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Representations are internal models of the environment that can provide
guidance to a behaving agent, even in the absence of sensory information.
It is not clear how representations are developed and whether they are
necessary or even essential for intelligent behavior. We argue here that the
ability to represent relevant features of the environment is the expected
consequence of an adaptive process, give a formal definition of represen-
tation based on information theory, and quantify it with a measure R. To
measure how R changes over time, we evolve two types of networks—an
artificial neural network and a network of hidden Markov gates—to solve
a categorization task using a genetic algorithm. We find that the capac-
ity to represent increases during evolutionary adaptation and that agents
form representations of their environment during their lifetime. This
ability allows the agents to act on sensorial inputs in the context of their
acquired representations and enables complex and context-dependent
behavior. We examine which concepts (features of the environment) our
networks are representing, how the representations are logically encoded
in the networks, and how they form as an agent behaves to solve a task.
We conclude that R should be able to quantify the representations within
any cognitive system and should be predictive of an agent’s long-term
adaptive success.
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1 Introduction

The notion of representation is as old as cognitive science itself (Chomsky,
1965; Newell & Simon, 1972; Fodor, 1975; Johnson-Laird & Wason, 1977;
Marr, 1982; Pinker, 1989; Pitt, 2008), but its usefulness for artificial intelli-
gence (AI) research has been doubted (Brooks, 1991). In his widely cited
article, “Intelligence Without Representation,” Brooks argued instead for a
subsumption architecture where the autonomous behavior-producing com-
ponents (or layers) of the cognitive system directly interface with the world
and with each other rather than with a central symbol processor dealing
in explicit representations of the environment. In particular, inspired by
the biological path to intelligence, Brooks argued that AI research needs to
be rooted in mobile autonomous robotics and a direct interaction between
action and perception. Echoing Moravec (1984), he asserted that the neces-
sary elements for the development of intelligence are mobility, acute vision,
and the ability to behave appropriately in a dynamic environment (Brooks,
1991). This architecture achieved insect-level intelligence, and Brooks ar-
gued that a path to higher-level AI could be forged by incrementally in-
creasing the complexity of subsumption architecture.

However, 20 years after his advocating such a radical departure from
the classical approach to AI, the subsumption approach seems to have
stalled as well. We believe that the reason for the lack of progress does
not lie in the attempt to base AI research in mobile autonomous robots, but
that instead representations—also sometimes called internal models (Craik,
1943; Wolpert, Ghahramani, & Jordan, 1995; Kawato, 1999)—are key to
complex adaptive behavior. Indeed, while representation-free robotics has
made some important strides (Nolfi, 2002), they are limited to problems
that are not “representation hungry” (Clark, 1997), that is, problems that do
not require past information or additional (external) knowledge about the
current context. In addition, the technical difficulty of developing a sub-
sumption architecture increases with the number of layers or subsystems.
This problem of subsumption architecture mirrors the difficulties of classic
representational AI approaches to build accurate and appropriate models
of the world.

An alternative approach to engineering cognitive architectures and in-
ternal models is evolutionary robotics (Nolfi & Floreano, 2000). Instead of
designing the structure or functions of a control architecture, principles
of Darwinian evolution are used to create complex networks that interface
perception and action in nonobvious and often surprising ways. Such struc-
tures can give rise to complex representations of the environment that are
hard to engineer and equally hard to analyze (Floreano & Mondada, 1996).
Evolved representations provide context, are flexible, and can be readjusted
given new stimuli that contradict the current assumptions. Representations
can be updated during the lifetime or over the course of evolution and
thus are able to handle even new sensory input (Bongard, Zykov, & Lipson,
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2006). We argue that as robots evolve to behave appropriately (and survive)
in a dynamic and noisy world, representations of the environment emerge
within the cognitive apparatus and are integrated with the perceived sen-
sory data to create intelligent behavior, using not only the current state of
the environment but, crucially, taking into account historical data (memory)
as well.

To test this hypothesis and make internal representations of evolved sys-
tems accessible to analysis, we propose a new information-theoretic mea-
sure of the degree to which an embodied agent represents its environment
within its internal states and show how the capacity to represent environ-
mental features emerges over thousands of generations of simulated evolu-
tion. The main idea is that representations encode environmental features
because of their relevance for the cognitive system in question (Clark &
Toribio, 1994). Hence, for our purposes, representations can be symbolic or
subsymbolic (e.g., neural states) as long as they have a physical basis, that is,
as long as they are encoded in measurable internal states. However, we dis-
tinguish representations from sensorial input because sensor inputs cannot
provide the same past or external context as internal states. We thus explic-
itly define representations as that information about relevant features of
the environment encoded in the internal states of an organism and goes be-
yond the information present in its sensors (Haugeland, 1991; Clark, 1997).
In particular, this implies that representations can at times misrepresent
(Haugeland, 1991)—unlike information present in sensors, which always
truthfully correlates with the environment. To illuminate the functioning of
evolved cognitive systems, we show how it is in principle possible to deter-
mine what a representation is about and how representations form during
the lifetime of an agent. We argue that our measure provides a valuable tool
to investigate the organization of evolved cognitive systems, especially in
cases where internal representations are epistemically opaque.

2 Methods

2.1 Information-Theoretic Measure of Representation. Information
theory has been used previously to quantify how context can modulate
decisions based on sensory input (Phillipps, Kay, & Smyth, 1994; Phillips
& Singer, 1997; Kay & Phillips, 2011). Here, we present an information-
theoretic construction that explicitly takes the entropy of environmental
states into account. To quantify representation, we first define the relation-
ship between the representing system and the represented environment in
terms of information (shared, or mutual, entropy). Information measures
the correlation between two random variables, while the entropy H is a mea-
sure of the uncertainty we have about a random variable in the absence of
information (uncertainty is therefore potential information). For a random
variable X that can take on the states xi with probabilities p(xi) = P(X = xi),
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the entropy is given by (Shannon, 1948)

H(X) = −
N∑

i=1

p(xi) log p(xi) , (2.1)

where N is the number of possible states that X can take on.
The information between two random variables characterizes how much

the degree of order in one of the variables is predictive of the regularity in
the other variable. It can be defined using entropy as the difference between
the sum of the entropies of two random variables X and Y (written as H(X)

and H(Y)) and the joint entropy of X and Y, written as H(X,Y):

