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Abstract
Epistatic interactions between residues determine a protein’s adaptability and shape its

evolutionary trajectory. When a protein experiences a changed environment, it is under

strong selection to find a peak in the new fitness landscape. It has been shown that strong

selection increases epistatic interactions as well as the ruggedness of the fitness land-

scape, but little is known about how the epistatic interactions change under selection in the

long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease

of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected

for almost a decade from both treated and untreated patients, to understand how epistasis

changes and how those changes impact the long-term evolvability of a protein. We use an

information-theoretic proxy for epistasis that quantifies the co-variation between sites, and

show that positive information is a necessary (but not sufficient) condition that detects epis-

tasis in most cases. We analyze the “fossils” of the evolutionary trajectories of the protein

contained in the sequence data, and show that epistasis continues to enrich under strong

selection, but not for proteins whose environment is unchanged. The increase in epistasis

compensates for the information loss due to sequence variability brought about by treat-

ment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment.

While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation,

it can hinder adaptation later when the landscape has turned rugged. However, we find no

evidence that the HIV-1 protease has reached its potential for evolution after 9 years of

adapting to a drug environment that itself is constantly changing. We suggest that the mech-

anism of encoding new information into pairwise interactions is central to protein evolution

not just in HIV-1 protease, but for any protein adapting to a changing environment.
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Author Summary

Evolution is often viewed as a process that occurs “mutation by mutation”, suggesting that
the effect of each mutation is independent of that of others. However, in reality the effect
of a mutation often depends on the context of other mutations, a dependence known as
“epistasis”. Even though epistasis can constrain protein evolution, it is actually very com-
mon. Such interactions are particularly pervasive in proteins that evolve resistance to a
drug via mutations that create defects, and that must be repaired with compensatory
mutations. We study how epistasis between protein residues evolves over time in a new
and changing environment, and compare these findings to protein evolution in a constant
environment. We analyze the sequences of the human immunodeficiency virus type 1
(HIV-1) protease enzyme collected over a period of 9 years from patients treated with
anti-viral drugs (as well as from patients that went untreated), and find that epistasis
between residues continues to increase as more potent anti-viral drugs enter the market,
while epistasis is unchanging in the proteins exposed to a constant environment. Yet, the
proteins adapting to the changing landscape do not appear to be constrained by the epi-
static interactions and continue to manage to evade new drugs.

Introduction
The interactions between the residues within a single protein (within-protein epistasis [1])
often determine the structure and function of the protein [2–4]. Understanding these epistatic
interactions is important because they shape the protein fitness landscape and thus guide the
evolution of a protein given its genetic background [5, 6]. At the same time, the environment
influences the fitness effects of mutations and their epistatic interactions, and a change in the
environment changes the topography of the fitness landscape as well as the epistatic effect of
mutations [7]. A typical example of a changing environment for a protein is the introduction
of drugs to counteract a pathogen. In that case, a drug-resistance mutation that is beneficial in
a drug environment might have a significant fitness cost in the absence of drugs [8, 9]. Even in
the drug environment, resistance mutations can incur fitness costs that are mitigated by com-
pensatory mutations, and these fitness-restoring mutations are selected together with the resis-
tance mutations if the fitness of the resulting protein exceeds that of the wild-type in the drug-
environment [10]. Other compensatory mutations act by re-stabilizing the protein and pre-
venting misfolding or proteolysis [11–13], while sometimes resistance mutations partly com-
pensate each other’s deleterious effects [14]. Moreover, compensatory mutations can appear
before resistance mutations if they are not deleterious on their own, paving the way for resis-
tance mutations to appear without incurring significant fitness costs [15–17]. Epistatic interac-
tions have been implicated in the evolution of drug resistance in many pathogens, including
influenza, malaria, Escherichia coli, tuberculosis, and Chlamydomonas reinhardtii[14, 18–20].

To understand the long-term evolution of a protein in a dynamic environment in which the
selection pressure is persistent, evidence of epistatic interactions at multiple time points is
needed as the fitness landscape changes over time with the environment. Previous investiga-
tions of the impact of epistasis on evolutionary outcomes analyzed epistatic interactions in the
absence or presence of a selection pressure at a single time point, showing that epistatic interac-
tions can facilitate adaptation [21–28]. In particular, computational analyses of HIV fitness
landscapes derived from statistical models showed that these landscapes have high neutrality
as well as ruggedness, suggesting high potential for epistatic interactions [23]. Further, an anal-
ysis of in vitro virus fitness measurements from more than 70,000 patients revealed that
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epistasis explained more than half of the variance in fitness measurements, highlighting the
importance of epistasis in the HIV-1 fitness landscape [24].

