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While all organisms on Earth share a common
descent, there is no consensus on whether the
origin of the ancestral self-replicator was a one-
off event or whether it only represented the final
survivor of multiple origins. Here, we use the
digital evolution system Avida to study the origin
of self-replicating computer programs. By using
a computational system, we avoid many of the
uncertainties inherent in any biochemical system of
self-replicators (while running the risk of ignoring a
fundamental aspect of biochemistry). We generated
the exhaustive set of minimal-genome self-replicators
and analysed the network structure of this fitness
landscape. We further examined the evolvability of
these self-replicators and found that the evolvability
of a self-replicator is dependent on its genomic
architecture. We also studied the differential ability
of replicators to take over the population when
competed against each other, akin to a primordial-
soup model of biogenesis, and found that the
probability of a self-replicator outcompeting the
others is not uniform. Instead, progenitor (most-
recent common ancestor) genotypes are clustered in
a small region of the replicator space. Our results
demonstrate how computational systems can be used
as test systems for hypotheses concerning the origin
of life.
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1. Introduction

There is perhaps no topic in biology more fascinating—and yet more mysterious—than the origin
of life. With only one example of organic life to date, we have no way of knowing whether
the appearance of life on Earth was an extraordinarily rare event, or it if was a commonplace
occurrence that was unavoidable given Earth’s chemistry. Were we to replay Earth’s history one
thousand times [1], how often would it result in a biosphere? And among the cases where life
emerged, how different or how similar would the emergent biochemistries be?

The role of historical contingency has been studied extensively in the evolution of life (e.g.
[2] and references therein). Here, we endeavour to ask an even more fundamental question:
What is the role of historical contingency in the origin of life? The best evidence suggests that
the first self-replicators were RNA-based [3,4], although other first self-replicators have been
proposed [5]. Given the large number of uncertainties concerning the possible biochemistry that
would lead to the origin of self-replication and life, either on Earth or other planets, researchers
have begun to study the process of emergence in an abstract manner. Tools from computer
science [6-11], information theory [12-15] and statistical physics [16,17] have been used in an
attempt to understand life and its origins at a fundamental level, removed from the peculiarities of
any particular chemistry. Investigations along those lines may reveal to us general laws governing
the emergence of life that are obscured by the n =1 nature of our current evidence, point us to
experiments that probe such putative laws and get us closer to understand the inevitability—or
perhaps the elusiveness—of life itself [18].

At the heart of understanding the interplay between historical contingency and the origin of
life lies the structure of the fitness landscapes of these first replicators, and how that landscape
shapes the biomolecules’ subsequent evolution. While the fitness landscapes of some RNA-
based genotypes have been mapped [19,20] (and other RNA replicators have been evolved
experimentally [21]), in all such cases evolution already had the chance to shape the landscape
for these organisms and ‘dictate’, as it were, the sequences most conducive for evolution.

The structure of primordial fitness landscapes, in comparison, is entirely unknown. While
we know, for example, that in realistic landscapes highly fit sequences are genetically close to
other highly fit sequences (this is the essence of Kauffman’s ‘Central Massif’ hypothesis [22];
see also [23]), we suspect that this convenient property—which makes fitness landscapes
‘traversable’ [23]—is an outcome of evolution, in particular, the evolution of evolvability. What
about primordial landscapes not shaped by evolution? How often are self-replicators in the
neighbourhood of other self-replicators? Are self-replicators evenly distributed among sequences,
or are there (as in the landscapes of evolved sequences) vast areas devoid of self-replicators
and rare (genetic) areas that teem with life? Can evolution easily take hold on such primordial
landscapes?

These are fundamental questions, and they are central to our quest to understand life’s origins.
If the fitness landscape consists of isolated fitness networks, as found in some modern RNA fitness
landscapes [19,20], then one may expect the effects of historical contingency to be strong, and
the future evolution of life to depend on the characteristics of the first replicator. However, if
there exist ‘neutral networks’ that connect genotypes across the fitness landscape (as found in
computational RNA landscapes [24]), then the effect of history may be diminished. Here, we test
these hypotheses explicitly using primordial fitness landscapes for digital self-replicators.

