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Using the QCD sum rules, we investigate the effects of temperature on the nucleon below the phase
transition. The mass and width of the nucleon are analyzed using various parametrizations of the nu-
cleon continuum. Overall, the nucleon mass is found to depend substantially on temperature variations
in the quark condensate, irrespective of the continuum parametrization. Our results are compared with
the ones discussed in the context of the chiral approach.
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I. INTRODUCTION

Considerable attention has been paid recently to the
properties of nuclear matter under extreme conditions.
The genera1 consensus seems to be that nuclear matter
undergoes a phase transition from a strongly confined
phase of hadrons at low temperature to a weakly interact-
ing phase of quarks and gluons at high temperature. The
evidence for such behavior comes mainly from lattice
simulations [1], and more recently from chiral perturba-
tion theory in the low-temperature approximation [2—4].
The high-temperature phase is believed to be nonpertur-
bative because of persisting infrared problems.
In a recent paper [5] we have critically analyzed the

use of finite-temperature QCD sum rules. In particular,
we have found that the p-meson mass and width varied
slowly at low temperature. A rapid variation in the p-
meson parameters was noted near T„following primarily
large variations in the quark condensate. At these tem-
peratures, however, the QCD sum-rule procedure was
shown to break down. This notwithstanding, the analysis
proved to be an interesting tool for investigating low-
temperature effects on real-time correlation functions in
the timelike regime. Needless to say, these correlation
functions are not accessible to present-day Euclidean lat-
tice formulations.
In this paper we pursue our investigation of the low-

temperature effects on the nucleon parameters, following
the analysis outlined in [5]. This is particularly interest-
ing in light of recent and future relativistic heavy-ion ex-
periments that attempt to create conditions of high densi-
ty and temperature in the laboratory. Since heavy ions
are predominantly composed of nucleons, we expect that
possible structural changes in the nucleon properties fol-
lowing local thermalization or compression should be
amenable to a QCD description. We note that variations
in the hadronic masses might shed some light upon the
nature of a possible QCD phase transition, and be of
some relevance for nucleosynthesis scenarios in the early
Universe [6].
In Sec. II we briefly review the QCD sum-rule tech-

nique at zero temperature in the nucleon channel. This
construction is extended to finite temperature in Sec. III,
where we present results for the behavior of the nucleon
mass in the zero-width approximation. However, at low

temperature we expect the nucleon to acquire a
temperature-dependent width from N ~md and mN —+5
processes in the heat bath. These effects are discussed in
Sec. IV and incorporated in the QCD sum-rule analysis.
Our results are compared to the recent results discussed
by Leutwyler and Smilga [4] using finite-temperature
chiral perturbation analysis and also a virial expansion.
Our conclusions are summarized in Sec. V.

II. THE NUCLEON IN THE VACUUM

II(q )=/II, (q )+II2(q ) . (2.2)

For large external momenta (short distances) we can use
the operator-product expansion (OPE) to separate pertur-
bative short-distance fluctuations in the form of Wilson
coefficients, from nonperturbative long-distance fluctua-
tions in the form of matrix elements. If p is the typical
renormalization scale then

II,(q ) =C,(q, p )1

+C, ,z(q, p )(qq(O, p )) +
II~(q )=C (q, p )(qq(O, p ))+

(2.3)

(2.4)

Here the C's stand for the pertinent Wilson coefficients
evaluated at fixed Euclidean momentum q at the renor-
malization point p. The matrix elements depend in prin-
ciple on the renormalization point p. In the QCD sum-
rule approach, the expansion is restricted to the lowest-
dimensional operators for an optimal choice of

The QCD sum-rule approach [7] to mesons has been
extended to nucleons by Ioffe [8]. We begin our discus-
sion by summarizing the construction in the vacuum. To
probe the nucleon channel in the context of the QCD
sum rules, we use the Ioffe current:

g~(x) =e' '[u'(x)Cy„u (x)][ysy„d'(x)] .
Other choices are also possible. We will not pursue them
in this work. In the vacuum the nucleon-nucleon correla-
tion function in momentum space reads

II(q) =i f d x e'~ "(T[riiv(x)riiv(O)]) . (2.1)

Covariance implies two invariant structure functions
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The imaginary part in (2.7) is not calculable in perturba-
tion theory. In the zero-width approximation, it can be
saturated by the nucleon pole term

ImII(q ) =A,~(g+m~)n5(q m—~), (2.8)

where A,N characterizes the overlap between the nucleon
state and the vacuum

(b)

(0lriN(x) l&(p) )=&zu (p)e
Inserting (2.5), (2.6), and (2.8} into (2.7} and taking the
Borel transform yields two independent sum rules:

11 (Q2) M + 2 (qq)' ~2 1
4 3 M2 M2

(2.9)