While these studies emphasize the importance of epistasis in adaptive evolution, here we
analyze how epistatic interactions themselves change over time. We focus on the Human
Immunodeficiency Virus-1 (HIV-1) protease, a small protein necessary for the production of
mature and infectious HIV-1 particles. The HIV-1 protease is a homodimer of two 99 residue
chains, and it cleaves the viral polyprotein into active components that are necessary for virus
maturation [29]. Because an inactive protease results in uninfectious viruses, the protease was
one of the first targets of anti-retroviral drugs. However, due to its high mutation rate (about
0.3 mutations per genome per generation [30]), HIV-1 quickly evolves resistance to those
drugs. These resistance and compensatory mutations, as well as the covariation between resi-
dues in HIV-1’s protease are well studied [31–33].

The evolutionary trajectory of resistance to protease inhibitors is extremely complex. When
the virus is first exposed to the changed fitness landscape containing the inhibitor, viral count
drops to undetectable levels [34], as the fitness peak that the viral population occupied in the
no-drug fitness landscape is erased. However, some minority variants in the untreated viral
population might still possess replicative capacity in the drug environment (albeit much
reduced), forming the seeds of drug resistance [35]. Indeed, most well-known resistance muta-
tions are associated with significant fitness costs [10, 36], so that at the onset of resistance the
viral populations are likely still significantly smaller than in untreated individuals. However,
mutations that compensate for the fitness defects will readily emerge. While these compensa-
tory mutations can either maintain or reduce viral fitness if they occur on their own, they usu-
ally restore the fitness cost of the resistance mutation to some extent, and as a consequence
form an epistatic pair with the resistance mutation. Note that the residues that are coupled in
the treatment landscape are unlikely to be coupled in the absence of treatment, implying that it
is the adaptation to the new landscape that forces the interaction. Once compensatory muta-
tions have restored viral fitness, viral populations return to pre-drug levels and can search for
more compensating mutations [37]. Exposure to second-line drugs (given to patients that have
evolved resistance) repeats the cycle, leading to more resistance mutations [38], followed by
compensatory mutations that are epistatically linked with them.

As more and more resistance mutations accumulate, loss of thermodynamic stability
becomes more and more acute, and compensatory mutations are selected that re-stabilize the
protein. While stabilizing mutations are not selected against individually when they occur on
their own (compensatory mutations often have a fitness advantage if they occur in the absence
of treatment [39]), several stabilizing mutations together can be undesirable as they decrease
protein variability and therefore can impede evolvability [40, 41]. Since epistasis and rugged-
ness are coupled [25, 42, 43], the repeated emergence of resistance mutations and selection for
compensatory mutations that interact epistatically with those resistance mutations results in a
protein that finds itself in an increasingly rugged fitness landscape.

We hypothesize that a strong selection pressure of treatment increases the epistatic interac-
tions in the long-term evolution of HIV-1 protease, allowing the protein to realize its evolu-
tionary potential. To test this hypothesis, we compare the HIV-1 protease sequences from
patients treated with anti-retroviral drugs to protease sequences from untreated patients, col-
lected over a nine year period. This wealth of publicly available data provides an unprecedented
opportunity to study the adaptive evolution of a protein in an environment with persistent
(perhaps even increasing) selection pressures due to the continued introduction of new drugs
as opposed to a protein evolving in the absence of these selection pressures.

Epistatic interactions between mutations are usually deduced by measuring the fitness effect
of the single site mutations as well as the double-mutant. However, obtaining evidence of
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changes in epistasis over a long enough period of time is challenging when viral fitness has to be
assayed. Here we use the mutual (shared) information between protein loci (residues) as a proxy
for epistasis. Briefly, information shared between sites is a measure of covariation between the
sites, so that knowing the residue at one site makes it possible to predict the residue at the
covarying site with accuracy better than chance [44]. Thus, information constrains the context
of a residue, in the same manner that epistasis constrains the fitness effect of a mutation in the
presence of another. Using information as a proxy for epistasis is not a new idea (see, e.g., [45]
and references cited therein, as well as [46] for an application to gene networks). However, the
relationship between epistasis and information is not one-to-one. As a consequence, it is possi-
ble that two residues interact epistatically but show no information. Conversely, if two residues
have positive information, theymust interact epistatically, at least in a model without spatial
effects and infinite population size. Thus, information is a sufficient (but not a necessary) condi-
tion for epistasis. We have analyzed the relationship between epistasis and information in ran-
dom fitness landscapes of two interacting loci, and found that in less than 30% of cases would a
pair of loci be epistatic while showing negligible information (see below). Furthermore, those
pairs that showed little information also predominantly showed little epistasis.

Keeping in mind this limitation, studying pair-wise information (which can be deduced
from sequence data) instead of epistasis (which cannot) allows us to use the wealth of time-
course sequence data of a protein to study its long-term evolution. Not that residue covariation
in the protease can in principle be due to population subdivision rather than epistasis [47],
which would be reflected in a deeply branched phylogenetic structure. However, it turns out
that deep branches are rare in HIV-1 phylogeny. Indeed, using sequence data from the HIV
Stanford Database, Wang and Lee show that amino acid covariation in HIV-1 protease
sequences is largely due to selection pressures and not due to background linkage disequilib-
rium [48]. We corroborate this and find that protease sequences from the same database
assume a star-like phylogeny (S1 Text), supporting the notion that any observed residue
covariation is largely due to selection pressures and not due to population subdivision and
other phylogenetic factors.

