of executed
instructions) in parentheses. Thus, 0118aay [1,33/1
(451)] denotes cell 0118aay of run number 1 of the
batch run at mutation rate R -1 = 1.33 x 10 -8, born
at 451M. All cells displayed were the first "adders" to
dominate the population in their respective runs, thus
those that triggered a major phase transition. Of the
54 "first-adders", the following three were chosen at
random.

168

Table A. 1

C. Adarni / Physica D 80 (1995) 154-170

Oll8aay [1.33/1(451)] O127ara [0.5/2(2799)1 O070chw [2.0/1(832)]

003 add 002 inc 001 pushdx
004 ge t 004 dec 005 get
009 add 016 pushdx 007 popcx
013 dec 017 popcx 008 add
015 inc 018 get 009 put
016 put 022 add 047 get
024 ge t 025 sub 048 pushdx
026 pushdx 027 add 049 popdx
033 popcx 030 put
034 put 101 get
075 ge t

Cell 0118aay is the first adding creature of the run
displayed in Fig. 2, responsible for the phase transi-
tion at t = 453M. The first command 3 add adds DX
to CX, which in case CX is empty is an effective way
of transferring the contents of DX into CX. Since this
command is at the beginning of the cell, this is usually
the case. However, note that 16 pu t results in correct
addition only when the program has run once, loading
the DX register with 75 got . Otherwise (first run of
the program) this sequence results in echoing. Note
also that even though the sequence (13,15) is super-
fluous, it is most likely going to survive because single
mutations will only destroy one of the instructions, re-
suiting in incorrect addition. The following sequence
(24,26,33,34) is a nearly perfect echoing sequence.
Without 75 get , the algorithm displayed echoes twice
per gestation period to record a bonus of 80. We sus-
pect that 0118aay developed from such a cell sim-
ply by turning one of the neutral instructions just be-
fore the copy-loop into got . Unfortunately the "fossil
record" is not extensive enough to verify this.

Cell 0127ara is a creature that developed much
"later", from a run with lower mutation rate. Inter-
estingly, a strategy similar to the one employed by
0118aay developed, where in the first run through the
program only "echoing" is achieved, until the DX reg-
ister is loaded with 101 get . The pair (2,4) again
is superfluous, after which the contents of DX are
shifted into CX by the pair (16,17). After a surpris-
ing a d d / s u b / a d d the result is written into the output
with 030, at which time the bonus is earned.

Cell 0070chw was formed in a run with high mu-
tation rate. We leave it to the reader to discover its
strategy.

Finally, we would like to display the skeleton
genome of 0071bno[2.0/2(1754)]. Since its algo-
rithm is more complicated than the ones encountered
so far, we have to describe more commands.
c a l l jump to the complementary pattern of the tem-

plate immediately following the command and push
the address of the instruction immediately follow-
ing the template (not the complementary template)
onto the stack. In case of absence of template, push
address of instruction following command on stack,
but do not jump.

imp jump to the complementary template of the pat-
tern just following the command, or, in the absence
thereof, jump to the address stored in the BX reg-
ister.
The commands c a l l and jrap are used by this cell

to create a devious adding-loop which is run through
five times, performing the task each time. In Table A.2
we display the complete segment of genome from in-
struction 43 to 66.

Instructions 43-55 constitute the copy-loop. Earlier
commands have placed the address of the mother in
the BX register, the address of the daughter in AX,
and the length of the mother in CX. movi i writes the
instruction at address BX + CX to location AX + CX.
Thus, the mother is copied into the daughter starting
with the last instruction of the mother, moving to the
beginning of the mother with the sequence dec mov±2

Table A.2

0071bno [2.0/2(1754)]

43 nopl 56 add
44 nop0 57 pushbx
45 dec 58 d i v i d e
46 movii 59 ge t
47 ifz 60 add
48 imp 61 nopl
49 nopl 62 popax
50 ge t 63 popbx
51 dec 64 popbx
52 movii 65 put
53 c a l l 66 imp
54 hop0
55 nopl

i f z. The latter of the commands checks whether CX is
zero and executes the next command if it is, but skips
it otherwise. This checks whether copying is complete
and exits the loop in that case. Command 50 ge t serves
no apparent purpose, but since it continually reads
the input into DX has either once served a purpose,
or can be used fruitfully in the future. Instructions
51, 52 accomplish the copying of two instructions per
iteration of the copy-loop, the result of an "unrolling"
operation as described in the text.