(c)
FIG. 1. (a) Leading perturbative contribution in the OPE:

coefBcient 8&, (b) contribution of the quark condensate 8yq (c)
contribution of the square condensate 8

II&(Q )=— ln +—(qq)
4 2

64m p 3 Q
(2.5)

p-4—5A. This will be understood throughout.
For simplicity, we will ignore altogether the effects of

gluon condensates such as ( G ) and ( G ) as their
effects are known to be small in the nucleon channel [9].
We will also ignore the effects of the mixed operator
(q(A, '/2)G„'„o""q) as it enters at the same level as the
single quark condensate, and its value is usually tied to
the latter. In the conventional approach, the inclusion of
mixed condensates affects the nucleon mass by about
10% [8]. We expect these effects to be even weaker at
finite temperature because of the melting of the vacuum
condensates.
The Wilson coeScients can be calculated in perturba-

tion theory at high Euclidean momenta —q =Q ~ oe as
shown in Fig. 1. For the Ioffe current

2aM
m M6+4~2 '

3

(2.11}

where a=—(2n. }2(qq). For a Borel mass M-m~, it
follows that mz-(2a)' —1 GeV for a condensate
(qq ) -(—225 MeV) .
While the above arguments are schematic they capture

the essence of the QCD sum-rule approach to the nucleon
in the vacuum. For a more complete and refined
analysis, we refer the interested reader to the original
literature [8].

IH. THE NUCLEON AT FINITE TEMPERATURE

The extension of the QCD sum-rule approach to finite
temperature has first been discussed by Bochkarev and
Shaposhnikov [10] and was recently reinvestigated by us
with special emphasis on the p-meson channel [5]. Here
we extend the discussion to the nucleon channel. For a
complete discussion, the interested reader is referred to
Ref. [5].
In the real-time approach to finite-temperature field

theory the fermion propagator acquires a temperature-
dependent piece

where EM is short for the Borel transform (see Appendix
B and Ref. [7] for more details), and M the Borel mass.
The nucleon mass follows from taking the ratio of (2.9)
and (2.10}:

2 2
II2(Q )=— (qq)ln

4m. p
(2.6)

iS(p) = —2m(gf+m )5(p —m )n~(p),
P—m

(3.1)

where nz(p) is the Fermi distribution function (P= I /T ):
Analyticity implies that each structure function satisfies
the (unsubtracted '} sum rule 1

Plpol
(3.2)

ImII& 2(s)11„(Q')=—f" ', as.
o s+Q2 (2.7)

'The subtractions drop after Borel transformations [7] and will
be ignored.

This alteration of the zero-temperature Feynman rules
will suSce for our purposes, since there are no internal
vertices in the graphs of Fig. l. (In graphs with internal
vertices, care must be taken to include so-called "ghost
vertices, " to cancel the occurrence of pinch singularities,
see, e.g., [11].)
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In the imaginary-time approach, temperature is intro-
duced by restricting integrations along the Euclidean
time axis to a finite interval of extent iP=i /T, while in-
tegration over energies is replaced by finite sums over the
discrete Matsubara frequencies. Both approaches lead
ultimately to the same results but differ in calculational
complexity. In order to have a check on the results it is
often useful to use both methods, as we have done in the
subsequent calculations.
To set up the sum rules for the nucleons at finite tem-

perature, we need both the temperature dependence of
the Wilson coefficients and that of the condensates. The
temperature dependence of the condensates (the quark
condensate in this case) is entirely nonperturbative and
cannot be estimated perturbatively. The origin of this
temperature dependence lies in the implicit temperature
dependence of the nonperturbative ground state through

the quark-gluon coupling constant g(A, T) via the renor-
malization group (A is the renormalization scale). The
temperature dependence of the Wilson coefficients how-
ever is perturbative, and can be obtained via the standard
methods mentioned above.
Starting from the nucleon correlator at finite tempera-

ture in the Matsubara approach,

ll(q )=i f dxo f d x e'~"(O~T, [qz(x)g~(0)]~0),p

(3.3)

or from the retarded one in the Gibbs approach, we can
extract the lowest-order contributions to the OPE as
shown in Fig. 1. The evaluation of the contribution of
Fig. 1(a) is straightforward but tedious. For a nucleon at
rest in the heat bath (q~O) we have (co+ =co+ro')

( q2)2 q2

64~ p
7 4T ln
12

2
qp

p
5 00 4co

co dc@ n~(ro)ln 1—
qp

3qp 2
co+qp /2

co de nF(co)ln
p —co+qp /2

+ q drodro'n~(ro)nF(ro')
vr

2
qpX co +co' + ln
4

1—4' /qp +qpco ln
1—4'+ /q p

co +qp/2 ++qp/2—qpco+ln—co +qp/2 —co++qp/2
+qp/2 co+qp/2+2coqpln, +2''qpln—m'+ qp /2 —co+qp /2