We first show how the persistent selective pressure of a drug environment increases residue
variability over time, and document changes in physico-chemical properties due to these resi-
due substitutions that suggest non-neutral evolution. We then show that epistatic interactions
are enriched over time in the protein undergoing continuous adaptive evolution in the pres-
ence of drugs, but not in proteins where the environment remained constant. This leads us to
conclude that while selection pressures increase per-site residue variability–and thus reduce
information stored at each protein locus on average–the information stored in higher-order
interactions increases over time.

Results

High selection pressure increases residue variability at multiple loci in
the HIV-1 protease
To compare the long-term adaptation of the HIV-1 protease in the presence and absence of
selection pressure of treatment, we analyzed the protease sequences collected in the years
1998–2006 from patients that did not receive treatment (untreated group), as well as from
patients that received treatment (treated group, see Materials and Methods).

The per-site entropy (a measure of sequence variation) for each of the 99 positions shows
that some protease positions are highly variable even in the absence of treatment, thus indicat-
ing some degree of neutrality. However, many more loci become variable (entropic) upon
treatment (Fig 1, see S2 Text for sequence logos of untreated and treated protease sequences
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averaged over all years). Moreover, several loci in the protein had higher entropy in 2006 com-
pared to 1998, hinting at an increase in per-site residue variability over the years, especially in
the treated data set (see also S1 Fig, which shows entropy differences for all years for both the
treated and untreated group).

The increased variability per site might seem counter-intuitive from the point of view of
population genetics, where adaptation results in substitutions that lead to reduced diversity
from hitchhiking [35]. While such reduced diversity is possible in the short term, we caution
that due to the high mutation rate of HIV, pre-treatment diversity can be re-established fairly
quickly after drug resistance has emerged. This rebound in virus titer further allows the virus
to find mutational paths to resistance. However, it is also possible that some of the observed
variability is due to the stochastic mixing (within the database) of many populations that each
took diverse paths to resistance. Some positions in the untreated group also show higher resi-
due variability at the later time point, and this is likely due to transmission of drug-resistant
virus to untreated individuals via new infections [49–51]. However, this background signal
remains low due to the reduced selection pressure in the untreated group.

Increased residue variability due to treatment mirrors physico-chemical
changes in the protein
A closer look at the protease positions with increasing residue variability reveals that the pro-
tein loci that have undergone a marked increase in variation have been previously associated

Fig 1. Average per-site entropies at every position of the HIV-1 protease.Untreated (top panel) and
treated (bottom panel) datasets at the earliest (year 1998, red) and latest (year 2006, blue) time point of our
analysis. 300 sequences are resampled from data for each year and average entropy for each position is
calculated from the entropies in 10 resampled datasets. Site-specific variation generally increased across the
protein following treatment. Entropy (variability) also increased from 1998 to 2006 for several positions. Error
bars denote ±1 SE.

doi:10.1371/journal.pgen.1005960.g001
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with drug resistance (Fig 2 top panel) [52]. Position 63 is the only site that becomes signifi-
cantly less variable upon treatment. Many of the changes in entropy at each position correlate
well with physico-chemical changes (such as changes in the iso-electric point pI or in the resi-
due weight) at those positions (Spearman correlation coefficient between absolute values of
entropy difference and pI difference: R = 0.738, p = 2.95 × 10−18; Spearman R between absolute
values of entropy difference and residue weight difference: R = 0.819, p = 3.52 × 10−25) suggest-
ing that these changes are adaptive and influence the function of the protein in its new environ-
ment (see S3 Text and Fig 2, middle and lower panels). Leucine at position 10 is substituted by
the slightly heavier isoleucine, a compensatory mutation showing a slight increase in residue
weight difference (Fig 2, bottom panel, L10I is a compensatory mutation as shown in [52, 53]);
lysine is replaced by a more basic arginine residue at position 20, another compensatory muta-
tion as arginine can form more electrostatic interactions compared to lysine and thus enhances
protein stability [52, 54]; and aspartic acid is substituted by the uncharged asparagine at posi-
tion 30, a strong resistance mutation [52, 55]. While the residue physico-chemical properties
discussed here are not exhaustive, the significant positive correlation between changes in these
properties and changes in residue variability suggest that the residue variation brought about
by treatment is non-random.

