
The structure of evolved representations across different substrates for artificial

intelligence

Arend Hintze1,2,3, Douglas Kirkpatrick2,3 and Christoph Adami3,4,5
1Department of Integrative Biology, Michigan State University

2Department of Computer Science and Engineering, Michigan State University
3BEACON Center for the Study of Evolution in Action, Michigan State University
4Department of Microbiology and Molecular Genetics, Michigan State University
5Program in Ecology, Evolution, and Behavior Biology, Michigan State University

Corresponding author: hintze@msu.edu

Abstract

Artificial neural networks (ANNs), while exceptionally use-
ful for classification, are vulnerable to misdirection. Small
amounts of noise can significantly affect their ability to cor-
rectly complete a task. Instead of generalizing concepts,
ANNs seem to focus on surface statistical regularities in a
given task. Here we compare how recurrent artificial neural
networks, long short-term memory units, and Markov Brains
sense and remember their environments. We show that infor-
mation in Markov Brains is localized and sparsely distributed,
while the other neural network substrates “smear” informa-
tion about the environment across all nodes, which makes
them vulnerable to noise.

Introduction

The quest to recreate human-level intelligence within a
computational substrate has gained traction in recent years,
mostly due to the advent of deep learning methods and
convolutional networks (Schmidhuber, 2015; Bengio et al.,
2015; Goodfellow et al., 2016). While the success of these
methods across a variety of different machine learning do-
mains cannot be denied, their suitability as a method to im-
plement artificial general intelligence has been questioned.
In the visual categorization field, convolutional neural net-
works (CNNs) were found to display intriguing vulnera-
bilities (Szegedy et al., 2014). In particular, the work of
Szegedy et al. (and many subsequent papers, see for exam-
ple Nguyen et al. (2015)) found that it was possible to cause
the network to misclassify an image by applying a certain
imperceptible perturbation to the image, implying that the
classification ability was not robust. Indeed, Szegedy et al.
(2014) suggested that the vulnerability might be connected
to the way that the semantic information about the objects to
be discriminated resides across the entire neural space rather
than in individual neural units. Jo and Bengio (2018) ven-
ture even further: they suggest that the extreme sensitivity of
high performance CNNs to adversarial examples casts seri-
ous doubt that these networks are learning any high level ab-
stractions in the dataset. In other words, when Jo and Bengio
are observing that CNNs are sensitive to “surface statistical

regularities” they are suggesting that CNNs are not intelli-
gent at all; that they have no fundamental concept of the
things that they are classifying. In the present work, we en-
deavor to shed some light on what it means for a network to
have an understanding of the situation it is presented with,
as opposed to a superficial reaction to the data set’s regulari-
ties. In order to do this, we have to delve into the concept of
representations.

Representations. In Machine Learning, the term “represen-
tation” refers to the internal encoding of data in terms of a
feature vector. As such, the term “representation” describes
a transformation of the image data (for example) into a form
that is more suitable for classification. Generally speaking,
these representations are meant to reduce the dimensionality
of the underlying data space. One of the defining features
of deep learning methods is that the optimal representations
are not designed, but rather are automatically discovered, in
a hierarchical manner. The term “representations” is, how-
ever, also used in a very different way within the field of
cognitive science. In that field, the word “representation”
refers to internal models not of data, but of concepts in
the world that are stored within the brain (see, for exam-
ple, Johnson-Laird and Wason (1977); Pinker (1989)). Here
(as in earlier work, Marstaller et al. (2013)), we understand
“representations” to refer specifically to information about
relevant features of the world encoded in the internal states
of an organism or brain, information that goes beyond what
is perceived in the agent’s sensors (Haugeland (1991); Clark
(1997)). This implies in particular that representations can
sometimes misrepresent (Haugeland, 1991), quite unlike in-
formation present in sensors that always truthfully reflects
the environment. Thus, in cognitive science, representations
are context-dependent and refer to objects and concepts in
the real world, as opposed to the ML term that instead refers
to compressed versions of input data. In the following, we
exclusively use the term “representation” with the meaning
from cognitive science, and explore how these internal mod-
els are stored quite differently within the artificial neurons
or nodes of different computational substrates.