Recently, we have used the digital evolution platform Avida as a model system to study
questions concerning the origin of life [25]. In Avida, a population of self-replicating computer
programs undergo mutation and selection, and are thus undergoing Darwinian evolution
explicitly [26]. Because the genomic content required for self-replication is non-trivial, most
avidian genomes are non-viable, in the sense that they cannot form ‘colonies” and thus propagate
information in time. Thus, viable self-replicators are rare in Avida, with their exact abundance
dependent on their information content [13,14]. Further work on these rare self-replicators
showed that while most of them were evolvable to some degree, their ability to improve in
replication speed or evolve complex traits greatly varied [27]. Furthermore, the capability of
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avidian self-replicators to evolve greater complexity was determined by the algorithm they used
for replication, suggesting that the future evolution of life in this digital world would be highly
contingent on the original self-replicator [28]. However, all of this research was performed
without a complete knowledge of the underlying fitness landscape, by sampling billions of
sequences of a specific genome-size class, and testing their capacity to self-replicate.

Sequences used to seed evolution experiments in Avida are usually handwritten [29,30], for
the simple reason that it was assumed that they would be impossible to find by chance. Indeed,
a typical handwritten ancestral replicator of length 15 instructions is so rare—were it the only
replicator among sequences of that length—that it would take a thousand processors, executing a
million sequences per second each in parallel, about 50 000 years of search to find it [14]. However,
it turns out that shorter self-replicators exist in Avida. An exhaustive search of all 11881376
sequences of length L =5, as well as all 308 915776 sequences of length L = 6 previously revealed
no self-replicators [14]. However, in that investigation six replicators of length L = 8 turned up in
arandom search of a billion sequences of that length, suggesting that perhaps there are replicators
among the 8 billion or so sequences of length L =7.

Here, we confirm that the smallest replicator in Avida must have eight instructions by testing
all L =7 sequences, but also report mapping the entirety of the L = 8 landscape (268 ~ 209 x 10°
sequences) to investigate the fitness landscape of primordial self-replicators of that length.
Mapping all sequences in this space allows us to determine the relatedness of self-replicators
and study whether they occur in clusters or evenly in sequence space, all without the usual bias
of studying only sequences that are among the ‘chosen” already. Of the almost 209 billion possible
genomes, we found that precisely 914! could undergo self-replication and reproduction, and thus
propagate their information forward in time in a noisy environment.

We found that these 914 primordial replicators are not uniformly distributed across genetic
space, but instead cluster into two broad groups (discovered earlier in larger self-replicators [28])
that form 13 main clusters. By analysing how these groups (and clusters) evolve, we are able to
study how the primordial landscape shapes the evolutionary landscape, and how chance events
early in evolutionary history can shape future evolution.

2. Methods
(a) Avida

We used Avida (v. 2.14) as our computational system to study the origin of self-replication. Avida
is a digital evolution system in which a population of computer programs compete for the system
resources needed to reproduce (see [25] for a full description of Avida). Each of these programs is
self-replicating and consists of a genome of computer instructions that encode for replication.
During this asexual reproduction process, mutations can occur, altering the speed at which
these programs reproduce. As faster replicators will out-reproduce slower replicators, selection
then leads to the spread of faster replicators. Because avidian populations undergo Darwinian
evolution, Avida has been used to explore many complex evolutionary processes [31-37].

The individual computer programs in Avida are referred to as avidians. They consist of a
genome of computer instructions and different containers to store numbers. Each genome has
a defined start point and instructions are sequentially executed throughout the avidian’s lifetime.
Some of these instructions allow the avidian to start the replication process, copy their genome
into a new daughter avidian, and divide into two avidians (see appendix A and [28] for the full
Avida instruction set). During this replication process, mutations can occur, causing the daughter
avidian’s genome to differ from its parent. These mutations can have two broad phenotypic
outcomes. First, mutations can alter the number of instruction executions required for replication;
these mutations can increase or decrease replication speed and thus fitness. Second, the fixation
of multiple mutations can lead to the evolution of complex traits in Avida. These traits are the

1 The sequences of all replicators can be downloaded from http://dx.doi.org/10.6084/m9.figshare.4551559.
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ability to input binary numbers from the Avida environment, perform Boolean calculations on
these numbers and then output the result of those calculations. In the experiments described here,
avidians could evolve any of the nine one- and two-input logic functions (Not, Nand, OrNot, And,
Or, AndNot, Nor, Xor and Equals). This is usually referred to as the ‘logic-9” environment [38].