Fig 2. Changes in protease entropy and physico-chemical properties. Changes in per-site entropies (top
panel), residue isoelectric point (middle panel), and residue weights (bottom panel) due to treatment. The
property difference at each site is obtained by subtracting property (entropy/pI/residue-weight) value of the
untreated data from that of the treated data. Average values are obtained by sampling sequence data from all
years (1998–2006, 10 subsamples/year of 300 sequences each). Error bars represent ±1 SE. Red dots
represent positions known to be primary drug resistance loci, while black dots mark positions of
compensatory or accessory mutations [52]. Resistance loci are shaded in red and accessory loci are shaded
in black.

doi:10.1371/journal.pgen.1005960.g002
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Epistatic interactions between residues increase following treatment
Information about a protein’s environment is stored not only in individual residues of the pro-
tein, but also in the manner in which these residues interact epistatically. We estimate the
information the protein stores about its environment in two ways: one that considers explicitly
the information stored at each position in the protein independent of other sites (I1), and the
measure I2 that in addition to I1 includes the mutual information between every pair of posi-
tions (see Materials and Methods).

An increase in entropy per site corresponds to a decrease in per-site information (I1). We
find that the I1 for treated protease sequences is consistently lower that that of untreated
sequences, indicating high sequence variability in the treated data (Fig 3, top panel). The slopes
for the treated and untreated I1 data are not significantly different, suggesting that although the
treated data has higher sequence variability, this variability does not increase significantly over
the years. However, the sum of mutual information of all pairs of positions (the component of
information due solely to pair-wise interactions) gradually increases, suggesting that epistatic
interactions become enriched over time (Fig 3, middle panel, slopes for treated and untreated
data are significantly different, p� 0.001). Fig 4 shows a gradual increase in pairwise mutual
information between protease positions due to treatment (bottom panel), while pairwise

Fig 3. Estimates of the information content of the HIV-1 protease. Filled black circles represent data from
untreated subjects and blue triangles represent data from treated individuals. I1 [see Eq (12)] is consistently
low in treated sequence data over the years, indicating high sequence variability in the drug environment (top
panel). The middle panel shows that the sum of pairwise mutual information significantly increases upon
treatment (p� 0.001). On adding the sum of pairwise mutual information to I1, we obtain a comprehensive
measure of information that considers pairwise interactions between residues [I2, Eq (13)]. I2 for both the
treated and untreated data is comparable and unchanging over the years. We use data only for positions 15–
90, as residues 1–14 as well as 91–99 have missing sequence data leading to error-prone estimates of
entropy, as evidenced in S2 Fig. Error bars represent ±1 SD.

doi:10.1371/journal.pgen.1005960.g003
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mutual information in the untreated group remains low over the years (top panel). As dis-
cussed, adding the sum of pairwise mutual information to I1 gives I2, which thus measures the
information stored in the protein taking into account the pairwise dependencies between posi-
tions in addition to per-site variability (Fig 3, bottom panel, slopes for treated and untreated
data are not significantly different). We find that I2 remains relatively constant over the years
and converges to the same value in the treated as well as untreated data despite increase in resi-
due variability and enrichment of epistatic interactions in the treated data. Such a finding may
at first appear surprising, but Carothers et al. showed that the functional capacity of biomole-
cules (RNA aptamers in their study) correlated with the information contained in the sequence,
and that functionally equivalent biomolecules had similar total information content [56]. Our
analysis thus suggests that the similar total information content for proteins in the treated and
untreated case reflects similar functional activity, achieved in the treated group by increasing
epistasis that compensates for the information loss due to increased sequence variability. The
increase in epistasis thus allows the protein to adapt and attain high fitness (via wild-type level
biological activity), in the increasingly rugged fitness landscape of treatment.

Besides a trend in the overall strength of epistatic interactions in the treated group, we also
find that the spatial organization of interactions in the protein is modified. In S5 Text, we show
that untreated subjects stored more information in distant pairs early (1998, distant: residue
distance� 8Å), a trend that is reversed in 2002.

As pairwise mutual information is a proxy for epistasis (Materials and Methods), the signifi-
cant temporal increase in mutual information suggests that epistatic interactions are crucial for
the protease to adapt in a dynamic drug environment. In contrast, the sum of pairwise mutual
information remains fairly constant in the drug-free environment (Fig 3, middle panel). It

Fig 4. Increase in epistasis in HIV-1 protease over time. Pairwise interactions in the HIV-1 protease are shown for years 1998, 2002, and 2006 in the drug-
free (top row) and drug environment (bottom row). Each heatmap shows the mutual information for each pair of residues. Pairwise information (and thus
epistatic effects) are fairly constant in the drug-free environment, but gradually increase in the treated group.

doi:10.1371/journal.pgen.1005960.g004
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should be noted that most of the treated data for year 2003 came from two phase-III clinical tri-
als that focused on the 2nd-line anti-retroviral drug tipranavir (2900 out of 3399 sequences)
[57]. Resistance to tipranavir requires accumulation of several mutations, more than the muta-
tions required for the 1st-line protease inhibitors, and this higher genetic barrier to resistance
makes it suitable for salvage therapy for patients already experiencing resistance to other drugs.
The substantial decrease in I1 for the year 2003 thus can be attributed to an increased entropy
as a consequence of accumulating a higher number of mutations required for resistance to
tipranavir. It is curious that the marked increase in variability in the tipranavir-dominated data
set is not associated with a marked increase in pair-wise information (compared to the adjacent
years), suggesting that the tipranavir-induced mutations are mostly non-epistatic.