Information theory. To quantify the structure of represen-

tations, we need to be able to measure them. In previous
work (Marstaller et al., 2013) we succeeded in giving an
information-theoretic foundation to the term representation,
as the information that internal brain states have about con-
cepts in the world given the sensory data. By inspection
of the information-theoretic Venn diagram relating the en-
tropies of world states W , internal brains states B, and sen-
sor states S (see Fig. 1), the representation R (how much the
brain knows about the world given the sensory data) can be
written as

R = H(W : B|S) = H(W : B) � I(W : B : S) . (1)

In Eq. (1), H(W : B) refers to the shared Shannon en-
tropy between world states and brain states, and I(W :
B : S) stands for the information shared between world,
brain, and sensors, something that Phillips and Singer (1997)
have called “coherent information”1. But while Phillips and
Singer assume that evolutionary processes have maximized
coherent information (Phillips et al., 1994), it turns out that
this quantity is for the most part negative, and it is instead R
that is maximized (Marstaller et al., 2013).

R

W B

S

H(W |S, B) H(B|W, S)

I(S : B|W)

H(S|W, B)

I(W : B : S)

I(W : S|B)

Figure 1: Venn diagram of entropies and informations for
the three random variables W , S, and B, describing the
world, sensor, and agent internal (brain) states. The rep-
resentation R = H(W :B|S) is shaded.

Brains, Dynamical Worlds, and Evolution. While a sig-
nificant fraction of work in the Deep Learning field deals
with the classification of static scenes (excepting Mnih et
al., 2015, and similar work on Deep Q-Learning) vertebrate
brains must compute sensory outputs in time, in a constantly
changing world. Furthermore, in such dynamic worlds there
are no “correct actions” that a supervised training algorithm
can use. While Deep Q-Learning algorithms can automat-
ically generate value functions that are near-optimal and
change over time, they have difficulty with long-range plan-
ning, and are likely to be as vulnerable to adversarial attacks
as their static CNN counterparts. Here, we take a differ-
ent approach. We focus on a behavioral task in a dynamic

1See Phillips and Singer (1997) or Marstaller et al. (2013) for
more details on how to calculate the relevant information-theoretic
terms going into the definitions used here.

world that requires memory (the Active Categorical Percep-
tion Task, described below), and use Darwinian evolution to
optimize the control structures. We will focus on three dif-
ferent computational substrates that are capable of memory:
recurrent neural networks (RNNs), Long Short-Term Mem-
ory (LSTM) networks (Schmidhuber, 2015), and Markov
Brains (Hintze et al., 2017), and compare the structure and
distribution of their internal representations. We note that
the Hierarchical Temporal Memory (HTM) approach to cog-
nitive computing (Hawkins and Blakeslee, 2004; George and
Hawkins, 2009) shares many properties with Markov Brains
(by design), but we do not investigate their properties here.

Material and Methods

Active Categorical Perception Task. In this classic
task (Beer, 1996, 2003; van Dartel, 2005; van Dartel et al.,
2005; Marstaller et al., 2013; Albantakis et al., 2014) a mo-
bile agent has to catch or avoid blocks that move towards it.
The agent sits on a rail and can only move left or right, with
periodic boundary conditions. The stage is 16 steps (units)
wide and blocks are dropped from the top, which is 32 steps
away. At every update, the blocks move one step closer but
also sideways to the left or right. Blocks of size two have to
be caught, while blocks of size four have to be avoided. The
agent perceives the environment and approaching blocks by
using four upward facing sensors. The agent is six units
wide, and has two sensors on the left and two on the right
side of its body leaving a blind spot in the middle. In order
to perceive the size and direction of the approaching block
properly, the agent has to first maneuver to an appropriate
location, observe the block for a couple of updates, and then
make a decision whether to catch or avoid the block (see
Figure 2). When evolving an agent to perform this task, we
assess performance using all 64 possible start conditions (2
sizes, 2 directions, 16 start locations). For scoring, we use
an exponential fitness function that multiplies the score by
1.05 for every successful action, and divides the score by
1.05 for every mistaken action (see Marstaller et al., 2013,
for more details).
Markov Brains. Markov Brains are networks of logi-
cal elements that connect inputs and outputs via internal
states (Hintze et al., 2017). Traditionally, the logical ele-
ments are deterministic or probabilistic logic gates. Here we
only use deterministic logic gates, which we set up to have
between 1 and 4 inputs and between 1 and 4 outputs. These
gates read from and write into inputs, outputs, and hidden
states. Note that writing into an input has no effect.