—coco'in[(1 —4'+/qo)(1 —4' /qo)]+2roco'in[(1 —4' /qo)(1 —4'' /qo)] (3.4)

The first term in (3.4) corresponds to the vacuum con-
tribution, the second, third, and fourth terms arise by
choosing one of the three quarks from the heat bath
(hence on shell), a situation reminiscent of Fig. 1(b).
These effects arise from perturbative thermal contribu-
tions to the quark condensate as shown in Appendix A.
They appear in the Wilson coefficients after reordering
around the blackbody spectrum. This point was
thoroughly discussed by Hansson and one of us in the
context of a free massless scalar theory [12]. The fifth
term in (3.4) is obtained by taking two out of the three
quarks from the heat bath.

2For a review of these techniques, see Ref. [11].
The ultraviolet divergence in the second term of (3.4) has been

removed by a zero-temperature renormalization of the pertinent
current. A similar remark applies to the lowest-order perturba-
tive temperature contribution to Fig. 1(b) (see Appendix A).

The contribution of Fig. 1(b) is given by

p~[b]= qq( )
4~2

2
qp

p
4( qq ) ~ 3 nF(co)+ 2

CO de
co —qp /4

(3.5)

The contribution of Fig. 1(c) is temperature independent:

3 qp
(3.6)

Before proceeding further, we would like to make some
important remarks. The use of the OPE in the context of
the sum-rule approach is based on the premise that the
power corrections from higher-dimensional operators are
small compared to the perturbative contribution. In this
respect higher-dimensional operators are ignored at the
renormalization point p. At finite temperature T stands
for a new scale and power corrections of the form T /Q,
T /Q, . . . (with Q =—qo) do arise. They arise from
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0.8—
0.6—
0.4—

I I I
I

I I tion to the correlator, Fig. 1(a). The explicit form of the
function f(T /M ) is given in Appendix B and plotted in
Fig. 2. For II2, and again after Borel transformation, the
QCD sum rule reads

4 64 —460 /MaM 1— co dion (co}e
M

0.2—
00 I

0.00
I

0.05 0.10 0.15

=(2n. ) A,zmze " . (3.8)

Taking the ratio of (3.7) and (3.8) we obtain
T/M

FIG. 2. The function f( T2/M2) that multiplies the perturba-
tive temperature contribution. Solid line: summing all orders,
dashed line: expanding to order T /M .

2@M 1—64 ro de fg (~)e
T4 2 2 2

M4 F

M +—'a /M + "n T f—(T /M )3 3

(3.9)
the blackbody part of the higher-dimensional operators
as noted earlier, and have been resummed to all orders in
the computation of the Wilson coefficients above. This
resummation is a priori inconsistent since higher-
dimensional operators have been ignored. We think how-
ever, that the effects of temperature for the perturbative
(blackbody) contribution, and the nonperturbative (soft)
contribution, work in opposite directions: they enhance
the former and reduce the latter. What is clear from our
present estimates is that the blackbody effects are only
small at very low temperatures. To stress this point and
provide a fair discussion, we have in addition to using the
full Wilson coefficients, expanded these coefficients to or-
der T /Q (the same order in 1/Q that has been kept in
the OPE at zero temperature) neglecting the rest. Figure
2 compares the expanded and the full dependence of the
function f(T /M ) which appears in the sum rule below
(and in Appendix B}. It is apparent from this figure that
the temperature expansion is reliable for low tempera-
tures (about 50 MeV). At higher temperatures all our re-
sults have to be taken with a grain of salt, assuming that
the nonperturbative zero- and finite-temperature content
of higher-order condensates is small. The latter is usually
assumed in the conventional sum-rule analysis.
Having said this we now proceed to write down the

QCD sum rules in the nucleon channel at finite tempera-
ture. They follow from the dispersion relations for each
structure function, in the same manner as Eq. (2.7). Note
however that these relations now hold in the limit Q~O
(source at rest) because of the special frame provided by
the heat bath. This limit will be understood throughout.
For II, we obtain, after Borel transformation,

1.0
:(0)0.8—

I I I I I I I I I I

0.6—
0.4—
0.2—
0.0
0.00

I I I I I

0.05
T

I I I I I I I

0.10
[GeV]

0.15

:(b)
0.8—

I I I I I I I I I

0.6—
0.4—

Note that neither the possibility of a finite-temperature
width (zero-width approximation) nor threshold effects
are included in the derivation of (3.9). These two issues
will be discussed in the next section.
Equation (3.9) gives an estimate of the nucleon mass as

a function of the Borel parameter M and the temperature.
The QCD sum-rule prediction is obtained by finding the
value of M for which Bm~(M)/8M =0. This leads to the
results in Figs. 3(a} and 3(b) (solid lines) for the following
two cases.
(i} The quark condensate does not vary between T=O

and T=T, . This is the extreme case that might be real-

24 &2+ 56 4T4M2f T3' 3" M
—m /M=2(22r)4g2 e

(3.7}
The third term on the left-hand side (LHS) summarizes
the effects of temperature on the perturbative contribu-

0.2—
0.0
0.00 0.05 0.10

T [GeV]
0.15

4Formulas that are needed to perform this transformation are
given in Appendix C.