I(X : Y) = H(X) + H(Y) − H(X,Y) =
∑

xy

p(x, y) log
p(x, y)

p(x)p(y)
. (2.2)

In equation 2.2, p(x) and p(y) are the probability distributions for the ran-
dom variables X and Y, respectively (i.e., p(x) = P(X = x)), while p(x,y) is
the joint probability distribution of the (joint) random variable XY. The
shared entropy I(X : Y) can also be written in terms of a difference between
unconditional and conditional entropies as

I(X : Y) = H(X) − H(X|Y) = H(Y) − H(Y|X) . (2.3)

This definition reminds us that information is that which reduces our un-
certainty about a system. In other words, it is that which allows us to make
predictions about a system with an accuracy that is higher than when we
did not have that information. In equation 2.3, we introduced the concept
of a conditional entropy (Shannon, 1948). For example, H(X|Y) (read as “H
of X given Y”) is the entropy of X when the state of the variable Y is known
and is calculated as

H(X|Y) = −
∑

xy

p(x, y) log p(x|y) , (2.4)

using the conditional probability p(x|y) = p(x, y)/p(y).
In general, information is able to detect arbitrary correlations between

signals or sets of events. We assume here that such correlations instanti-
ate semiotic or information relationships between representing and repre-
sented and use mutual information to measure the correlation between a
network’s internal states and its environment (see also Marstaller, Hintze, &
Adami, 2010). So, for example, we could imagine that X stands for the states
of an environment, whereas Y is a variable that represents those states of
the environment. We need to be careful, however, to exclude from possible
representational variables those that are mere images of the environment,
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Figure 1: Venn diagram of entropies and informations for the three random
variable E, S, and M, describing the states of the environment, sensors, and agent
internal degrees of freedom. The representation R = H(E : M|S) is shaded.

such as the trace that the world leaves in an agent’s sensors. Indeed, mere
correlations between internal states and the environment are not sufficient
to be treated as representational because they could be due to behavior
that is entirely reactive (Clark, 1997). Haugeland (1991), for example, un-
derstands representation as something that “stands in” for something in
the environment but is no longer reflected in the perceptual system of the
agent. Indeed, representation should be different from a mere translation.
Consider a digital camera’s relationship with its environment. The photo
chip guarantees a one-to-one mapping between the environment structure
and the camera’s state patterns. But a camera is not able to adapt to its
environment. By taking a picture, the camera has not “learned” anything
about its environment that will affect its future state. It simply stores what
it received through its inputs without extracting information from it; the
camera’s internal states are fully determined by its sensor inputs. Represen-
tation goes beyond mere translation because the content—which feature of
the environment is represented—depends on the goals of the system. Not
everything is represented in the same way. A camera does not have this
functional specification of its internal states.

To rule out trivial representations like a camera’s internal states, we
define representation as the shared entropy between environment states and
internal states, but given the sensor states (i.e., conditioned on the sensors).
Thus, representation is that part of the shared entropy between environment
states and internal states that goes beyond what is seen in the sensors (see
Figure 1). For the following, we take E, given by its probability distribution
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p(ei) = P(E = ei), as the random variable to describe environmental states,
while S describes sensor states. If the internal states of the agent (hidden and
output states) are characterized by the random variable M with probability
distribution p(mj) = P(M = mj), then we define the representation R as (for
an earlier version, see Marstaller et al., 2010)

R = H(E : M|S)= I(E : M) − I(E : M : S) = Hcorr − I(S : E) − I(S : M),

(2.5)

where the correlation entropy Hcorr of the three variables E, S, and M (also
called total correlation; Watanabe, 1960) or multi-information (McGill, 1954;
Schneidman, Still, Berry, & Bialek, 2003) is the amount of information that
all three share:

Hcorr = H(E) + H(M) + H(S) − H(E, M, S) . (2.6)

In equation 2.5, we introduced the shared conditional entropy between
three variables that is defined as the difference between information that
is unshared and that is shared (with a third system), just as H(X|Y) =
H(X) − I(X : Y), from equation 2.4. Thus, the representation R of the world
E within internal states M is the total correlation between the three, but
without what is reflected in S about E and M, respectively (measured by
I(S : E) and I(S : M)). The relationship between R and the entropies of the
three variables S, E, and M is most conveniently summarized by an entropy
Venn diagram, as in Figure 1. In these diagrams, a circle is a quantitative
measure of the entropy of the associated variable, and the shared entropy
between two variables is represented by the intersection of the variables,
and so on (Cover & Thomas, 1991).

Our information-theoretic definition of representation carries over from
discrete variables to continuous variables unchanged, as can be seen as
follows. Let XE, XM, and XS be random variables defined with normal-
ized probability density functions fE (e), fM(m), and fS(s). The differential
entropy h(X) (Cover & Thomas, 1991), defined as

h(X) = −
∫

S
f (x) log f (x)dx, (2.7)

where S is the support of random variable X, is related to the discretized
version H(X!) by noting that

H(X!) + log ! → h(X) (! → 0) , (2.8)



The Evolution of Representation in Simple Cognitive Networks 2085

where we introduced the discretization

pi =
∫ (i+1)!

i!
f (x)dx (2.9)

in order to define the discretized Shannon entropy H(X!) = −
∑

i pi log pi.
This implies that an n-bit quantization of a continuous random variable
is approximately H(X) ≈ h(X) + n (Cover & Thomas, 1991). Let us now
assume that the variables XE, XM, and XS are each quantized by nE, nM, and
nS bits, respectively. Because H(E, M, S) is then quantized by nE + nM + nS
bits, it follows that Hcorr ≈ hcorr, that is, the continuous and discrete variable
correlation entropies are (in the limit of sufficiently small !) approximately
the same because the discretization correction cancels. The same is true
for the information I(S : E) and I(S : M), as these are correlation entropies
between two variables. Thus, H(E : M|S) ≈ h(XE : XM|XS), the differential
entropy version of R. We stress that while an exact identity between dis-
crete and continuous variable definitions of R is ensured only in the limit
of vanishing discretization, the cancellation of the correction terms log !

implies that the discrete version is not biased with respect to the continuous
version.