The ability to perform the above Boolean logic calculations (to possess any of these nine
traits) increases its bearer’s replication speed by increasing the number of genome instructions
the bearer can execute per unit of time. The more instructions an avidian can execute during a
unit of time, the fewer the units of time that are required for self-replication. These units of time
are referred to as updates (they are different from generations). During each update, the entire
population will execute 30N instructions, where N is the current population size. The unit of
energy necessary to execute one instruction is called a ‘single instruction processing’ unit, or SIP.
If the population is monoclonal, each avidian will receive, on average, 30 SIPs. However, every
avidian also has a merit which determines how many SIPs they receive per update. The greater the
merit, the more SIPs that individual receives. The ability to perform the nine calculations multiply
an individual’s merit by the following values: Not and Nand: 2; OrNot and And: 4, AndNot and
Or: 8; Nor and Xor: 16; and Equals: 32.

The Avida world consists of a fixed-size toroidal grid of cells. The total number of cells
sets the maximum population size. Each cell can be occupied by at most one avidian. After
successful reproduction, a new avidian is placed into one of the world’s cells. In a well-
mixed population, any cell in the population may be chosen, rendering the toroidal structure
meaningless. In a population with spatial structure, the new avidian is placed into one of the
nine cells neighbouring the parent avidian (including the cell occupied by the parent). If there are
empty cells available, the new avidian occupies one of these cells. If all possible cells are occupied,
a cell is chosen at random, its occupant removed from the population and the new avidian then
occupies this cell. This random removal implements a form of genetic drift in Avida. For the
experiments performed here, the population structure was spatial.

(b) Experimental design

To map the entire Avida fitness landscape, we constructed all 268 ~2.09 x 10! genomes and
analysed whether they could self-replicate. This operation was performed by running these
genomes through Avida’s Analyze Mode (described in the Data analysis section) and checking
whether these genomes gave their bearer non-zero fitness, and whether they were viable. Next,
we described the fitness landscape by looking for the presence of genotype clusters among
the discovered self-replicators. We constructed a network of the fitness landscape where each
genotype is a node and the length between two nodes is the square of the Hamming distance
between the genotypes. We also examined the frequency of single instruction motifs (monomers),
as well as double instruction motifs (dimers).

To test the evolvability of the 914 self-replicators, we evolved 10 monoclonal populations of
each replicator with 3600 individuals for 2 x 10* updates in the logic-9 environment (see above).
Point mutations occurred at a rate of 7.5 x 1072 mutations per copied instruction, while single-
instruction insertion and deletion mutations both occurred at a rate of 5 x 1072 mutations per
division. At the end of each population’s evolution, we analysed the most abundant genotype
from each population.

To test the role of historical contingency when the appearance of self-replicators was
frequent, we ran experiments where we evolved all 914 self-replicators in the same population
(a ‘primordial soup’ of replicators). In each population, we placed 10 individuals of each
self-replicator. The ancestral population then had 9140 individuals and could expand to 10*
individuals at maximum capacity. These populations evolved for 5 x 10* updates in the logic-
9 environment. Mutation rates were the same as in the previous evolvability experiments. This
experiment was performed in 200 replicates. To identify the ancestral genotype that outcompeted
all of the other genotypes, we isolated the most abundant genotype at the end of the experiment
and traced its evolutionary history back to its original ancestor.
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(c) Data analysis

Statistics on different avidians were calculated using Avida’s Analyze Mode. In Analyze Mode,
a single genotype is examined in isolation as it executes the instructions in its genome, runs
through its life cycle and possibly creates an offspring. This confers on experimenters the ability
to calculate the fitness for an individual avidian (number of offspring generated per unit time)
and examine other characteristics, such as whether it can reproduce perfectly (all offspring are
genetically identical to each other and the mother genome) or which traits this avidian possesses.
Analyze Mode was also used to calculate quantities such as genome size. Avida’s Analyse Mode
code is available along with the entire Avida software at https://github.com/devosoft/avida.