FIG. 3. (a) Nucleon mass vs temperature for a constant
quark condensate. Solid line: without continuum corrections,
dashed line: including the m.A continuum. (b) Same as (a) but
with a condensate dropping as Ql —(T/T, )2, with T, =170
MeV.
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ized in a first-order phase transition. The result is the
solid curve in Fig. 3(a).
(ii) The quark condensate varies with temperature as

&qe&T=&ee&o 1— T ''"
Tc

(3.10)

where we arbitrarily chose T, =170 MeV. This case
seems likely in the event the phase transition turns out to
be second order. The result is the solid line in Fig. 3(b).
As is apparent from these figures, because of the soft

temperature dependence of the nucleon mass in the case
the condensate is kept constant, the behavior of m~ as a
function of T is mainly dictated by the behavior of the
quark condensate. This point was already noted as zero
temperature.

IV. THRESHOLD EFFECTS AND BROADENING
AT FINITE TEMPERATURE

Our analysis so far has ignored the effects of a continu-
um in the nucleon channel as well as the possibility of a.
thermal broadening of the nucleon state. At zero temper-
ature, the short-distance part of the correlator is dom
inated by the perturbative three-quark diagram Fig. 1(a),
the imaginary part of which gives the nucleon continuum
as conventionally used [8]. However, it seems unreason-
able to expect the three-quark continuum to be important
at intermediate momentum transfers of -1.5 GeV. A
look at m.N dynamics in this region shows that the nu-
cleon correlator is dominated by effects of the 6 reso-
nance, dwarfing other processes, such as elastic m.N
scattering. As we expect the heat bath below T, to con-
sist predominantly of pions, we anticipate the prime
mechanism for nucleon loss to be the processes depicted
in Fig. 4, namely absorption of a pion from the heat bath
[Fig. 4(a}] nN~b„and the real dissociation process
N~n. b, [Fig. 4(b)]. While the latter process contributes
to the continuum at zero and finite temperature, it is the
former one which gives the nucleon a finite width at finite
temperature. The amplitude for this process vanishes at
T=0.
To describe ONE dynamics at zero and finite tempera-

ture, we use an effective interaction that has been used
successfully to reproduce the effects of the 4 resonance at
low energy in the analysis of nN scattering (see, e.g.,
Hohler, Jakob, and Strauss [13], and references therein).
Note that as we are only interested in the imaginary part
of the self-energy, which all the particles are on shell, the
interaction is unique:

g2 E~+m~
q (4.2)

which yields g -4.68 for I &=115 MeV. In the above
expression, E~ is the nucleon energy and q the pion
momentum in the 6 rest frame. Some properties of the
spin- —,' field Z„' as well as the 6 propagator are listed in
Appendix D.
The processes illustrated in Fig. 4 can be incorporated

into the correlator by dressing the nucleon propagator
with the mA self-energy diagram Fig. 5. Using the b,
propagator from Appendix D we find, at zero tempera-
ture,

p+u+~,
X a(P)=——

3 m (2m) (p+k) —Mz
[k (p+k)]

M~
X 2 2k —m (4.3)

The dressed nucleon propagator is given by (mo is the
bare nucleon mass)

liS(p )=
P—mo —X a(P)+is

(4.4)

To renormalize, we expand the self-energy (we drop the
subscript mA and denote the physical nucleon mass by
m~)

X(P )=X(P ) ~& +(P—m o )
aX(P)

0
+X~V)

(4.5)

and require

=0. (4.6)

The first contribution in (4.5) renormalizes the nucleon
mass while the second contribution renormalizes the
propagator itself. Carrying out this procedure for the
real part of (4.5) we obtain

Here Z„' is the four-component Rarita-Schwinger field
describing the elementary b, , while 7r is the pion, and g
the nucleon field. The dimensionful coupling g/m is
normalized in such a way as to reproduce the width of
the b, . With the interaction (4.1) we find

jZ„' B„~'g +H. c. ] .tnt (4.1} iS& (gf )=
P—m~ —i ImX+ie

(4.7)

where now the first and second terms of (4.5) have been

(b)
FIG. 4. Processes contributing to nucleon "absorption" in a

pionic heat bath: (a) "real" process, (b) "virtual" process. FIG. 5. m.h self-energy correction to nucleon propagator.
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absorbed in mass and wave-function renormalization.
This ensures that the pole of the nucleon propagator is at
the physical nucleon mass.
The RHS of the QCD sum rules involves the imaginary

part of this correlator, as
ImII(q )=}(,)vlmSz(q ) .