A genome is used to encode the logic and connectivity of
each gate. Point mutations (implemented with a per-site mu-
tation rate of 0.005), deletions (p = 0.0002 times genome
length), and gene duplications (p = 0.0002 times genome
length) are applied every time an offspring is created by the
genetic algorithm to populate the next generation. To be-
gin evolution, genomes containing 5,000 sites are generated

Figure 2: A: Large or small blocks fall one at a time diag-
onally toward the bottom row of a 16 ⇥ 32 discrete world,
with the agent on the bottom row. In this illustration, a large
brick is falling to the left, while a small brick is falling to the
right (in simulations, only one block is falling at the time,
and any one brick can fall to the left or to the right). In
this world, agents are rewarded for catching small blocks
and punished for catching large blocks. B: A depiction of
the agent’s states (bottom left: triangles depict sensors, cir-
cles illustrate brain (internal) states, trapezoids denote actu-
ators) and the sequence of activity patterns on the agent’s
4-bit retina (right), as a large brick falls to the right. Repro-
duced from Marstaller et al. (2013), with permission.

randomly (genome size is constrained to between 5,000 and
20,000 sites). Duplications and deletions occur in chunks
of 256 to 512 sites, with the number of sites drawn from
a uniform random distribution. The task requires four sen-
sor inputs, two motor outputs, and we use 10 hidden states.
For a more detailed description of Markov Brain technol-
ogy, see Hintze et al. (2017). All computational evolution-
ary experiments were performed using the MABE frame-
work (Bohm et al., 2017).
LSTM networks. Long-short-term-memory (Hochreiter
and Schmidhuber, 1997) artificial neural networks (LSTM)
implement recurrence in a special way (see Figure 3). In-
stead of “just” looping outputs back to inputs, the LSTM
uses two different streams of recurrence (h and C) as well
as more complex modification and internal update rules, and
as such greatly deviate from a classical layered model of
ANNs (Russell et al., 2003). LSTMs have been shown to
solve tasks that require memory (recurrence) very well when

σ σ tanh σ

tanh

X

X +

X

output/motors

input/sensors

t-1 t+1

h

C

O

I

Figure 3: Overview of an LSTM. The input nodes I are joint
with a set of recurrent states h. These joint states are used in
four different computations. Like in a regular ANNs these
inputs are multiplied with four different sets of weights and
aggregated using a summation function. The results are then
used in four different activation functions (green boxes, sig-
moid �, hyperbolic tangent tanh). The resulting output vec-
tors are further multiplied (blue box X) or added (blue box
+) with each other or another set of recurring hidden states
C. The outputs O and the two new recurring hidden states
Ct+1 and ht+1 are now the result of the prior computations.

using Deep Learning (Schmidhuber, 2015). Here, like in the
MBs, we use a genome to encode each weight required for
the LSTM. The genome for the LSTM networks can mutate
in the same ways as for the MBs. We use the same number
of inputs and outputs as for the MBs, but have the number of
hidden states (C and h) set to ten in order to have a compa-
rable hidden state space. Note that LSTMs use continuous
and not binary values.
Recurrent ANNs. An artificial neural network is typically
organized in layers of nodes, where the top layer receives
inputs and the bottom layer is interpreted as outputs (Rus-
sell et al., 2003). In between can be arbitrarily many and
arbitrarily large hidden layers, but all nodes from one layer
are always connected to all nodes of the next layer. The
state of each node after the input layer is defined by a trans-
fer function and a threshold function. Here we use a simple
perceptron rule, where the transfer function for each node
is the sum of all inputs times all weights, and the threshold
function is the hyperbolic tangent.