Pairwise interactions between amino acids are thought to be sufficient to encode the protein
fold, and thus pairwise interactions can be considered as a sufficient source of protein func-
tional information [58]. While there is currently no evidence that higher-order interactions
between residues are important, some authors have discussed this issue [59]. Mapping the high
information loci (interactions of a strength of at least 0.1 bits) on the protease structure for the
treated group for the first year (1998) and comparing them to the treated group in 2006 (Fig 5)
clearly shows the increase in epistatic connections in the latter time point.

The observation that strong selection due to treatment increases residue variability (thus
decreasing I1) while increasing epistatic interactions in the protease (as measured by pairwise

Fig 5. Epistatic interactionsmapped onto the protease structure. Epistatic interactions in the protease sequences in treated data from the year 1998 (red
on the left chain) and 2006 (blue, right chain). The interacting residues are numbered. Only those interactions are shown where information is greater than
0.1 bits, indicating strong epistasis. Figure generated using Chimera [60].

doi:10.1371/journal.pgen.1005960.g005
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mutual information) is corroborated by a longitudinal analysis of information measures in pro-
tease sequences from patients who were untreated at the first time point and received treatment
at the second time point (see S4 Text).

Discussion
It is difficult to predict the evolutionary trajectory of a protein from fitness effects of mutations
along with mutation rate and population size, but we can trace the evolutionary history of a pro-
tein to understand the processes underlying its long-term evolution. While evolution experi-
ments with bacteria, viruses, and yeast provide direct evidence for evolution-in-action, enabling
the study of various aspects of evolutionary dynamics as well as the likelihood of certain evolu-
tionary paths [61–63], indirect evidence such as sequence data collected over years can be a valu-
able resource to retrace the evolutionary steps taken by a protein on an adaptive fitness landscape
over a long period of time. The sequences of the HIV-1 protease are one such resource that con-
tain the “fossils” of the evolutionary trajectory (albeit in a statistical form) of the protein.
Although this sequence data comes from isolates collected from different patients over the years,
the star-like phylogeny observed for data from each year indicates the absence of population sub-
divisions and linkage disequilibrium that might have confounded the information-theoretic anal-
ysis we present here (S1 Text). It is likely that each sequence in the data represents the major
HIV-1 variant circulating in each patient. If the viral populations within the hosts have not yet
reached equilibrium (if such an equilibrium exists in the presence of persistent selection pressures
of host immune response and treatment), the sequence obtained from treated individuals will
not contain all of the resistance and compensatory mutations that might be found at the equilib-
rium. Thus, the information-theoretic measures computed here represent a lower bound of the
true sequence variability and epistatic interactions present in a within-host viral population.

We have investigated the long-term evolution of a protein by computational analysis of
HIV-1 protease sequences from treated and untreated patients collected over a span of nine
years (1998–2006), and find that the molecule responds to the selection pressures of treatment
by accumulating mutations that confer drug resistance. At the same time, several positions in
the protease show considerable neutrality even in the absence of treatment (Fig 1). Indeed, a
complete mutagenesis of the protease showed that several sites are insensitive to mutation in
the absence of a selection pressure, and thus appear neutral [64]. Yet, some of those neutral
mutations often appear in tandem with known resistance mutations, possibly compounding
the fitness effects of the resistance mutations [65]. Even known resistance mutations usually do
not confer resistance in isolation, but require compensatory mutations before resistance is
achieved [53]. Because on average a mutation destabilizes the protein fold by about 1 kcal/mol,
proteins cannot accumulate multiple resistance mutations without running the risk of thermal
instability [11]. Yet, HIV-1 protease with resistance to multiple drugs can accumulate more
than 10 mutations [66–68]. We suspect that many of these mutations are re-stabilizing the pro-
tein,thus compensating for the fitness cost of resistance mutations [12, 13]. In addition,
sequence logos of protease sequences from untreated patients (S2 Text) shows that several
resistance and compensatory mutations are present at low frequencies prior to treatment, sug-
gesting that pre-existing compensatory mutations may protect the protein from incurring the
potentially strong fitness costs of resistance mutations. We show that as sequence variability
increases due to treatment, more and more of the variable residues interact with other residues,
leading to an increase in the epistatic interactions. Along this evolutionary trajectory, the pro-
tein finds itself in a fitness landscape that is increasingly rugged [23].