Across-population means and standard errors were calculated using the NumPy [39] Python
software package. The clusters of replicators were rendered using Neato, which is an undirected
graph embedder that creates a layout similar to that of multi-dimensional scaling [40].
Figures were plotted using the Matplotlib Python package [41].

3. Results

(a) Structure of the fitness landscape

Of the 26% (approx. 209 billion) genomes with eight instructions, we found 914 that could self-
replicate. We also searched for self-replicators with seven-instruction genomes but found none,
establishing that L =8 is the minimal self-replicator length in Avida. By discovering all self-
replicators in this fitness landscape, we can now calculate the precise information content required
for self-replication in Avida, using previously established methods [13], as —log,(914/26%) ~ 5.9
mers (a ‘mer’ is a unit of entropy or information, normalized by the number of states that each
instruction can take on; see [42]). Our previous estimate [14] of the information content of length-
8 replicators, based on finding eight replicators among a billion random samples, was 5.81 £+ 0.13
mers.

To study the genetic structure of these replicators, we obtained the distribution of instructions
(monomers) across the replicators’ genomes (figure 1a). This distribution is biased, as every single
replicator contained at least the three instructions required for replication: h-copy, h-alloc and h-
divide (denoted by v, w and x, respectively; see the mapping between instructions and the letter
mnemonic in table 1 in appendix A). In addition, 75% of replicators have a b (nop-B), an £ (if-label)
and a g (mov-head) instruction, while 25% have a ¢ (nop-C), an h (jmp-head) and an r (swap)
instruction in their sequence. We also analysed the distribution of sequential instruction pairs
(dimers) and found that while most dimers do not occur in any self-replicators, the dimers fg
and gb occur in approximately 70% of the replicators (figure 1b) and are highly over-represented.
Other dimers such as rc, hc, and dimers containing £,g,b,c,v,w, and x occur in approximately
20-30% of replicators.

If there were no constraint on the genetic architecture, we would expect self-replicators to
be distributed uniformly across the fitness landscape. However, we found instead that self-
replicators are not distributed uniformly in the landscape, but are grouped into 41 distinct
genotype clusters, shown in figure 2.

The dimer distribution function we analysed above separates primordial self-replicators into
two major categories: those that carry £g/gb motifs (‘fg-replicators” for short), as opposed to
those carrying hc/rc motifs (hc-replicators) instead. This separation into two classes was noted
earlier from a smaller sample of the landscape [27,28], which we corroborate here. By scanning
the entire landscape, we can confirm that these two types are the only types of self-replicators in
the landscape, and the clusters of genotypes are homogeneous in the sense that fg-replicators and
hc-replicators do not intermix (figure 2). Figure 3 shows four examples of clusters pulled from
the landscape, showing that they are tightly interconnected.

Many self-replicators are isolated and 20 of these clusters consist of only one genotype.
However, most self-replicators are located in large clusters. Almost 75% of the self-replicators
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Figure 1. (a) Distribution of monomers/single instructions (i.e. proportion of self-replicators containing a given monomer).
(b) Distribution of dimers (pairs of instructions). Dimers are ordered lexicographically on the x-axis (the proportions of £g,
gb, rcand he dimers are labelled). (Online version in colour.)