In order to make this ANN recurrent (i.e., an RNN), 10
extra nodes are added to the input and output layer. After
each update of the ANN the content of the recurrent nodes
is copied from the output layer back to the input layer (see
Figure 4).
Local and global representations. In order to quantify R
we have to record the states of the sensors, brain (internal)
states, as well as the state of the environment over time.

ALL to ALL

input

output

recurrent

recurrent

Figure 4: Overview of the RNN used. Four input nodes
are joined with 10 recurring hidden nodes. The next layer
is computed by summing over all inputs and weights and
applying a hyperbolic tangent function for all nodes of the
next layer. The first two nodes of the next layer serve as the
outputs, while the remaining 10 nodes are used to implement
the recurrence.

While we can simply record the sensor and hidden (brain)
states at every update, the world states require more atten-
tion. Although the world as a whole is in a specific state at
every time point, there is no obvious way to meaningfully
capture that the entirety of that state. We instead coarse-
grain the world states into significant concepts thought to be
relevant to the agent. From prior experiments (Marstaller
et al., 2013; Schossau et al., 2015) we know that in order for
the agent to solve the task it needs to know whether the block
is small or large, if the block’s position is to the agent’s left
or to the right, and whether the block is moving to the left or
right. This allows us to use these three categories to define
digital random variables Ws, Wl, and Wd, encoding block
size, location, and direction, respectively, and use them to
define a coarse-grained world variable. Once all those states
have been recorded, we can consider sensors S, brain states
B, and world states W as independent random variables.
This definition allows us to compute the total amount of in-
formation about the world stored in brain states given the
information from the sensors, which is R.

To determine how this knowledge (the knowledge about
the world stored in the representations) is distributed across
nodes, we also partition the brain states into the product ran-
dom variable B =

Q10
i=1 Bi, one for each hidden or recur-

rent node in the brain. This allows us to define concept-
specific representations in particular nodes, for example how
much of the concept of block size is represented in node i,
as the representation matrix Ms,i = H(Ws :Bi|S). By map-
ping out the representation matrix in concept x node space,
we can capture whether representations are smeared out over
all nodes (global), or whether they are localized to particular
brain regions.
Smeared Representations. The representation Matrix
shows how much information each node has about each
concept. A hand-designed brain that could solve the block
catching task would probably take advantage of discrete
mappings between nodes and concepts. Specifically, such
a brain would probably have one node per concept, while

0.2

0.3 0.5

locationsize

direction

min(0.3,0.5)

m
in(0.2,0.5)m

in(
0.

3,
0.

2)

S = 0.2
+0.2
+0.3

N

1)

2)

dir
size
loc

nodes

Figure 5: Illustration of how smearedness is computed. 1)
A node stores different amounts of representations about the
three concepts (direction 0.2 bits, location 0.5 bits, size 0.3
bits). The arrows indicate all pairwise comparisons, and for
each comparison the minimum of both values defines the
overlap in representations. All resulting values are summed.
2) Representation matrix. Each row of the matrix M is a
different concept, each column a different node.

the other nodes would be used to perform other computa-
tions necessary to solve the task. The representation matrix
M would consequently have very sparse and discrete repre-
sentations, while the rest of the matrix would be empty. As
we will show, evolved computational systems have smeared
representations, meaning that nodes store information about
multiple concepts at the same time (“concept-smearedness”
SC), and representations about concepts are also smeared
over multiple nodes (“node-smearedness” SN). As these
measures of smearedness are not universally we defined, we
offer a definition below. If a node has only representations
about one concept and no other, the information is discrete
and not smeared. Consider, in contrast, a node that has 0.2
bits of information about the direction, 0.3 bits of informa-
tion about the size, and 0.5 bits of information about the
location of the block. This node by our definition carries
a smeared concept representation, and these representations
may also be smeared across multiple nodes. The overlap be-
tween each concept pair is the minimum of the two values,
and the total amount of smearedness is thus the sum over all
pairwise minima (see Figure 5).