R defines a relation between a network’s activity patterns and its envi-
ronment as the result of information processing. R yields a positive quantity,
measured in bits (if logarithms are taken to base 2). In order to show that
this measure of representation reflects functional purpose (Clark, 1997), we
evolve cognitive systems (networks) that control the behavior of an em-
bodied agent and show that fitness, a measure for the agent’s functional
prowess, is correlated with R. In other words, we show that when the en-
vironment (and task) is complex enough, agents react to this challenge by
evolving representations of that environment.

2.2 Evolution of Active Categorical Perception. We study the evolu-
tion of an agent that solves an active categorical perception (ACP) task (Beer,
1996, 2003), but with modifications suggested by van Dartel, Sprinkhuizen-
Kuyper, Postma, and van den Herik (2005); (see also van Dartel, 2005).
Categorization is thought to be one of the key elements in cognition (see
Harnad, 1987; Cohen & Lefebvre, 2005). In categorical perception, an agent
has to partition objects in the world into different discrete categories based
on their visual appearance. In active categorical perception, the agent takes
an active role in which aspects of the object to view, that is, perception, are
intimately linked with action. Whether this task requires internal represen-
tations may depend on the specific nature of the task, and it is in general
not simple to determine whether the agent uses internal states to represent
the environment and, in particular, which features of the world are repre-
sented by which computational units (Beer, 2003; Ward & Ward, 2009). In
the task studied by Beer (1996, 2003), the agent has to discriminate between
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circles and diamonds that were falling vertically toward the agent, who
could move laterally to change its perception of the object. In the version
we study here, the agent has to discriminate between large and small blocks
by catching the small blocks while avoiding the large ones. In order to cre-
ate visual ambiguity, the agent’s four upward-looking sensors have a blind
spot (two nonsensing units) between them. Furthermore, blocks are falling
diagonally (from left to right or right to left), so that the agent not only has
to categorize but also to predict (see Figure 2A).

We evolve active categorical perception in two experiments using two
different control architectures. One is an artificial neural network (ANN)
and one is a Markov network, specifically, a network of hidden Markov
gates (HMGs) (Edlund et al., 2011), described in more detail in section 2.3.
The agent is located at the bottom row of a 20 × 20 world with periodic
boundary conditions and is able to move horizontally one unit per time
step (see Figure 2A). Note that compared to van Dartel et al. (2005), we
doubled the vertical size of the arena in order to give the agent more time
to assess the direction of the falling block. The agent has four upward-
looking sensors. The state of a sensor is si = +1 when a block is detected and
si = 0 if no block is seen. The arrangement of the agent’s sensors does not
allow it to unambiguously identify the falling block from three out of eight
possible input states (counting the input where no sensors are active). Only
the input states S = (s0, s1, s2, s3) = (0, 1, 1, 0), (0, 1, 0, 0), and (0, 0, 1, 0) are
unambiguous. The first classifies a large block that is positioned right above
the agent so that the second and the third sensors are in state s1 = s2 = 1,
while the remaining two units of the block are positioned above the two
nonsensing units. The other two patterns identify similarly positioned small
blocks. All other five input states can be created by a small block, a big block,
or no block at all (see Figure 2B). At each trial, a block of either small (two
units) or large size (four units) falls from top to bottom in 20 time steps. The
blocks move continuously downward and sideways one unit per time step.
Blocks always move to either the right or the left. An object is caught if the
position of the block’s units and the agent’s units at time step 20 overlap in
at least one unit.

For the information-theoretic characterization of correlations, we have
to assign probabilities to the possible states of the world. Theoretically, a
falling block can be in any of 20 different starting positions, large or small,
and falling left or right, giving rise to 80 possible experimental initial con-
ditions. While the agent can be in any of 20 initial positions, the periodic
boundary conditions ensure that each of them is equivalent, given the 20
initial positions of the falling block. Because there are 20 time steps before
the block reaches the bottom row, there are in total 1600 possible different
states the world can be in. We do not expect that all of these states will be
discriminated by the agent, so instead we introduce a coarse graining of the
world by introducing four bits that we believe capture salient aspects of the
world. We define the environmental (joint) variable E = E0E1E2E3 to take on
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Figure 2: (A) In the simulation, large or small blocks fall diagonally toward
the bottom row of a 20 × 20 world, with the agent on the bottom row. For the
purpose of illustrating the task, a large brick (to be avoided) is falling to the left,
while a small brick (to be caught) is falling to the right. In simulations, only one
block is falling at the time, and both small and large bricks can fall to either the
left or the right. (B) A depiction of the agent’s neurons (bottom left: triangles
depict sensors, circles illustrate brain neurons, and trapezoids denote actuators)
and the sequence of activity patterns on the agent’s four-bit retina (right) as a
large brick falls to the right.
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Table 1: Coarse Graining of World States into the Four bits E0, E1, E2, E3.

World State World Character

E0 = 0 No sensor activated
E0 = 1 At least one sensor activated
E1 = 0 Block is to the left of agent
E1 = 1 Block is to the right of agent
E2 = 0 Block is two units (small)
E2 = 1 Block is four units (large)
E3 = 0 Block is moving left
E3 = 1 Block is moving right

Notes: E1 could be ambiguous in case the block is centered
over the agent or exactly 10 units away. We resolve this am-
biguity by setting E1 = 0 when the block is centered over the
agent, and E1 = 1 when it is exactly 10 units away.

states as defined in Table 1. Of course, this encoding reveals a bias in what
we, the experimenters, believe are salient states of the world, and it certainly
underestimates the amount of “discoverable” entropy. However, in hind-
sight, this coarse graining appears to be sufficient to capture the essential
variations in the world and furthermore lends itself to study which aspects
of the world are being represented within the agent’s network controller
by defining representations about different aspects i of the world as the
representation Ri = H(Ei : M|S). Thus, we will study four representations,

Rhit = H(E0 : M|S), (2.10)

RLR = H(E1 : M|S), (2.11)

R4/2 = H(E2 : M|S), (2.12)

R+/− = H(E3 : M|S), (2.13)

that represent whether the sensor has been activated (see equation 2.10),
whether the block is to the left or the right of the agent (see equation 2.11), if
the block is large (size 4) or small (size 2) (see equation 2.12), or whether the
block is moving to the left or right (see equation 2.13). We can also measure
how much (measured in bits) of each binary concept is represented in any
particular variable. For example, RLR(node 12) = H(E1 : M12|S) measures
how much of the “block is to my left or to my right” concept is encoded in
variable 12.