From (4.7) it follows that

(4.8) FIG. 6. Diagrams contributing to the imaginary part of Fig.
5 at finite temperature. The "encircled-vertex" notation is de-
scribed in [14].

X(P )
(P—rn)v) +(ImX)~ (4.9) ImX =(agfp+Ma )o (pp ) (4.14)

The calculation of ImX at finite temperature is easiest in
the real-time approach, using the finite-temperature Cut-
kosky rules of Kobes and Semenoff [14]. In the notation
of Fig. 6,

ImX= ——'(X"'—X' ')=——'(1+e ' )X' ' (4 10)2 2

where X"' and X' ' are defined in Fig. 6. X' ' is evaluated
using the basic scalar bosonic and fermionic on-shell
finite-temperature propagators [14]:

with

(r —4m p )
o(pp)= ——,8(pp)3 m 32aM~

X 8(pp s~ ) I+ns —pp2 z

+8(s —pp )ns ——pp (4.15)

bg(k )=2m[8(+k )p+n s(k)]5(k —m ),
S~(p )=2m.[8(+pp) nF(p—)]5(p —m ) .

from which it follows that

(4.12)
and the definitions

t=p —M +m z= 2

2Pp
(4.16)

X(2) 4 g d k k~ k2 [k (p+k)]
3 m (2n) M

X(/+Ma)S+[(p+k) ] . (4.13)

Neglecting the temperature dependence in the 6 propa-
gator implies S [(p+k } ]~0and thus X"'~0. Taking
the limit ~p ~

~0 we obtain

a= 1——,s~ =(Ma+m„)2 (4.17)

There are two cuts in (4.15). Above s+, the imaginary
part of the self-energy is given by the real process Fig.
4(a). This contribution is multiplied by (I+ns) and thus
is nonvanishing at T=O. The virtual process Fig. 4(b) is
relevant for pp (s and vanishes at T=O. Using (4.14)
we can now rewrite (4.9) in the form

/[a(p()+m)v+p cr )+2rn+Mz]+Ma(pp+mz po )+—2m))rapp1m'(p )=—o.
(p2p m~~+IJ, cr ) +—4p()cr (am~+Ma) (4.18)

where p =& po Mg. This allows us to separate the
contributions for the two structure functions II„and II2
defined in (2.2), with (s =p p)

(Malmi(r )(s+)r)z po )+2as-p2(s)= —o(s) 2 2 2 2(s mN+p —cr ) +4scr (am)v+Ma)~

ImII) (s)=A)vp) (s),
ImII2(s) =A.Nm)((p~(s),

where we have defined

a(s+m)((+)M o )+2mNM&
p, (s)=—o.(s) z(s—m)v+p o. ) +4so (arnN+Ma)

(4.19)

(4.20)

(4.22)

(4.23}

Taking again the ratio of the Borel-transformed structure
functions we obtain an expression for the nucleon mass
where now the left-hand side of Eq. (3.9) is replaced by

"e 'M p, (s)ds

(4.21}

5We neglect here a small momentum-dependent shift of the
nucleon mass to m)r*=m)r+ReXs(P}-m)r. This is certainly a
good approximation near the pole.

Figure 7(a) shows the behavior of p) and p2 for a tem-
perature of 100 MeV and a nucleon mass mz =0.67 GeV
(as opposed to m&=0. 73 GeV at T=O; remember that
we are not at the moment interested in a quantitative
determination of the nucleon mass, but rather in a state-
ment about the qualitative behavior). The region below
s is dominated by the nucleon resonance with a finite
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1.0
I

o.e: I I I I I I I I I I

(a 0.8—
I

I I I
I

I I
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0.4— 0.4—
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p p I I I

0.0 1.0
I I I I
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3.0

0.2—
o.o ' I } I & I

0 80 1.00
M& [Gev]

I

1.20

I.P

0.6—

I I I I I I I I I I(b):
FIG. 8. Nucleon mass mN vs Borel mass M for a moderate

temperature T=100 MeV, in the constant-quark-condeno. ate
scenario. The solid line is the result of the calculation including
the mh continuum, the dashed one has Z=1, i.e., no continu-
um.