This allows us to quantify how smeared representations
are across nodes (columns), by summing over all nodes i
and for all combinations of concepts j and k:

SN =
X

i

X

j>k

min(Mji, Mki) (2)

Figure 6: Evolution of performance. The mean fitness W̄ of
Markov Brains (solid line), LSTMs (dashed line), and RNNs
(dotted line) over the line of descent (generations). The hori-
zontal dashed line indicates optimal performance (64 correct
choices out of 64). The gray shadows represent the standard
deviation. Averages are generated over all 400 replicate ex-
periments per brain type.

Similarly, we compute the smearedness of concepts
across nodes as the sum over all concepts i for all combi-
nation of nodes j and k:

SC =
X

i

X

j>k

min(Mij , Mik) (3)

Robustness. Later, when considering the quality and dis-
persion of representations, we must also assess how robust
these brains and their representations are to external noise.
To measure how robust each brain is against noise, each
evolved brain is tested over a range of possible noise lev-
els applied to the inputs. At each update, each sensor has a
probability p to receive a random input of 0 or 1 instead of
the input it would otherwise receive from the environment.
Each brain is tested 20 times for each different degree of
noise, and the performance is averaged over all replicates. A
perfectly robust brain should be able to tolerate a high de-
gree of noise before performance drops, while fragile brains
will lose performance at the smallest level of noise.

Results.

We evolved 400 independent populations of 100 agents for
each of the three brain types (MB, LSTM, and RNN) for
10,000 generations. After that, the line of descent (Lenski
et al., 2003) was reconstructed, and we confirm that evo-
lution converged appropriately (see Figure 6) over the first
7500 generations, meaning that further increase in perfor-
mance is minimal thereafter. Of those 400 replicate runs,
154 MBs, 64 of the LSTMs, and 130 of the RNNs attained
perfect performance. For the rest of this analysis, we will
only use those optimally performing agents (with the excep-
tion of Figure 13).

We find that over the course of evolution, LSTMs and
RNNs initially adapt faster than MBs but seem to struggle
slightly to achieve maximum performance (see Figure 7).

Figure 7: Evolution of fitness for those individuals that
evolve to be optimal performers. The mean fitness W̄ of
Markov Brains (solid line), LSTMs (dashed line), and RNNs
(dotted line) over the line of descent (generations). Averages
are generated over those replicates that resulted in an opti-
mal performer.

Figure 8: Evolution of representations. The mean R of 30
randomly chosen individuals that evolve to become optimal
performers, over generations: Markov Brains (solid line),
LSTMs (dashed line), RNN (dotted line). Standard error is
indicated as a grey shadow.

However, these differences might be explained by the dif-
ferent effects mutations to the genome have in the different
systems. We find that the total amount of representation for
the top performers increases over evolutionary time as ex-
pected (see Figure 8). We observed before (Marstaller et al.,
2013) that RNNs change the amount of representation only
slightly over time. The RNN is designed to maintain in-
formation about the environment, and thus probably has at
least some form of internal information, but must evolve to
use these representations. The LSTM and MB on the other
hand must first be optimized to carry representations, and
then evolve to integrate them into their future decisions.

Independently of the amount of each representation each
brain type has, the brain types might represent the environ-
ment differently. We therefore analyzed the amount of rep-
resentation each node has about each concept individually.
This creates a matrix (M) where each row reflects a concept,
and each column a hidden node of the system. Thus, each el-
ement of this matrix contains the information a specific node
has about a specific concept. By visual inspection, it seems

Figure 9: Comparison of representations across different
brain types. For each optimally performing brain we rear-
range the M matrix into a vector, where the first 10 elements
now contain the information of the 10 hidden states about
the size (size) of the falling block, the next 10 are about the
direction (dir) of the block falling, and the last 10 are about
the information if the block is to the right or left (location).
These vectors are stacked next to each other forming each
of the panels of the figure, corresponding to their brain type.
The normalized relative values of R derived from the M are
coded in grey, the brighter the higher the value, black for 0.0

as if the representations in the MB are much more distinct,
while in the LSTMs and even more so in the RNNs represen-
tations are much more “smeared” or distributed (see Figure
9). We have already seen that multiple nodes can be used
to represent a concept together (sparsely distributed repre-
sentations), however the extent to which LSTMs and RNNs
distribute their representations is surprising to us.