2.3 Two Architectures for Cognitive Systems. The agent is controlled
by a cognitive system, composed of computational units (loosely referred
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to as neurons from here on) that map sensor inputs into motor outputs.
The cognitive system also has neurons that are internal (a hidden layer),
which are those neurons that are not part of the input or the output layer.
We further define sensor neurons as the neurons that directly process the
input (the input layer), and we define output neurons as the units that do
not map to other units in the network or to themselves (the output layer).

2.3.1 Artificial Neural Networks with Evolvable Topology. In our first exper-
iment, the robot’s movements are controlled by an artificial neural network
(ANN) that consists of 16 nodes: 4 input units (one for each sensor), 2 output
units, and 10 hidden units. The states of the input units are discrete with
values [+1,−1] specifying whether an object is detected. The states of the
output units (or actuators) are discrete with integer values A = a ∈ [0, 1]
encoding one of three possible actions: move one unit to the right or
left, or do not move (A1A2 = 00: stand still; A1A2 = 01: move right; A1A2 =
10: move left; A1A2 = 11: stand still. While the hidden units’ states mi are
continuous with values [−1.0, 1.0], when evaluating these states to calcu-
late R, we discretize them to binary (values below 0.0 become 0; every
other value becomes 1). As discussed earlier, this discretization does not
introduce a bias in the value of R.

Usually classic ANNs have a fixed topology—one or more layers and
their connections are defined and associated with a weight. In a previous
experiment, we found that such fixed topologies lead to approximately
constant R even as the fitness of the agent increases (data not shown).
One way to increase the complexity of the network and the information
it represents is to evolve a network’s topology as well as the connection
weights. We make the network topology evolvable beyond searching the
connection weights by using neuronal gates (NG). An NG can arbitrarily
connect nodes of any type (input, hidden, and output nodes) without the
fixed layered topology of classic ANNs. Each connection is associated with
a certain weight. An NG calculates the sum of the values from a set of
incoming nodes m(k)

j via gate k, multiplied by the associated weight w(k)
j ,

and applies a sigmoid function to calculate its output m,

m(t + 1) = tanh




n∑

k=1

∑

j=1

w(k)
j m(k)

j (t)



 , (2.14)

where the sum over j runs over all the neurons that feed into gate k. This
value m is then propagated to every node this NG is connected to.

To apply a genetic algorithm to this system, each ANN is encoded
in a genome as follows. A start codon of two loci marks the beginning
of an NG, the subsequent two loci encode the NG’s number of inputs
and outputs, and two further loci specify the origin of the inputs (which
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neuronal
gate 1

neuronal
gate 2

W1 W2 W3 W4 W1 W2 W3 W4

t+1

in hidden out

Figure 3: Open-topology artificial neural network, with 4 input neurons (light
gray), 10 hidden neurons (white), and 2 motor neurons (dark gray). The nodes
are connected via two neuronal gates (NG). Each NG connects 4 arbitrary input
nodes with weight W to 4 output nodes. This figure illustrates how the nodes
become updated from time point t to t + 1. When two NGs write into the same
node, their outputs are added (indicated by

∑
) before the sigmoid function is

applied.

neurons feed into the gate) and the outputs (where the NG writes into).
This information is then followed by an encoding of the n weights of an
n-input NG (see Figure 3). The number of gates in the network can change
as it evolves and is determined only by the number of start codons in the
genome. The genomes encoding these ANNs can undergo the same muta-
tional changes as described later in the MB section. In this respect, evolving
open-topology ANNs is similar to using evolutionary algorithms (such as
NEAT; see Stanley & Miikkulainen, 2002) to evolve neural networks with
augmented topology.

2.3.2 Markov Brains. In our second experiment, the agent is controlled
by a network of 16 nodes (4 input, 2 output, and 10 internal nodes, with the
same types and number of nodes as the ANNs), which are connected via
hidden Markov gates (HMGs; see Edlund et al., 2011). Networks of HMGs
(Markov brains, MBs) are a type of stochastic Markov network (Koller &
Friedman, 2009) and are related to the hierarchical temporal memory model
of neocortical function (Hawkins & Blakeslee, 2004; George & Hawkins,
2005, 2009) and the HMAX algorithm (Riesenhuber & Poggio, 1999), except
that Markov brains need not be organized in a strictly hierarchical manner
as their connectivity is evolved rather than designed top down.
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Figure 4: (A) A single HMG with three inputs and two outputs reads from
nodes 1, 2, and 3 and writes to nodes 3 and 4, updating the states of these
nodes in the process. (B) The output states are determined by a set of 23+2

probabilities, here denoted as pxy, where x and y are the decimal equivalent of
the binary pattern of the input and output, respectively. For example, p73 is the
probability for the pattern 11 to fire if the input was 111, that is, P(11|111) = p73.

Each HMG can be understood as a finite state machine that is defined
by its input-output structure (see Figure 4A) and a state transition table
(see Figure 4B). All nodes in Markov brains are binary, and in principle the
HMGs are stochastic, that is, the output nodes fire (i.e., are set to state 1)
with a probability determined by the state-to-state transition table. Here,
each HMG can receive up to four inputs and distribute signals to up to
four nodes, with a minimum of one input and one output node (these
settings are configurable). For the evolution of the ACP task, we consider
only deterministic HMGs (each row of the transition table contains only one
value of 1.0, and all other transitions have a probability of 0.0), turning our
HMGs into classical logic gates. In order to apply an evolutionary algorithm,
each HMG is encoded in a similar way as the NGs using a genome that
specifies the network as a whole. Each locus of the genome is an integer
variable ∈ [0, 255]. Following a start codon (marking the beginning of a
gene, where each gene encodes a single HMG), the next two loci encode
the number of inputs and outputs of the gate, respectively, followed by a
specification of the origin of the inputs and the identity of the nodes being
written to.