Figure 2. The complete fitness landscape of all 914 length-8 replicators. The replicators are coloured by the class of motifs they
contain (fg-replicators are coloured in red, while hc-replicators are coloured in blue). The relative position between any pair of
nodes reflects their distance in Hamming space, displayed via multi-dimensional scaling. As a consequence, it appears as if blue
and red clusters are linked, which is not the case. One isolated fg-replicator (red) is close to an hc-replicator cluster (blue), butis
not connected to it. All visible edges are between nodes that have a Hamming distance of 1 (i.e. they are a point mutation away
from each other). (Online version in colour.)
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Figure 3. Four clusters from the full landscape of self-replicators of L = 8. (a) A 23-node cluster of hc-replicators. (b) The
third-largest cluster in the network: an fg-replicator cluster with 165 members. (c) Another large fg-replicator cluster with 96
genotypes. (d) A 15-node hc-replicator cluster. (Online version in colour.)

are located in four major clusters with 212, 199, 165 and 95 genotypes each, and almost 96% are
contained within the 13 clusters that have at least 14 members. There is thus a distinct gap in the
cluster size distribution, with small clusters ranging from 1 to 3 connected members, while the
next largest size class is 14.

We find that clusters of replicators are highly connected among each other, with a degree
distribution that is sharply peaked around the mean degree of a cluster (figure 4), which is similar
to what is seen in neutral networks of random RNA structures [43]. We find that fg-replicators
form the denser clusters.

The 914 self-replicators we found vary in fitness, but consistently we find that the fittest self-
replicators contain the £g/gb motifs and many of the lowest fitness self-replicators contain the
hc/rc motifs. In figure 5, we show the fitness as a function of the multi-dimensional scaling
coordinate. In that figure, colour denotes fitness according to the scale on the right. The highest
peaks and plateaus all belong to fg-replicators. The hc-replicators appear as a valley (dark blue)
bordering the group of fg-replicators.

(b) Self-replicator evolvability

To explore the subsequent role of historical contingency after the emergence of life, we tested
the evolvability of all 914 self-replicators. First, we evolved each replicator separately. Almost

e M - |



proportion of nodes

0 5 10 15 20 25 30 35 40
node degree

Figure 4. Edge distribution of all replicators in the fitness landscape of L = 8. As each cluster has a particular edge distribution,
the distributions of the two different kinds of replicators (fg-types and hc-types) do not overlap. Red: fg-replicators; blue:
hc-replicators. (Online version in colour.)
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Figure 5. Ancestral fitness of all primordial self-replicators of L = 8, where x—y coordinates are the same as the network
in figure 2. (Online version in colour.)

all self-replicators could evolve increased fitness (figure 6b). However, there was a wide range
of mean relative fitness; fg-replicators clearly undergo more adaptation than hc-replicators. To
explain why fg-replicators were more evolvable, we first looked at the evolution of genome size.
Replicators with the fg/gb motifs grew larger genomes than replicators with the hc/rc motifs
(figure 6¢). As larger genomes can allow for the evolution of novel traits in Avida, and thus fitness
increases, we next checked whether the fg-replicators had evolved more computational traits than
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Figure 6. Fitness and other characteristics of all L = 8 self-replicators before and after evolution. (a) Ancestral fitness of all
replicators. (b) Log mean relative fitness after 2 x 10* updates of evolution. (c) Final genome size after 2 x 10* updates of
evolution. (d) Number of evolved traits after2 x 10* updates of evolution. In all plots, fg-replicators are in red and hc-replicators
are in blue. Error bars (black) are twice the standard error of the mean. All plots are sorted in increasing order. (Online version
in colour.)

the hc-replicators. In Avida, traits are snippets of code that allow the avidian to gain energy
from the environment, by performing logic operations on binary numbers that the environment
provides (see Methods). Replicators with the £g/gb motifs did evolve more novel traits than
replicators with the hc/rc motifs (figure 6d). In fact, only fg-replicators evolved traits in these
experiments. Finally, we looked at the effect of historical contingency when all 914 replicators
were competed against each other in one population. After 50 000 updates, we identify the most
abundant genotype in 200 replicate experiments and reconstruct the line-of-descent to determine
which of the replicators gave rise to it (we call that replicator the ‘progenitor’).

Most replicators did not emerge as the progenitor of life in these experiments (figure 7). Three
genotypes, vvwEgxgb, vwvEgxgb and wvvEgxgb, outcompete the other genotypes in 37, 49 and
45 populations out of 200, respectively, or in about 65% of the competitions. The other progenitors
of life were not distributed randomly among the other self-replicators either; most of them were
present in the same clusters as the three genotypes from above. Thus, while history is a factor in
which of the replicators becomes the seed of all life in these experiments, more than half the time
the progenitor is one of the three highest fitness sequences. Thus, life predominantly originates
from the highest peaks of the primordial landscape.