The difference in representation distribution might be ex-
plained by the way these brains work internally. In a MB the
logical elements can connect arbitrarily, and the topology
of the entire network can evolve, whereas in an LSTM and
RNN the topology is predefined, and generally speaking, ev-
erything is connected to everything else. This connectivity
is similar to a layer in a classic ANN where all nodes of one
layer are connected to all nodes of a following layer.

We also find that how representations evolve is different
between systems. When comparing, for example, how rep-
resentations about the concept of the direction the blocks are
falling changes over the course of generations, the difference
becomes most apparent (see Figure 10). In Markov Brains
specific hidden states are chosen early in the evolutionary
process to contain the information about the direction (see
Figure 10 top row). In RNNs more or less all states are
used to store information about the direction, even though
occasionally a couple of states seem to be preferred (see

Figure 10 bottom row). LSTMs fall between these two ex-
tremes (see Figure 10 middle row). They have a few states
containing information about specific concepts in the envi-
ronment, while still other states have additional information
“smeared”. In addition, LSTMs constantly change over the
course of evolution how strongly their hidden states repre-
sent concepts. This is not surprising when one considers
that mutations affect weights, which themselves change the
behavior of a single node, but because in the LSTM many
things are interconnected, these changes affect the entire net-
work. In a MB on the other hand, changes to the logic of a
gate are much more contained, affecting only those states
that are directly affected by the connections via gates.

Figure 10: Evolution of representation. Each row represents
a different type of brain, top row Markov Brains, middle row
LSTM, and bottom row RNNs. Each panel shows the lin-
earized representation matrix M for all generations between
0 and 10, 000 in increments of 100. Here only 10 randomly
chosen brains from each category are shown.

Figure 11: Smearedness of representations. Average
smearedness of representations for Markov Brains (MB),
LSTMs, and RNNs of optimal performers. Panel 1) shows
how much representations are smeared over each node
(Equation 2), Panel 2) shows how much representations are
smeared over concepts (Equation 3). Error bars indicate the
standard error.

To quantify how smeared representations are, we compute
the overlap between concepts or nodes across the representa-
tion matrix M for all optimally performing agents (Equation
2 and 3). We find that representations are smeared across
concepts as well as nodes, however in Markov Brains we

Figure 12: Robustness to sensor noise for the three differ-
ent brain types. Robustness (mean performance) of Markov
Brains (solid line), LSTMs (dashed line), and RNNs (dotted
line) over noise. Error bars indicate the standard error.

find the least smeared representations, followed by LSTMs,
while in RNNs representations are smeared the most for both
nodes and concepts (see Figure 11).

Now that we have shown that indeed representations are
more smeared in LSTMs and RNNs than they are in Markov
Brains, we will ask how this smearedness relates to per-
formance and robustness. After all, it has been specu-
lated that the deep-learned convolutional networks are eas-
ily fooled (Szegedy et al., 2014) because the processing of
information is spread out over all nodes. We therefore com-
pare how robust the different brain types are against sensor
noise. We find that as expected, Markov Brains are the most
robust, while LSTMs and RNNs are increasingly less robust
against this type of noise (see Figure 12).

In addition we find that robustness negatively correlates
with smearedness across the different brain types (see Fig-
ure 13). This is another indicator that more smeared repre-
sentation do indeed make brains more vulnerable to noise,
and that systems like Markov Brains, which have more dis-
crete representations, also have an additional advantage due
to the robustness of their representations.

Discussion.