For example, for the HMG depicted in Figure 4, the loci following the
start codon would specify “3 inputs”, “2 outputs”, “read from 1,2,3”, “write
to 3,4.” This information is then followed by an encoding of the 2n+m proba-
bilities of an n-input and m-output state transition table (see supplementary
Figure S1 in Edlund et al., 2011, for more details). For the example given
in Figure 4, the particular HMG is specified by a circular genome with 39
loci (not counting the start). The start codon is universally (but arbitrarily)
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chosen as the consecutive loci (42,213). Because this combination occurs
only by chance once every 65,536 pairs of loci (making start codons rare),
we insert four start codons at arbitrary positions into a 5000 loci initial
genome to jump-start evolution. Thus, the ancestral genomes of all experi-
ments with Markov brains encode at least 4 HMGs. A set of HMGs encoded
in this manner uniquely specifies the Markov brain. The encoding is robust
in the sense that mutations that change the input-output structure of an
HMG leave the probability table intact, while either adding or removing
parts of the table. This flexibility also implies that there is considerable neu-
trality in the genome, as each gene has 256 loci reserved for the probability
table even if many fewer loci are used.

MBs and ANNs differ with respect to the gates connecting the nodes in
each network. ANNs use weights, sums, and a tanh function, together with
continuous variables, to compute their actions. In contrast, MBs use discrete
states and Boolean logic to perform their computation. Using a very similar
encoding of the topology means that mutations will have a similar effect
on the topology of both systems but different effects on the computations
each system performs.

2.4 Evolutionary Algorithm. We evolve the two types of networks
(ANNs and MBs) using a genetic algorithm (GA). A GA can find solu-
tions to problems by using evolutionary search (see Michalewicz, 1996).
The GA operates on the specific genetic encoding of the networks’ struc-
ture (the genotype) by iterating through a cycle of assessing each network’s
fitness in a population of 100 candidates, selecting the successful ones for
differential replication, and finally mutating the new candidate pool. When
testing a network’s performance in controlling the agent, each network is
faced with all 80 possible initial conditions that the world can take on. The
fitness w is calculated as the fraction of successful actions (the number of
large blocks avoided plus the number of small blocks caught) out of 80
tests (a number between 0 and 1). For the purpose of selection, we use
an exponential fitness measure that multiplies the score by a factor 1.1 for
every successful action but divides the score by 1.1 for every unsuccessful
action, or S = 1.180(2w−1). After the fitness assessment, the genotypes are
ranked according to S and placed into the next generation with a proba-
bility that is proportional to the fitness (roulette wheel selection without
elite). After replication, genotypes are mutated. We implemented three dif-
ferent mutational mechanisms that all occur after replication, with different
probabilities. A point mutation happens with a probability of µ = 0.005 per
locus and causes the value at that locus to be replaced by a uniform random
number drawn from the interval [0, . . . , 255]. There is a 2% chance that we
delete a sequence of adjacent loci ranging from 256 to 512 in size and a 5%
chance that a stretch of 256 to 512 adjacent loci is duplicated (the size of the
sequence to be deleted or duplicated is unformly distributed in the range
given). The duplicated stretch is randomly inserted between any two loci in
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the genome. Duplications and deletions are contrained so that the genome
is not allowed to shrink below 1024 sites and genomes cannot grow beyond
20,000 sites. Because insertions are more likely than deletions, there is a
tendency for genomes to grow in size during evolution.

We evolve networks through 10,000 generations, and run 200 replicates
of each experiment. Note that the type of gates is different between ANNs
(neuronal) and MBs (logic), so the rate of evolution of the two networks
cannot be compared directly because mutations will have vastly different
effects with respect to the function of the gates. Thus, the optimal mutation
rate differs among networks (Orr, 2000). At the end of each evolutionary
run, we reconstruct the evolutionary line of descent (Lenski, Ofria, Pennock,
& Adami, 2003) of the experiment by following the lineage of the most
successful agent at the end of 10,000 generations backward all the way to
the random ancestor that was used to seed the experiment. This is possible
because we do not use crossover between genotypes in our GA. This line of
descent, given by a temporally ordered sequence of genotypes, recapitulates
the unfolding of the evolutionary process, mutation by mutation, from
ancestor to the evolved agent with high fitness, and captures the essence of
that particular evolutionary history. For each of the organisms on each of
the 200 lines of descent of any particular experiment, we calculate a number
of information-theoretic quantities, among which is how much of the world
the agent represents in its brain, using equation 2.5.

2.5 Extracting Probabilities from Behavior. The inputs to the
information-theoretic measure of representation R are the probabilities of
observing a particular state x, p(x), as well as the joint probabilities p(x,y)
describing the probability of observing a state x when at the same time
another variable Y takes on the state Y = y. For the representation R de-
fined by equation 2.5, sensor, internal, and environment variables are dis-
tinguished. For any particular organism (an agent that performs the ACP
task with an evolved controller), R is measured at any point during the
evolution by placing the organism into the simulated world and concur-
rently recording time series data of the states of all 16 controller nodes and
the states of the environment. The recordings are then used to calculate
the frequency of states. Based on the frequencies of states, all probabili-
ties relevant for the information-theoretical quantities can be calculated,
including those that take into account the temporal order of events (e.g.,
the probability p(xt, yt+1) that variable Xt takes on state xt while variable
Yt+1 takes on the state yt+1). If a particular state (or combination of states)
never occurs, a probability of zero is recorded for that entry (even though
in principle the state or combination of states could occur). R (and the other
information-theoretic quantities introduced in section 3) is calculated for
organisms on the evolutionary line of descent, making it possible to follow
the evolutionary trajectory of R from random ancestor to adapted agent. For
ANNs that have internal nodes with continuous rather than binary states, a
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mapping of intervals [−1, 0] → 0 and ]0, 1] → 1 is applied before calcula-
tion of probabilities.

3 Results

To establish a baseline, 100,000 random controllers for each of the two net-
work types were created, and the distributions of R and fitness values were
obtained. This baseline served two purposes: it shows how well randomly
generated (unevolved) networks perform and how much information about
the world they represent by chance, as well as providing information about
the distribution of these values. Random ANNs and MBs were created in
the same way by randomly drawing values from a uniform probability
distribution of the integers ∈ [0, 255] for each of the genome’s loci. Each
genome was then sprinkled with four start codons at arbitrary positions
within the genome.