That the ruggedness of the fitness landscape has significant effects on the evolution of a pro-
tein has been discussed extensively [25, 43, 69–72]. These studies suggest that epistasis can have
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either an inhibitory or an accelerating effect on evolutionary trajectories, determined mainly by
whether evolution occurs far off the fitness peak or close to it. Computational simulations of
evolutionary adaptation reveal that while increased epistasis correlates with high ruggedness in
the fitness landscape, evolvability (the ability to attain the highest fitness peak) declines beyond
a threshold epistasis [25]. The sign of epistasis (positive vs. negative epistasis) also can affect the
speed of adaptation. Epistasis is positive (or negative) when the fitness effect of the double
mutant is greater (or smaller) than the sum of the fitness effects of individual mutations. Nega-
tive epistasis between beneficial mutations is often associated with diminishing returns in climb-
ing a single peak [26, 73–75], while positive epistasis is associated with compensatory effects
[76] that can enhance crossing of valleys between peaks [25, 77]. Computational studies further
clarify that positive epistasis accelerates evolvability, while negative epistasis promotes robust-
ness [78]. However, if the landscape is too rugged, the reciprocal sign epistasis between muta-
tions may prevent valley crossing [79]. As we cannot determine the sign of epistasis using our
information-theoretic methods, we are unable to verify that the epistasis between mutations in
the HIV-1 protease is mostly positive, as suggested by Bonhoeffer et al. [80].

We find here that as epistasis between residues in the protease continues to increase (as
revealed by the monotonically increasing sum of pairwise mutual information), epistasis is still
contributing to adaptation rather than inhibiting it. However, there is little doubt that evolu-
tion in a more and more rugged fitness landscape will have a significant impact on evolvability.
For example, it is known that some compensatory mutations that repair fitness costs increase
viral fitness in the absence of drugs [39]. These mutations are found in individuals who have
transmitted drug resistance, but they are not common in the treatment-naive HIV-1 popula-
tion. One suggestion is that the evolutionary pathway to this polymorphism is simply too com-
plex to emerge de novo [81], suggesting that the virus has evolved into a region of genetic space
from which there is no return.

Previous studies of epistatic interactions in adaptive evolution emphasized their importance
for adaptation [2, 14, 18, 20, 21, 26, 82]. Our analysis provides statistical arguments about the
changes in epistatic interactions during long-term adaptation of a protein in an environment
of persistent high selective pressure. Ideally, the present findings should be corroborated by
longitudinal studies that collect sequence or fitness data regularly and for an extended period
of time. Such studies would significantly contribute to and understanding of the impact of
strong selection pressures and continually changing landscapes on adaptive evolution.

Materials and Methods

HIV-1 Protease sequences
The protease sequences for HIV-1 subtype B were collected from the HIV Stanford database
[http://hivdb.stanford.edu] on September 17, 2013. The database collects sequences from pilot
studies and clinical trials that are published with sequence data deposited in GenBank. We
only used sequences for which the exact dates for isolate collection are known (as opposed to
guessed from the time of publication or clinical trials).

We focused our analysis on 18,571 sequences from the years 1998 to 2006, in which more
than 300 protease sequences are available for both treated and untreated sequence datasets
(Table 1). Since these data come from different sources, they are not longitudinal. Sequences
obtained from patients receiving� 1 protease inhibitors are labeled as treated, while sequences
from patients not receiving any protease inhibitors are labeled as untreated. Note that a frac-
tion of new infections have transmitted drug-resistance, and thus even higher sequence diver-
sity (�8% of new cases had transmitted drug-resistance by January 2007 [83]). Since the HIV
Stanford database does not keep data on transmitted drug-resistance for treatment-naive
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individuals, we label all sequences from treatment-naive patients as ‘untreated’ but cannot
exclude the possibility that they might carry resistance mutations. However, due to their high
fitness cost some drug-resistance mutations tend to revert back to wild-type residue in absence
of therapy [84], suggesting that the protease sequence diversity due to resistance mutations
should decrease in cases of transmitted drug-resistance in treatment-naive patients.

We also obtained longitudinal data (protease sequences collected from the same patient
after a time interval) that was available from HIV Stanford database for the following: i) patient
was untreated at first as well as second isolate collection (untreated to untreated): 596
sequences, ii) patient untreated at first isolate collection but treated with protease inhibitors at
second isolate collection (untreated to treated): 395 sequences, iii) patient treated at both isolate
collections (treated to treated): 921 sequences, and iv) patient treated at first isolate collection
but untreated at second isolate collection (treated to untreated): 153 sequences. The time
between first and second isolate collections ranged from one month to a few years.

Information as a proxy for epistasis
Positive information between two sites indicates that the two sites are co-varying, but co-varia-
tion is not the same as epistasis. To study the relationship between informational co-variation
and epistasis, we constructed a population-genetic two alleles-two loci model that we solve
using replicator-mutator equations. (The model can be generalized to two loci with 20 alleles
in a straightforward manner.)