A hallmark of intelligence is to reconstruct reality even from
a very small set of information. One obvious way to attain
this is to use sensory data to trigger models of the world that
are stored within a brain, to fill in the missing parts. The
information-theoretic concept of representations quantifies
precisely this capacity.

Creating machines that perform reality reconstruction us-
ing minimal sensory data is a daunting task, to the point
where it has even been suggested that we would be bet-
ter off creating machines without representations (Brooks,
1991). Here we showed that Markov Brains, LSTMs, and
RNNs can be evolved to perform tasks that require rep-
resentations, however these substrates differ greatly in the
way they store this information. LSTMs and RNNs smear
concepts over their hidden states, as we hypothesized, and

Figure 13: Robustness versus smearedness of representa-
tions. The smearedness of representation (y-axis) for nodes
(SN , panel 1) and concepts (SC , panel 2) for all evolved
types of brains: Markov Brain (black dots), LSTM (dark
gray), RNN (light gray) against robustness (x-axis). The
’+’ indicate the mean smearedness over mean robustness for
each of the three brain types. The dashed line is a linear re-
gression fit for those means, indicating that the more robust
brains are, the less smeared their representations are.

consequently they become vulnerable to externally applied
noise. In a manner of speaking, those smeared representa-
tions are “dense” within the neuronal space. In contrast, we
suggest that it is precisely the sparseness of representations
that insulates them from noise. We note that another sub-
strate that utilizes sparse representation is the HTM model
(Hawkins and Blakeslee, 2004), and it would be interesting
to test that substrate for its robustness under noise.

Might the vulnerability to fluctuations in “surface statis-
tics” also be linked to “catastrophic forgetting” (McCloskey
and Cohen, 1989; Ratcliff, 1990), another plague of conven-
tional systems based on the ANN paradigm? While we have
not tested this aspect of information encoding, reasonable
arguments can be made that dense representations might be
responsible for catastrophic forgetting as well. This may
happen when new concepts overlap those concepts that are
already present in the network.

We should point out that we did not test deep-learned
LSTMs or RNNs, but instead used neuroevolution to opti-
mize them, so a direct comparison between the representa-
tions that we measured in LSTMS and RNNS and those that
might be expected in deep convolutionary networks is still
outstanding. There are two reasons for using neuroevolution
in this context. First, we wanted to compare these systems to
Markov Brains, and as of yet, we do not have a deep learn-
ing technique for them even though MBs have the ability to
learn autonomously (Sheneman and Hintze, 2017). Deep Q-
learning might be a viable alternative, since it is able to train
probabilistic models with few hidden states (Mnih et al.,
2015). Regardless, the second reason for us to not use deep
learning (or other gradient descent related methods) is that
it is not clear to us how one would even use this technique
to solve the task studied here. Perhaps it is time that we

recognize that while deep-learned convolutional ANNs are
great classifiers with an exceptional range of applications,
they may be the wrong systems to create embodied thinking
machines that exist and act in time. Instead, we should focus
our attention on neuro-evolutionary systems and methods.

Acknowledgements.

This work was supported in part by Michigan State Univer-
sity through computational resources provided by the Insti-
tute for Cyber-Enabled Research. This material is based in
part upon work supported by the National Science Founda-
tion under Cooperative Agreement No. DBI-0939454.

References

Albantakis, L., Hintze, A., Koch, C., Adami, C., and Tononi, G.
(2014). Evolution of integrated causal structures in animats
exposed to environments of increasing complexity. PLoS
Comput Biol, 10(12):e1003966.

Beer, R. (1996). Toward the evolution of dynamical neural net-
works for minimally cognitive behavior. In P. Maes et al.,
editor, Proc. 4th Intern. Conf. on Simulation of Adaptive Be-
havior, pages 421–429, Cambridge, MA. MIT Press.

Beer, R. (2003). The dynamics of active categorical perception in
an evolved model agent. Adaptive Behavior, 11:209–243.

Bengio, Y., LeCun, Y., and Hinton, G. (2015). Deep learning. Na-
ture, 521:436–444.