0.4—
0.2—
pp
0.0 1.0

r/
IIIIII

I I I I

Pp
s [GeV ]

3.0

FIG. 7. The structure functions pl(s) (solid line) and p2(s)
(dashed line) of the imaginary part of the nucleon correlator, (a)
T=100 MeV with m&=0. 67 GeV, (b) T=150 MeV and
m~ =0.58 GeV.

width (at half maximum) I -5 MeV, while the continu-
um starts at s+. Figure 7(b) shows p, and p2 at the
higher temperature T=150 MeV. The continuum is al-
most unchanged, while the width is strongly affected by
temperature. This will be discussed in more detail below.
The "correction factor" Z in (4.23) which summarizes

the effects of the continuum can be made more transpar-
ent by splitting the contributions from the real and virtu-
al processes: the integral over p, below s difFers from
the integral over a 5 function only by at most 2%. Thus,
for the calculation of the nucleon mass, we can approxi-
mate this part of the spectrum by ~5(s—mN). (This is of
course exact in the limit T~0). Hence

iv f ds e
—s/M (s)

7T S+
/'I

p s
S+

(4.24)

As is apparent from Figs. 7(a) and 7(b), the continuum
contribution is overshadowed by the resonance, and
indeed it turns out that the continuum corrections to the
resonance contribution (normalized to 1), are of the order
10 . For this reason, Z differs from 1 by a fraction to a
few %%uo only, depending on the value of the Borel mass.
Thus, the m.h continuum does not appreciably affect the
nucleon mass. We have, as an example, plotted the nu-
cleon mass m& against the Borel mass M for a tempera-
ture T=100 MeV and a constant quark condensate in
Fig. 8. The solid line is the result for the nucleon mass
including the Z factor of (4.23) while the dashed line has

y~= —2[lmS~(po =m~)] (4.25)

In the pole region (4.25) can be simplified to

g E~+mN co~

3m m~ M~
'3M co~
ng (4.26)

Z=1, i.e., no continuum. The difference between the
curves is small, and nearly independent of temperature,
as the spectrum above s+ is remarkably insensitive to
temperature [compare Figs. 7(a) and 7(b)]. The result of
the calculation including the continuum correction is
shown in Figs. 3(a) and 3(b) (dashed lines). We thus con-
clude that a finite-temperature ~A continuum does not
affect the mass of the nucleon considerably. This is part-
ly at odds with the results reached from a model with a
three-quark continuum. Such a model introduces a
strong, almost linear, dependence of the nucleon mass on
the choice of the continuum threshold so. However, the
imaginary part of the 3q diagram [Fig. 1(a)] has not been
calculated at finite temperature (this would correspond to
a heat bath of free quarks and gluons), and thus no direct
comparisons can be made. We would like to note howev-
er that the continuum model developed above, unlike the
three-quark one, fixes the threshold unequivocally by the
kinematics. The only uncertainty lies in the value of Mz
at finite temperature (assuming the pion mass to be about
constant below T, ). Still, our results seem to be stable
against small variations in Mz.
We would also like to compare these results with the

virial expansion approach of Leutwyler and Smilga [4].
Their approach relies on the measured total mN cross sec-
tion as an input, which is dominated by the presence of
the 5 resonance, to monitor the changes to the nucleon
propagator (position of the pole and damping rate). They
find a nucleon mass dropping slightly at intermediate
temperatures but rising at temperatures T-150 MeV,
and a nucleon width rising rapidly with temperature for
T) 50 MeV. To make an explicit comparison with our
results consider the nucleon width as defined by
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TABLE I. Width of the nucleon in the nonrelativistic ap-
proximation. I'& is the width in the first-order scenario (con-
stant quark condensate), while I 2 is the width in the second-
order scenario (dropping condensate).

T (MeV)

50
75
100
125
150
170

I & (MeV)

1.3 X 10
0.8
5.0
16.2
30.0
36.3

I (MeV)

0.9X 10
0.5
2.9
3.62
0.56
0.0

V. CONCLUSIONS AND PROSPECTS

We have investigated finite-temperature QCD sum
rules below T, in the nucleon channel in an attempt to
gain some understanding about the qualitative behavior
of the nucleon parameters at moderate temperatures.
While we did not strive to reproduce the zero-

temperature parameters, we included what we believe are
important ingredients in a finite-temperature analysis.
Furthermore we introduced a continuum model which
seems more appropriate for the intermediate-energy
range probed here, as well as more suited to the physical
situation at hand: the pionic heat bath. The results we
obtained seem to indicate that the nucleon mass is mainly
governed by the finite-temperature behavior of the quark

In the narrow resonance approximation, our expression for
the nucleon width is identical to theirs up to a kinematical fac-
tor ofM&/mN.