We consider four genotypes (two alleles ‘A’ and ‘a’, at two loci): AA: (type 0, the wild type),
Aa (type 1), aA (type 2), and aa: (type 3) that undergo mutation with rate μ per unit time (see
Fig 6). The probability to find each of these genotypes in an infinite population depends on the
fitness and probabilities of the other genotypes. In a discrete update scheme, the probability to
find type i at time t + 1 is related to the same quantity at time t via

ptþ1
0 ¼ pt0

w0

�w
F þ m

pt1w1 þ pt2w2

�w

� �
þ m2 p

t
3w3

�w
ð1Þ

ptþ1
1 ¼ pt1

w1

�w
F þ m

pt0w0 þ pt3w3

�w

� �
þ m2 p

t
2w2

�w
ð2Þ

ptþ1
2 ¼ pt2

w2

�w
F þ m

pt0w0 þ pt3w3

�w

� �
þ m2 p

t
1w1

�w
ð3Þ

Table 1. Number of protease sequences in treated and untreated datasets.Data downloaded from HIV
Stanford database on September 17, 2013. The set of sequences we use for our analysis is available from
Dryad.

Year Untreated Treated

1998 376 680

1999 1145 946

2000 375 806

2001 476 575

2002 1982 464

2003 1237 3399

2004 2163 436

2005 1424 338

2006 1354 341

doi:10.1371/journal.pgen.1005960.t001
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ptþ1
3 ¼ pt3

w3

�w
F þ m

pt1w1 þ pt2w2

�w

� �
þ m2 p

t
0w0

�w
ð4Þ

where �w is the mean fitness �w ¼P3

i¼0 p
t
iwi, and F is the fidelity of replication F = 1 − 2μ − μ2. It

is easy to show that
P

ptþ1
i ¼ 1 as long as

P
pti ¼ 1.

Eqs (1–4) can be solved numerically iteratively, but alternatively the fixed point (the pi in
the limit t!1) can be calculated by solving for the right eigenvector of the associated Markov
matrix. We investigate different fitness landscapes by varying the fitness of the mutants, while
the fitness of the wild-type is constant at w0 = 1. Fig 7 shows equilibrium allele frequencies for
a landscape where the double mutant has a given fitness w3, while the intermediate genotypes
have zero fitness (a valley-crossing landscape with reciprocal sign epistasis).

Armed with the equilibrium probabilities pi, we can calculate the information between loci
as follows. First we define p(A) and p(a) for the first and second locus:

pð1ÞðAÞ ¼ p0 þ p1 ; pð1ÞðaÞ ¼ 1� p0 � p1

pð2ÞðAÞ ¼ p0 þ p2 ; pð2ÞðaÞ ¼ 1� p0 � p2
ð5Þ

giving us the marginal entropies of the first and second locus

Hð1Þ ¼ �
X
i¼a;A

pð1ÞðiÞlogpð1ÞðiÞ ;

Hð2Þ ¼ �
X
i¼a;A

pð2ÞðiÞlogpð2ÞðiÞ :
ð6Þ

Fig 6. Rates of mutation between four different genotypes. The types are denoted as 0 = AA, 1 = Aa,
2 = aA, and 3 = aa.

doi:10.1371/journal.pgen.1005960.g006

Strong Selection Increases Epistasis in Long-Term Protein Evolution

PLOS Genetics | DOI:10.1371/journal.pgen.1005960 March 30, 2016 13 / 23



The joint entropy of both loci is then

Hð1; 2Þ ¼ �
X
i¼a;A

X
j¼a;A

pð1;2Þði; jÞ log pð1;2Þði; jÞ : ð7Þ

where p(1,2)(i, j) is the joint probability to observe allele i at locus 1 and allele j at locus 2.
The shared entropy (or information) is

Ið1 : 2Þ ¼ Hð1Þ þ Hð2Þ � Hð1; 2Þ : ð8Þ

We can then relate this information to the epistasis between loci calculated as [25, 80]

E ¼ log
w3

w0

� �
� log

w2

w0

� �
� log

w1

w0

� �
¼ log

w3w0

w1w2

� �
ð9Þ

There are other ways of defining epistasis between loci (see, e.g., [77]), but the qualitative rela-
tion between information and epistasis is not affected.

An extreme example occurs when w0 = w3 = 1 and w1 = w2 = 0, that is, when the double
mutant has the same fitness as the wild type, but the intermediate genotypes have no fitness. In
that case, it is necessary to cross a valley in the fitness landscape to reach the double mutant aa.
In this case of reciprocal sign epistasis [63], E =1, and

Ið1 : 2Þ ¼ �ð1� p0Þ log ð1� p0Þ � ð1� p3Þ log ð1� p3Þ : ð10Þ

If p0 = p3 = 0.5 (full equilibration) this extreme level of epistasis correspond to 1 bit of

Fig 7. Allele frequencies as fitness for type 3 (aa) is varied. In this valley-crossing landscape,w0 is always 1 andw1 =w2 = 0. Plot shows allele
frequencies pi at mutation rate μ = 0.1 as a function ofw3. The intermediate types aA and Aa occur only at the rate of mutation as they have zero fitness.

doi:10.1371/journal.pgen.1005960.g007
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information (the maximum possible). Fig 8 shows the changes in genotype probabilities and
mutual information as the population adapts from a single-peak landscape (w0 = 1 and w1 = w2

= w3 � 0) to a two-peak fitness landscape landscape (w0 = w3 = 1 and w1 = w2 � 0). Pairwise
mutual information increases as the landscape becomes more rugged. See S7 Text for simula-
tions for a three-loci two-allele model that show that an increase in the sum of mutual informa-
tion coincides with the increase in the ruggedness of the fitness landscape.