Figure 5A shows the distribution of fitness scores w for 100,000 random
ANNs, and Figure 5B shows the distribution of their representation R. The
respective distributions for MBs are shown in Figure 5C for fitness scores
and in Figure 5D for representation. While both systems use different types
of gates, ANNs and MBs do not differ with respect to their initial fitness or
representation distributions. This shows that random genomes with a high
fitness are—as expected—very rare and need to evolve their functionality
in order to perform optimally.

In order to compare the two network architectures, the evolutionary
trajectories for fitness and representation were analyzed for the evolution-
ary line of descent (LOD) as described in section 2.4. The different LODs
obtained from following back any other member of the final population
quickly coalesce to a single line. Hence, the LOD effectively recapitulates the
genetic changes that led from random networks to proficient ones. The de-
velopment of fitness and representation over evolutionary time in Figure 6
is averaged over 200 independent replicates. While both ANNs and MBs
have on average low fitness at the beginning of an evolutionary run (as seen
in Figure 5), MBs become significantly more fit than ANNs, and we find
that after 10,000 generations, 18 out of 200 runs MBs have evolved to perfect
fitness, while none of the ANNs reached this level (the best ANNs correctly
make 77 out of 80 decisions). At the same time, we see that the fitness of
the ANNs after 10,000 generations is not stagnating, which suggests that
more run time will allow further improvement. As previously mentioned,
the rate at which fitness is achieved in evolutionary time cannot be com-
pared across architectures because mutations affect the function of the gates
differently. While we tentatively explain the difference in performance be-
tween ANNs and MBs by their difference in representing the world below,
we anticipate that the different network architectures also solve the catego-
rization task very differently. To understand the information dynamics and
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Figure 5: Probability distribution of fitnesses and representation scores of ran-
dom machines. (A) Probability distribution of fitnesses (fraction of successful
actions) p(w)dw = P(w < W < w + dw) for 100,000 random ANNs (dw = 1/80)
(B) Probability distribution of the representation variable R for the same random
ANNs p(r)dr = P(r < R < r + dr), with dr = 0.02. (C) Distribution of fitnesses
for 100,000 random Markov brains (dw = 1/80). (D) Distribution of representa-
tion R in the same MB networks (dr = 0.02).

the strategies employed in more detail, we measured a number of other
information-theoretic measures (besides R).

The evolutionary trajectory for representation R (see Figure 6B) is similar
to the evolution of fitness (see Figure 6A), but MBs evolve to a significantly
higher value of R. We attribute this difference to the difference in fitness
between the two types of networks, as the discretization of the continuous
ANN variables cannot introduce a bias in R. Thus, it appears that an in-
creased representation of the world within an agent’s network controller
correlates with fitness. We can test this correlation between fitness and rep-
resentation at the end of a run for the 200 replicates of MBs and ANNs and
find that fitness and R are significantly correlated (Spearman’s r = 0.55,
P = 2.5 × 10−17) for MBs but not for ANNs (r = −0.10, P = 0.15). We spec-
ulate that because ANNs are forced to compute using a sigmoid function
only (effectively implementing a multiple-AND gate) while MBs can use
arbitrary logic operations to process data, ANNs struggle to internalize (i.e.,
represent) environmental states. In other words, it appears that the ease of
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Figure 6: (A) Fitness w and (B) representation R (in bits) along the line of de-
scent as a function of evolutionary generations, averaged over 200 independent
evolutionary lines, for evolved networks (ANNs: black; MBs: gray).

memory formation is crucial in forming representations, which are then
efficiently transformed into fit decisions in MBs (Edlund et al., 2011).

3.1 Analysis of Network Structures and Strategies. In order to be suc-
cessful at the task described, an agent has to perform active categorical
perception followed by prediction. In the implementation of the ACP task
by Beer (1996, 2003), prediction can be achieved without memory, because
once the network has entered the attractor representing a category, the pre-
diction (to move away or to stay) can be directly coupled to the attractor.
The task used here can be achieved only using memory (data not shown)
and requires the agent to perform categorical perception by comparing sen-
sory inputs from at least two different time points (which also allows a
prediction of where the object is going to land).

In order to analyze how information is processed, we calculated the
predictive information (Bialek, Nemenman, & Tishby, 2001) of the evolved
networks, given by the mutual Shannon information between the network’s
inputs at time t and its outputs at time t + 1. Predictive information, defined
this way (Ay, Bertschinger, Der, Guettler, & Olbrich, 2008), measures how
much of the entropy of outputs (the firings of motor neurons that control
the agent) can be understood in terms of the signals that have appeared in
the agent’s sensors just prior to the action. Indirectly, predictive information
therefore also indicates the contribution of the hidden nodes of the network.
A high predictive information would show that the hidden nodes do not
contribute much and that computations are performed mainly by input and
output neurons. Using the variable S for sensor states and A for actuator
states, the predictive information can be written in terms of the shared
entropy between sensor states at time t and motor states at time t + 1 as

Ipred = I(St : At+1) = −
∑

st ,at+1

p(st, at+1) log
p(st, at+1)

p(st )p(at+1)
, (3.1)
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Figure 7: Different measures of information processing and integration along
the LOD for both types of network architectures: ANNs (black) and Markov
brains (gray). (A) Predictive information, equation 3.1. (B) Unpredicted entropy,
equation 3.2 of the network’s motor variables. (C) Information integration SIatom
based on equation 3.3.

where p(st ) = P(St = st ) is the probability of observing variable St in state
st, p(at+1) = P(At+1 = at+1) is the probability observe variable At+1 in state
at+1, and so on. Note that St and At+1 are joint random variables created
from the variables of each node, implying that St can take on 16 different
states while At+1 can take on 4 possible states. The probabilities are extracted
from time series data as described in section 2.5. Figure 7A shows that over
the course of evolution, the predictive information Ipred decreases for MBs
after an initial increase but increases slightly overall for ANNs. The drop in
predictive information for the MBs indicates that their actions become less
dependent on sensor inputs and are driven more by the hidden neurons,
while the ANNs’ actions remain to be predictable by sensor inputs.
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To test whether it is the internal states that increasingly guide the agent,
the predictive information was subtracted from the entropy of the output
states (maximally two bits) to calculate the unpredicted entropy of the
outputs, that is, how much of the motor outputs are uncorrelated to signals
from the input:

Hunpred = H(At+1) − Ipred = H(At+1|St ) . (3.2)

Figure 7B shows that Hunpred increases over the course of evolution, sug-
gesting that indeed signals other than the sensor readings are guiding the
motors. In principle, this increase could be due to an increase in the motor
neuron entropy; however, as the latter stays fairly constant, we can conclude
that the more a network adapts to its environment, the less its outputs are
determined by its inputs and the more by its internal states. Again, this
effect is stronger for MBs than for ANNs and suggests that it is indeed
the internal states that encode representations that drive the network’s be-
havior. It is also possible that the motors evolve to react to sensor signals
further back in time. Because sensor neurons cannot store information, such
a delayed response also has to be processed by internal states. While the
absolute value of the predicted information and unpredicted entropy can
depend on this time delay, we expect the overall trend of a decreasing Ipred
coupled with an increasing Hunpred to be the same as for the one-step pre-
dictive information, because the sensorial signal stream itself has temporal
correlations, that is, it is nonrandom.

To quantify the synergy of the network, we calculated a measure of in-
formation integration called synergistic information. Roughly speaking, syn-
ergistic information measures the amount of information that is processed
by the network as a whole that cannot be understood in terms of the infor-
mation processing of each individual node; that is, it measures the extent
to which the whole network is—informationally—more than the sum of its
parts (Edlund et al., 2011):

SIatom = I(Xt : Xt+1) −
n∑

i=1

I(Xi
t : Xi

t+1) . (3.3)

In equation 3.3, I(Xt : Xt+1) measures the amount of information that is
processed (across time) by the whole network X (the joint random variable
composed of each of the node variables), whereas I(Xi

t : Xi
t+1) measures how

much is processed by node i. The negative of equation 3.3 has been used
before, to quantify the redundancy of information processing in a neural
network (Atick, 1992; Nadal & Parga, 1994; Schneidman et al., 2003). SIatom
is a special case of the information integration measure " (Tononi, 2008;
Balduzzi & Tononi, 2008), which is computationally far more complex than
the SIatom because it relies on computing information integration across
all possible partitions of a network. SIatom instead calculates information
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integration across the “atomic” partition only, that is, the partition where
each node is its own part. Figure 7C shows that the SIatom increases for
Markov brains as well as for ANNs, which indicates that both architectures
evolve the ability to integrate information to perform the task at hand. We
see only a marginal difference between MBs and ANNs in their ability to
integrate information, while at the same time MBs are more dependent on
internal states and ultimately perform better. This suggests that measuring
integrated information in terms of equation 3.3 does not allow inferences
about a system’s capacity to memorize. In summary, we observe that MBs
evolve to become less dependent on sensorial inputs than ANNs; in addi-
tion, the actions of the MBs become more dependent on internal states than
in ANNs. Thus, we conclude that the network properties that R measures
are indeed representations that the networks create as an adaptive strategy.
But how do the networks represent their environments? Which features of
the world are represented and form the successful task-solving strategies?

3.2 Epistemically Opaque Strategies. In order to analyze a Markov
brain’s function, a number of different tools are available. First, a causal
diagram can be generated by drawing an edge between any two neurons
that are connected via an HMG. The edges are directed, but each edge
can in principle perform a different computation. When creating the causal
diagram, nodes that are never written into by any other nodes are removed,
as they are computationally inert (they remain in their default off state).
Such nodes can also be identified by a knockout procedure, where the
input of each node is forced to either the 0 or 1 state individually. If such a
procedure has no effect on fitness, the node is inert.

Figure 8 shows the causal diagram of an evolved Markov brain that
solves the classification task perfectly. This network uses inputs from the
sensors, motors, and memory simultaneously for decisions, fusing the dif-
ferent modalities intelligently (Murphy, 1996).

The causal diagram by itself, however, does not reveal how function
is achieved in this network. As each HMG in the instantiation represents
a deterministic logic gate (generally, they are stochastic), it is possible to
determine the logical rules by which the network transitions from state to
state by feeding the state-to-state transition table into a logical analyzer
(Rickmann, 2011). The analyzer converts the state transition table into the
minimal description of functions in Boolean logic using only NOT, AND (∧),
and OR (∨). With these functions we can exactly describe each node’s logical
influence on other nodes (and possibly itself). For the network depicted in
Figure 8, the logic is given by (here, the numeral represents the node, and its
index the state at time t0 or the subsequent time point t1, while an overbar
stands for NOT):

4t1 = (2t0 ∧ 5t0) ∨ (2t0 ∧ 6t0),

5t1 = (2t0 ∧10t0 ∧12t0)∨ (10t0 ∧12t0 ∧14t0) ∨ (2t0 ∧10t0 ∧12t0 ∧14t0),
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Figure 8: Causal diagram of a Markov brain with perfect fitness, correctly
catching all small blocks and avoiding all large ones. Nodes colored in black
are sensors; motor variables are gray. Double arrows represent two causal
connections—one each way. Nodes with arrows that point to themselves write
their output back into their input and may work as memory (all nodes return
to a default 0 if not set otherwise by each update), so state information can
be maintained only via such self-connections). Internal nodes can read from
motors, giving rise to proprioception or, more precisely, kinesthesia: the ability
to sense one’s own motion. The motors themselves can be used as memory.

6t1 = 4t0 ∧ (0t0 ∨ 6t0),

7t1 = (2t0 ∧ 12t0) ∨ (10t0 ∧ 12t0 ∧ 14t0),

10t1 = (2t0 ∧6t0) ∨ (2t0 ∧10t0 ∧14t0) ∨ (10t0 ∧12t0 ∧14t0) ∨ (2t0 ∧14t0),

∨(3t0 ∧ 7t0 ∧ 10t0 ∧ 12t0 ∧ 14t0),

12t1 = (1t0 ∧ 7t0) ∨ (3t0 ∧ 7t0) ∨ (3t0 ∧ 7t0),

14t1 = (2t0 ∧ 10t0 ∧ 14t0) ∨ (2t0 ∧ 10t0 ∧ 12t0) ∨ (2t0 ∧ 10t0 ∧ 12t0),

15t1 = (3t0 ∧ 7t0) ∨ (0t0 ∧ 6t0) ∨ (4t0 ∧ 6t0) ∨ (0t0 ∧ 4t0 ∧ 6t0).