where co~=(2m&) '(Mz —mz —m ), ~q ~
is the pion

momentum in the nucleon rest frame and I & is defined in
(4.2). Note that this is the expected result in the Born ap-
proximation. Table I summarizes the values for yz at
various temperatures with mass inputs from the sum-rule
approach for both approaches (I and II) as described
above. The quoted values for the width by Leutwyler and
Smilga [4] are 4—10 larger than ours in the range of tem-
perature where the two approaches are reliable. The
discrepancy is due to the fact that in our case the nucleon
mass is about 200 MeV below the physical mass at zero
temperature (as is the case for all sum-rule calculations)
and drops with increasing temperature. In the case con-
sidered by Leutwyler and Smilga [4] the nucleon mass is
fixed to its zero temperature value for the quoted varia-
tions in the width. As a result the pion energy co& in
(4.26) is about a factor of 2 larger in our case. The
difference occurs in the exponent, hence the discrepancy.
Overall, however, there is qualitative agreement be-

tween the two approaches in the regime where either of
them can be trusted. For temperatures larger than
T=150 MeV where the virial approach is known to
break down and the QCD sum-rule approach appears to
be unreliable due to the neglect of higher-order conden-
sates, the approaches differ.

condensate, a feature shared by the simple estimate of
Brown [15]. As the condensate disappears smoothly with
chiral-symmetry restoration (as suggested by lattice
gauge theory and efFective model calculations), so does
the nucleon mass.
The limitations of the present approach are several.

Concerning the left-hand side of the sum rule [Eqs. (2.5)
and (2.6), viz. (3.7) and (3.8)] it is clear that higher-order
condensates may become increasingly important near T,
in a second-order scenario (much less in a first-order
scenario). Moreover the possibility of spontaneous break-
ing of global color above T, may provide new conden-
sates [12] and hence possibly a nonvanishing nucleon
mass even above the critical temperature (here under-
stood as a chiral-symmetry-restoring temperature}.
Finite-temperature radiative corrections to the Wilson
coefficients have been ignored, much like at zero temper-
ature. Because of screening effects in the charge, we ex-
pect this assumption to have a better justification at finite
temperature. The parametrization of the right-hand side
of (2.7) in the timelike regime may be improved by going
beyond the narrow-width approximation for the 6, as im-
plied in (4.19) and (4.20}. However, at temperatures
around T-150MeV not only pions, but also the heavier
vector mesons play a role. While all these points should
be addressed, we believe, however, that the present calcu-
lation provides qualitative insight into the thermal effects
on the nucleon state borrowing on QCD dynamics.
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APPENDIX A

In this appendix we shall show in detail how
temperature-dependent pieces of the perturbative Wilson
coefficient arise as the perturbative temperature contribu-
tions from condensates appearing in the OPE. This point
has been discussed previously in Ref. [12]. The conven-
tional OPE expansion does not refer to temperature
effects explicitly. Temperature enters via the vacuum ex-
pectation values of the pertinent operators. However, by
reordering the operators in the heat bath, the leading
blackbody effects in the matrix elements can be reshufHed
into the Wilson coefficients. The purpose of this appen-
dix is to show that the reshufHing in real time amounts to
calculating the Wilson coefficients using the standard
Matsubara formalism as used above.
Consider the lowest-order temperature contribution to

Fig. 1(b}using the Gibbs average. The baryon correlator
is (repeated indices are summed over, C is the charge-
conjugation matrix)

II'.=i@'"'e '~(Cy„) p(y„y5)p (y„y5) ~ .(y„C) .ge'~"

(( T:u'(x)u&(x}d' (x)::d .(0)u' (0)u~&(0):)),
(Al)
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where

«6» = y &n ~e~n &e (A2)

d'k "F'ko)x„«u'., (0)a„u'.(0)»= —ix„f, k„k'.(2' )' ko

with the summation over a complete set of physical
states. The repeated use of Wick's theorem in (Al) leads
to various pair contractions. We shall focus on the term
involving one uncontracted pair which can be expanded:

«:u'(x)u' (0):» =—« uu » 6"5

+x„«a„u'. (o)u'. , (o) »
+,x„x„«a„a„u:(0)u'.. (o) »

1 p xS(x)=-
27T X

(A6)

(A5)
Note that the thermal average of operators with an even
number of derivatives is proportional to the quark mass
and thus vanishes in the chiral limit. Substituting (A5)
into that piece of the nucleon correlator that is propor-
tional to the quark condensate, we obtain the expression
for II~~ given below. Note that the calculation is easiest
in the coordinate representation, where the fermion prop-
agator may be written (again in the chiral limit) as

+ 0 ~ ~ (A3) Thus

To carry out the thermal averages we expand the quark
fields into normal modes and use

« b, '(k)b;(k') » =5"5"(2m)' 5(k k')n~—(ko)
ko

(A4)

and similarly for the d and d operators. It is then easy
to show that, e.g. ,

qq( )
48 d k F 0n (k )

(2') ko

X [x k'+2(x y )(x.k ) j .