The intriguing command is 53 c a l l . Indeed, this
is used to return to the top of the copy-loop (in-
struction 43), but at the same time the address of the
command following the template, 56 add, is pushed
on the stack. Since this is executed 36 times during
the copy-procedure, the stack (of size 10) is filled
with the address of this instruction. Once the mother
is fully copied into the daughter, 48 imp is executed
which jumps to instruction 55, the instruction follow-
ing the template nop0, which is the complimentary
template to nopl which followed the imp command
(incomplete templates are recognised). Then, the con-
tents of the DX register are transferred to CX via
56 add, as the CX register was empty since all the
copying was finished. Following is 57 pushbx which
pushes the mother's beginning address onto the stack
(this will become important later on), while command
58 divide releases the daughter and terminates the
mother's write access to the daughter's space. Instruc-
tions 59 ge t and 60 add place the sum of the two most

C. Adami / Physica D 80 (1995) 154-170 169

recently read values into CX. Important is the follow-
ing 64 popbx command, since it places the address of
instruction 56 into BX (by popping it off the top of
the stack). After 65 put , which triggers the adding-
bonus, the subsequent 66 jrap command, since it is
not followed by a template, jumps to the instruction
whose location is in the BX register, i.e. 56 add! Since
DX still contains the last read input value, it is trans-
ferred to CX via 56 add since again CX is empty (by
virtue of the pu t command which clears CX). After
ge t add, the stack is popped three times again, which
together with 57 pushbx (which now also pushes the
address of 56 add on the stack, unlike the first time
it was invoked) makes a total of two pops per run
through this unique adding-loop. As the stack is only
of size 10, this loop can be run through five times un-
til the stack cycles (the bottom of the stack becomes
the top of the stack) and the top of the stack is the
mother's beginning address, which was placed on the
stack by the first execution of 57 pushbx. Thus, af-
ter 5 iterations of the adding-loop, 64 popbx places
the mother's beginning address in BX, such that the
following 66 imp moves the instruction pointer to the
beginning of the cell, to restart the whole process.

The evolution of such an elaborate scheme, while
manifestly "insane", does encourage the belief that
more complicated tasks can be bred using the auto-
adaptive scheme.

References

[1] M. Anthony and N. Biggs, Computational Learning Theory
(Cambridge University Press, Cambridge, 1992).

12] D.E. Rumelhart, J.L. McClelland and the PDP Research
Group, Parallel Distributed Processing, Vol. 1 (MIT Press,
1986).

[3l J. Holland, Adaptation in Natural and Artificial Systems,
second Ed. (MIT Press, 1992).

[41 D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning (Addison-Wesley, 1989).

15] S.A. Kaufman, The Origins of Order (Oxford Univ. Press,
1993).

[6l T.S. Ray, in: Artificial Life lh A Proceedings Volume in
the Santa Fe Institute in the Sciences of Complexity, Vol.
10, C.G. Langton, J.D. Farmer, S. Rasmussen and C. Taylor,
eds. (Addison-Wesley, Reading, MA, 1992) p. 371; Artif.
Life 1 (1994) 195; Physica D 75 (1994) 239-263.

[7] C. Adami, C.T. Brown and C. Ofria, in preparation.

170 C. Adami / Physica D 80 (1995) 154-170

[8] Documentation of the tierra software (unpublished).
[9] T.S. Ray, private communication.

[10] M. Eigen, J. McCaskill and P. Schuster, Adv. in Chem.
Phys. 75 (1989) 149.

[11] W.A. Tackett and J.-L. Gaudiot, in: Proc. of Int'l Conf. on
Neural Networks (Beijing, 1992), in press.

[12] P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59
(1987) 381; Phys. Rev. A 38 (1988) 364.

[13] C. Adami, Self-organized criticality in living systems, KRL
preprint MAP-167, Caltech (December 1993).

[14] C.G. Langton, J.D. Farmer, S. Rasmussen and C. Taylor,
eds., Artificial Life 11: A Proceedings Volume in the Santa Fe
Institute in the Sciences of Complexity, Vol. 10 (Addison-
Wesley, Reading, MA, 1992).