While this logical representation of the network’s dynamics is optimized
(and the contribution of inert nodes is removed), it is in general not possible
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to determine the minimal logic network based on state-to-state transition
information only, as finding the minimal logic is believed to be a compu-
tationally intractable problem (Kabanets & Cai, 2000). As a consequence,
while it is possible to capture the network’s function in terms of a set of
logical rules, we should not be surprised that evolution delivers epistem-
ically opaque designs (Humphreys, 2009), that is, designs that we do not
understand on a fundamental level. However, the strength of measuring
representations with R is that our measure is able to capture representations
even if they are highly distributed and take part in complex computations.
As such, R provides a valuable tool to analyze evolved neural networks, as
can be seen below.

3.3 Concepts and Memory. To understand what representations are
acquired (representations about which concepts), we calculated R for each
property of the environment defined in equations 2.10 to 2.13, within each
of the key nodes in our example network shown in Figure 8. For this net-
work, Figure 9 shows that some nodes prefer to represent given single
features or concepts, while others represent several features at the same
time. In addition, the degree to which a node represents a certain property
changes during the course of evolution. Looking at representation within
each individual node, however, tells only part of the story as it is clear
that representations are generally “smeared” over several nodes. If this is
the case, a pair of nodes (for example) can represent more about a feature
than the sum of the representations in each node (i.e., variables can rep-
resent synergistically). In order to discover which combination of nodes
represents which feature most accurately, a search over all partitions of the
network would have to be performed, much as in the search for the parti-
tion with minimum information processing in the calculation of a network’s
synergistic information processing (Balduzzi & Tononi, 2008).

One can also ask whether brain states represent the environment as it is
at the time it is being represented, or whether it represents the environment
in its past state. In other words, we can ask whether representations are
about more distant or more proximal events. To answer this, we define
temporal representations by including the temporal index of the Markov
variables. For example, a representation at the same time point t is defined
(as implicit in equation 2.5) as

Rt = H(Et : Mt |St ), (3.4)

while a representation of events one update prior is defined as

Rt−1 = H(Et−1 : Mt |St ), (3.5)



2102 L. Marstaller, A. Hintze, and C. Adami

0

 0.1

0.2

0.3

0.4

R
hi

t

node 4 node 5 node 6 node 7 node 10 node 12

0

 0.1

0.2

0.3

0.4

R
LR

0

 0.1

0.2

0.3

0.4

R
+/

-

0

 0.1

0.2

0.3

0.4

0 2 4 6 8

R
4/

2

gener. [103]
0 2 4 6 8

gener. [103]
0 2 4 6 8

gener. [103]
0 2 4 6 8

gener. [103]
0 2 4 6 8

gener. [103]
0 2 4 6 8

gener. [103]

Figure 9: Representation of each of the four environmental properties (con-
cepts) defined in equations 2.10 to 2.13. as a function of time, within each of
the nodes of a network that evolved to become the one depicted in Figure 8.
Representation is measured in bits, along the temporal (genetic) line of descent
(measured in generations).

that is, the shared entropy between the internal variables at time t and
the environmental states at time t − 1, given the sensor’s states at time
t. Naturally one can define temporal representations about more distant
events in the same manner. Rt, Rt−1, and Rt−2 were calculated and averaged
over all 80 experiments in each generation (for both ANNs and MBs) over
the course of evolution. Figure 10 shows that in both systems, Rt−1 is larger
than Rt, and Rt−2 is larger still (but note that Rt−3 is smaller; data not shown),
and all values increase over evolutionary time similar to R (see Figure 6B).
This suggests that both networks evolve a form of memory that reaches
further back than just one update.

We suggest that the peak in representation at a time difference of two
updates implied by Figure 10 can be explained by the hierarchical structure
of the networks, which have to process the sensorial information through
at least two time steps to reach a decision (it takes at least two time steps in
order to assess the direction of motion of the block). Decisions have to be
made shortly thereafter, however, in order to move the agent to the correct
location in time. This further strengthens our view that representations are
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Figure 10: Representation as a function of evolutionary time for three different
time intervals. (A) Representation in ANNs (black: Rt; dark gray: Rt−1; light
gray: Rt−2. (B) Representation in Markov brains (shading as in panel A). The
black curves are the same as in Figure 6B, and are shown here for the purpose
of comparison.

evolved and, furthermore, that they build up during an agent’s lifetime as
memories of past events shape the agent’s decisions.

4 Conclusion

We defined a quantitative measure of representation R in terms of informa-
tion theory as the shared entropy between the states of the environment and
internal “brain” states, given the states of the sensors. While internal states
are necessary in order to encode internal models, not all internal states are
representations. Indeed, representational information (which is about the
environment) is a subset of the information stored in internal states. In-
formation about the state of other past internal states or substates does not
count toward R, and neither would information about imagined worlds, for
example. Testing which nodes of the system contain representations about
what aspect of the environment helps us to distinguish between informa-
tion present in internal states and information that is specifically used as a
representation. We applied this measure to two types of networks that were
evolved to control a simulated agent in an active categorical peception task.
Our experiments showed that the achieved R increases with fitness dur-
ing evolution independent of the system used. We also showed that while
the (algorithmic) function of both artificial neural networks and Markov
networks is difficult to understand, deterministic Markov networks can
be reduced to sets of Boolean logic functions. This logic, however, may
be epistemically opaque. While representation R increases in networks
over evolutionary time, each neuron can represent parts of individual con-
cepts (features of the environment). However, most often concepts are dis-
tributed over several neurons and represent synergistically. In addition,
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representations also form over the lifetime of the agent, increasing as the
agent integrates information about the different concepts to reach a de-
cision. Thus, what evolves in Markov and artificial neural networks via
Darwinian processes are not the representations themselves; rather, what
evolves is the capacity to represent the environment, while the representa-
tions themselves are formed as the agent observes and interacts with the
environment. We argued that R can be measured in continuous (artificial
neural networks) as well as discrete systems (Markov networks), which
suggests that this measure can be used in more complex and more natural
systems. We found that in the implementation used here, Markov networks
were able to evolve their ability to form representations more easily than
artificial neural networks. Future investigations will show what kind of sys-
tem is more powerful to make intelligent decisions using representations.
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