(A7)
The final result follows using some formulas for Fourier
transforms which are listed here for convenience (in di-
mensional regularization with D =4—2e):

(—1)"+
~ lgX- 327r2

(x )"" 2"
—q I(3 n e)——2„

r(n)

( 2)n P ~ 22n 4~
I (3—n e) — q„q. r(4 n e)——

2 —3
r(n) g"' q2 r(n) (A9)

d x z

(x )"2 g +P+v+P 2" 4~

r(4 n —e) —q„q q I (5 n —e)— (Alo)

In the limit q~0 we obtain

Xoeo 7~4
II«(q) =—1O T —+In

~4 120 e

2

+O(1)
p

(Al 1)

After removing the 1/e pole by properly renormalizing the currents appearing in the baryon correlator this is precisely
the second term of (3.4) obtained using the Matsubara formalism for the Wilson coeKcient of Fig. 1(a). Higher orders
may be obtained by calculating further pieces in the expansion (A3). In the chiral limit the next term stems from the
fourth term in the expansion, which reads ( I/3!)x„x,x « a„a„a u'(0)u'. (0)». Its contribution is finite and of order
O ( T'/g').

APPENDIX B

Here we give the explicit form of the function f( T /M ) which enters in the sum rule for 11,, Eq. (3.7). We find, with
X+—X+X

7The terms of O(1) in this expression vanish after Borel transformation.
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T2
M

72 . fdx dx'nF(x)nF(x') e
7m-4

4x+ + —xx'
4T 4T

M T+x+ erf 2x+T
M T—x erf 2x

4x T /~2 M Tx dx n~(x) e ' / — erf 2x2xT M (x ——,'»r )

+» xdxn (x)(1 e 4x T—/M )(x2 z 2)
6 F (Bl)

T
1
2096~ T +O T"

M' &47 M' M4 (B3}

In the above we used n~(x)=(1+e") '. The function
erf(x) is the error integral:

erf(x)= f e ' dt . (B2)
0

The low-temperature expansion of f(T /M ) is found to
be

APPENDIX D

Here we list some properties of the Rarita-Schwinger
field Z„' and give the I=J=3/2 propagator. A free
spin- —,', isospin- —,

' particle can be described by the quantity
Z„' (x},which transforms as a four-vector on the p, in-
dex, and as a spinor on the a index. Its wave function
can be written as a product of a spin wave function and
an isospin wave function:

APPENDIX C
Z (k) =~II (k)%'M (Dl)

This appendix contains some useful relations involving
Borel transforms. The Borel transformation LM used
throughout the paper is defined as

4'„~k~ is a solution to the free-field Dirac equation

(k' —Mq )4„'(k)=0 . (D2)

LM = lim, [g']"g2„„n—I !
Q /n=M

Some useful transforms read

a
QQ2

(C1) In order to restrict this 8-component function to the 4
physical ones, we have to impose subsidiary conditions.
They are usually taken to be

e
—S/M1 1

I (m) M2m

E f(g')= —M'EM M g 2

( +Q2)m

Also

The last relation implies

L Q lng =I (m+1)(—1) +'M

(C2)

(C3)

(C4)

One can then show that

M, M, &+Ms
2MMJ

2k„k
gP 3

'VP'V

+ k„y
—k y„
3M~

(D3)

ln(1+4co /g )=1—e
Q ln(co +Q /4)=M e (1+4' /M )

and finally

(C5)

(C6)

2 —4' /MLMcog arctan(2'/Q )=co e — erf(2'/M ),2

k+Mg
(D4}

The isospin wave function 4~ is conveniently written
T

as a Clebsch-Gordan product of a polarization three-
vector t and a spinor y, which are coupled to a T=3/2
object:

(C7)

where erf(x) is the error function defined in Appendix B.
Defining

( 2MT I 11,' m, )ti'Xm-
m, , l

(D5)

Usually the normalized error function is quoted
Erf(x)= —I e ' dt

?M = g( ', MT I 11—,'m, )ti'—

we can write 4 explicitly as

(D6)



4322 C. ADAMI AND I. ZAHED 45

1
TMT(1/2)
~1
MT( 1/2)

0
TMT(1/2)
~0

T( 1/2)

—1TM (1/2)
~ MT( —1/2)

(D7)

The spin and isospin sums (D4) and (D8) allow us to con-
struct the 6 propagator:

~4M =0, (D8)

which allows us to calculate the isospin sum

To reduce those six components to four, we again impose
a subsidiary condition @+M~

(2~) k —M~+ie
(D 10)

~@a q fb gab ] a b
MT MT

MT
(D9) with G„defined in (D4).
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