4. Discussion

Here, we tested the role of fitness landscape structure and historical contingency in the origin
of self-replication in the digital evolution system Avida. We characterized the complete fitness
landscape of all minimal-genome self-replicators and found that viable genotypes form clusters
in the fitness landscape. These self-replicators can be separated into two replication classes, as we
previously found for self-replicators with larger genomes [28]. We also found that one of these
replication classes (the fg-replicators) is more evolvable than the other, although the evolvability
of each genotype varies. Finally, we show that, when all self-replicators are competed against each
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Figure 7. Location of ‘progenitors’ (ancestral types that were the origin of an evolved population 50 000 updates later) in
the primordial landscape. Replicators that were never the ancestor genotype of the entire population are in grey. Those that
outcompete all other genotypes in fewer than 6 (out of 200) competitions are coloured in green. The three genomes that
eventually become the ancestor of life in over 130 competitions are in orange. (Online version in colour.)

other in a digital ‘primordial soup’, three genotypes win over 65% of the competitions and many
of the other ‘winners” come from the same genotype cluster.

In a previous study with Avida, we found that 6 out of 10° spontaneously emergent genomes
with eight instructions could self-replicate [14]. Here, we found that 914 out of ~2.8 x 1011
genomes could replicate, consistent with our previous results. This concordance suggests that
the information-theoretic theory of the emergence of life, originally proposed by Adami [13]
and tested with Avida by Adami & LaBar [14], can accurately explain the likelihood of the
chance emergence of life. Thus, the emergence of self-replication, and life, is dependent on the
information required for such life.

By enumerating all of the length-8 self-replicators, we were able to show that self-replicators
are not uniformly distributed across the fitness landscape and that viable genotypes cluster
together. The size of these clusters varies: there are a few clusters with many genotypes and many
clusters with a few genotypes, but the cluster size distribution has a gap. The edge distribution
of the clusters is similar to what has been found in random RNA structures, and the mean degree
differs between replicator types.

Genotypes with different replication mechanisms were in different clusters with no
evolutionary trajectory between the two. Empirical studies of RNA-based fitness landscapes,
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biochemical model systems for the origin of life, also show that these landscapes consist
of isolated fitness peaks with many non-viable genotypes [19,20]. The fact that both RNA-
based landscapes [19,20] and these digital landscapes have similar structures suggests that the
evolutionary patterns we see in these Avida experiments may be similar to those one would
have seen in the origin of life on Earth. The presence of isolated genotype clusters in both
digital and RNA fitness landscapes further suggests that the identity of the first self-replicator
may determine life’s future evolution, as other evolutionary trajectories are not accessible.
However, if populations can evolve larger genomes, non-accessible evolutionary trajectories may
later become accessible, as mathematical results on the structure of high-dimensional fitness
landscapes suggest [44].

To test for the effects of historical contingency in the origin of self-replication in Avida, we
evolved all of the 914 replicators in an environment where they could increase in genome size
and evolve novel traits. Previously, we found that the evolvability of spontaneously emergent
self-replicators varied and was determined by their replication mechanism [28]. However, those
genotypes possessed fixed-length genomes of 15 instructions. Here, we confirmed that the
genotype of the first self-replicator, and more specifically the replication mechanism of the first
replicator, determine the future evolution of novel traits in Avida. The fg-replicators showed high
rates of trait evolution, while hc-replicators failed to evolve novel traits in most populations.
However, we did not detect any trade-off in evolvability, as we previously found [28]. This
difference is probably due to their differences in capacity to increase in genome size, as genome
size increases enhance the evolution of novel traits and fitness increases in Avida [45,46].
Would a similar dynamic occur in a hypothetical population of RNA-based replicators? While
experimental evolution of RNA replicators has been performed, the selective environments
resulted in genome size decreases [21]. It is unknown how simple RNA replicators vary in their
evolvability.