Bohm, C., CG, N., and Hintze, A. (2017). MABE (modular agent
based evolver): A framework for digital evolution research.
In C. Knibbe et al., editor, Proceedings of the 14th European
Conference on Artificial Life, pages 76–83.

Brooks, R. A. (1991). Intelligence without representation. Artifi-
cial Intelligence, 47:139–159.

Clark, A. (1997). The dynamical challenge. Cognitive Science,
21:461–481.

George, D. and Hawkins, J. (2009). Towards a mathemati-
cal theory of cortical micro-circuits. PLoS Comput Biol,
5(10):e1000532.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learn-
ing. MIT Press, Cambridge, MA.

Haugeland, J. (1991). Representational genera. In Ramsey, W.,
Stich, S. P., and Rumelhart, D. E., editors, Philosophy and
connectionist theory, pages 61–89, Hillsdale, NJ. L. Erlbaum.

Hawkins, J. and Blakeslee, S. (2004). On Intelligence. Henry Holt
and Co., New York, NY.

Hintze, A., Edlund, J. A., Olson, R. S., Knoester, D. B., Schossau,
J., Albantakis, L., Tehrani-Saleh, A., Kvam, P., Sheneman,
L., Goldsby, H., et al. (2017). Markov brains: A technical
introduction. arXiv preprint arXiv:1709.05601.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term mem-
ory. Neural Computation, 9(8):1735–1780.

Jo, J. and Bengio, Y. (2018). Measuring the tendency of CNNs to
learn surface stastistical regularities. arXiv:1711.11561.

Johnson-Laird, P. and Wason, P. (1977). Thinking: Readings in
Cognitive Science. Cambridge University Press.

Lenski, R. E., Ofria, C., Pennock, R. T., and Adami, C. (2003). The
evolutionary origin of complex features. Nature, 423:139–
144.

Marstaller, L., Hintze, A., and Adami, C. (2013). The evolution of
representation in simple cognitive networks. Neural compu-
tation, 25:2079–2107.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference
in connectionist networks: The sequential learning problem.
In Psychology of Learning and Motivation, volume 24, pages
109–165. Elsevier.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., and J. Veness
et al. (2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–33.

Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural net-
works are easily fooled: High confidence predictions for un-
recognizable images. In Computer Vision and Pattern Recog-
nition (CVPR ’15). IEEE.

Phillips, W. and Singer, W. (1997). In search of common founda-
tions for cortical computation. Behav Brain Sci, 20:657–683.

Phillips, W. A., Kay, J., and Smyth, D. M. (1994). How local cor-
tical processors that maximize coherent variation could lay
foundations for representation proper. In Smith, L. S. and
Hancock, P. J. B., editors, Neural Computation and Psychol-
ogy, pages 117–136, New York. Springer Verlag.

Pinker, S. (1989). Learnability and Cognition. Cambridge, Mass.:
The MIT Press.

Ratcliff, R. (1990). Connectionist models of recognition mem-
ory: constraints imposed by learning and forgetting functions.
Psych Rev, 97:285.

Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., and Edwards,
D. D. (2003). Artificial intelligence: A modern approach.
Prentice Hall, Upper Saddle River.

Schmidhuber, J. (2015). Deep learning in neural networks: An
overview. Neural networks, 61:85–117.

Schossau, J., Adami, C., and Hintze, A. (2015). Information-
theoretic neuro-correlates boost evolution of cognitive sys-
tems. Entropy, 18(1):6.

Sheneman, L. and Hintze, A. (2017). Evolving autonomous learn-
ing in cognitive networks. Scientific reports, 7(1):16712.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., and Fergus, R. (2014). Intriguing properties
of neural networks. In International Conference on Learning
Representations.

van Dartel, M. (2005). Situated Representation. PhD thesis, Maas-
tricht University.

van Dartel, M., Sprinkhuizen-Kuyper, I., Postma, E., and van den
Herik, J. (2005). Reactive agents and perceptual ambiguity.
Adaptive Behavior, 13:227–42.