We also performed experiments to test for the role of historical contingency in scenarios where
any self-replicator could become the progenitor of digital life. Here, we found that only three
self-replicators (or their neighbours in the fitness landscape) became the last common ancestor in
the majority of populations. This suggests a lack of contingency in the ancestral self-replicator,
but emphasizes the role of the ancestral genotype in determining its future evolution. If life
emerges rarely, then its future evolution will be determined by the specific genotype that first
emerges, as shown from our first set of evolvability experiments (figure 6). However, if simple
self-replicators emerge frequently, then the future evolution is determined by the evolvability of
the fittest replicators, a sort of clonal interference [47] among possible progenitors of life. In this
case, the self-replicators that most successfully invaded the population happened to also be of
the type that evolved the largest genomes and most complex traits. However, it can be imagined
that the opposite trend could occur [28], and then the progenitor of life would limit the future
evolution of biological complexity.

5. Conclusion

In this work, we have performed the first complete mapping of a primordial sequence landscape
in which replicators are extremely rare (about one replicator per 200 million sequences) and
found two functionally inequivalent classes of replicators that differ in their fitness as well as
evolvability, and that form distinct (mutationally disconnected) clusters in sequence space. In
direct evolutionary competition, only the highest fitness sequences manage to repeatedly become
the common ancestor of all life in this microcosm, showing that despite significant diversity of
replicators, historical contingency plays only a minor role during early evolution.

While it is unclear how the results we obtained in this digital microcosm generalize to a
biochemical microcosm, we are confident that they can guide our thinking about primordial
titness landscapes. The functional sequences we discovered here are extremely rare, but probably
not as rare as putative biochemical primordial replicators. However, from a purely statistical
point of view, it is unlikely that a primordial landscape consisting of sequences that are several
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orders of magnitude more rare would look qualitatively different, nor would we expect our
results concerning historical contingency to change significantly. After all, random functional
RNA sequences (but not replicators, of course) within a computational world [43], chosen only for
their ability to fold, show similar clustering and degree distributions as we find here. Follow-up
experiments in the much larger L =9 landscape (currently underway) will reveal which aspects of
the landscape are specific, and which ones are germane, in this digital microcosm. A comparison
between fitness landscapes across a variety of evolutionary systems, both digital [48] and
biochemical [19], will further elucidate commonalities expected for simple self-replicators. As
the landscapes for these simple self-replicators are mapped, we expect general properties of
primordial fitness landscapes to emerge, regardless of the nature of the replicator. As long as
primordial self-replicators anywhere in the universe consist of linear heteropolymers that encode
the information necessary to replicate, studies with digital microcosms can give us clues about
the origin of life that experiments with terrestrian biochemistry cannot deliver.
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Appendix A

Table 1. Instruction set of the avidian programming language used in this study. The notation ?BX? implies that the command
operates on a register specified by the subsequent nop instruction (for example, nop-A specifies the AX register, and so forth).
If no nop instruction follows, use the register BX as a default. More details about this instruction set can be found in [25].

instruction description symbol
nop-A no operation (type A) a

nopB ...................................... . ooperatlon(typeB)b ...........
nopC ...................................... : ooperatlon(typeC)c ...........
o qu ................................... o nextlnstructlononlylf?BX7d0esnotequalcom pIementd ...........
s o |nstruct|onon|y|f?BX7|s|essthan |tscompleme e
iflabel execute next instruction only if template complement was just copied £
e - ovemstructlonpomtertosameposmonasﬂowheadg ...........
jmphead move instruction pointer by fixed amount found in register (| h
getheadw r|tep05| o ofmstrucnonpomter |ntoreg|ster(X ........................................................... o
S T emoryp05|t|on spec|ﬁedby S J ............
sh|ftrsh|ftaIItheb|tsm7BX7onetothenght ............................................................................... —
T o
e S
T
pushcopyvalueof7BX7ontotopofcurrentstacko ...........

(Continued.)
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Table 1. (Continued.)

instruction description symbol
pop remove number from current stack and place in 7BX? p
swapstkq ...........
swapr ...........
e o
T o
L
hcopy ................................................................................................................................................................................. o
L T
O e o e
G y ...........
O S
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