To study the general relationship between epistasis and information, we calculated both
epistasis and information starting with w0 = 1 (wild type fitness), and random fitness values
(between 0 and 1) for the single and double mutants w1, w2, and w3. The equilibrium genotype
probabilities were obtained by iterating the replicator-mutator equations until they had stabi-
lized (30,000 updates of genotype probabilities p0, p1, p2, and p3 using Eqs (1–4), with starting
genotype probabilities: p0 = 1, p1 = p2 = p3 = 0). We find that the absolute value of epistasis |E|
is positively correlated with information (Spearman R = 0.497, p< 10−15, see Fig 9). It is clear
that information is a sufficient (but not necessary) condition for epistasis. Thus, high informa-
tion between two loci guarantees epistasis between those two loci, but there may be epistatically
interacting loci that are missed when focusing only on information, as some loci can interact
epistatically without being informative about each other. In addition, the direction of epistasis
(the sign of E) cannot be determined solely from information. To ascertain the fraction of epis-
tatically interacting pairs that are missed by an informational analysis, we examined pairs with
information below a chosen cut-off (here I< 0.001 bits). About 35% of all pairs have informa-
tion below the threshold, but only 28% of all pairs have non-vanishing epistasis at the same
time (see inset in Fig 9, which shows the distribution of epistasis among pairs with sub-thresh-
old information). This finding leads us to conclude that, at least in the simple model presented
here, only about 30% of epistatically interacting pairs are missed by using an information
proxy. Furthermore, the majority of those missed pairs have small epistasis, as evidenced by
the distribution of epistasis for those pairs with negligible information in the inset of Fig 9.

Fig 8. Two-loci two-allele model. The left panel shows the fitness landscapes and epistasis given by Eq (9) in the first and second half of the simulation
(updates 0–499:w0 = 1 andw1 =w2 =w3 = 10−5 � 0; updates 500–1000:w0 =w3 = 1 andw1 =w2 = 10−5� 0). The xy-plane shows the four genotypes while
the z-axis shows genotype fitness. The middle panel shows the genotype probabilities while the right panel shows the mutual information during the course of
the simulation. Note that the increase in epistasis at the 500th update is reflected in the increase in mutual information. The mutation rate was 0.1 and starting
population frequencies were p0 = 1 and p1 = p2 = p3 = 0.

doi:10.1371/journal.pgen.1005960.g008
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Information stored in HIV-1 protease
The information content of biomolecules can be estimated using information-theoretic con-
structs [44, 85, 86]. Information content is different from sequence length: it can be thought of
as the amount of information that is stored in the protein sequence about the cellular environ-
ment within which it functions (implying that it is contextual). Information content can
change when the environment changes even if the sequence remains the same, and is thought
to be a proxy for fitness [87]. Because a changed environment usually translates into reduced
information content (reflecting reduced fitness), the virus seeks to recover the information and
achieve previous fitness levels by evolving drug resistance.

The total information content of a protein of length ℓ (taking into account all correlations
between residues) is given by (adapting a formula for the “multi-information” of ℓ events due
to Fano [88]):

I‘ ¼ Hmax �
X‘

i¼1

Hi �
X‘

i<j

Iði : jÞ þ
X‘

i<j<k

Iði : j : kÞ � � � �
 !

; ð11Þ

Fig 9. Correlation between epistasis and information. Each point corresponds to information and absolute value of epistasis calculated for one of the
10,000 combinations ofw0,w1,w2, andw3. Here,w0 is always 1, and other fitness values are uniformly randomly assigned between 0 and 1. The inset
shows the percentage of points with negligible information (<0.001 bits) as a function of epistasis.

doi:10.1371/journal.pgen.1005960.g009
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where I(i : j) is the mutual information between two sites, I(i : j : k) the information shared
between three sites [88], and so on. The terms not shown in Eq (11) are the higher-order cor-
rections I(i : j : k :m) etc., up to I(i1 : i2 : . . . : iℓ), with alternating signs. Corrections due to inter-
actions between three or more sites are expected to be small, but cannot be estimated using the
present data because the samples are too small.Hmax is the sum of maximum entropy at every
site, and thus is equal to log2(20) × ℓ� 4.32 × ℓ bits, where ℓ is the sequence length [44].

We define the first- and second-order information estimates of Eq (11) I1 and I2 as follows:

I1 ¼ Hmax �
Xl

i¼1

Hi ; ð12Þ

I2 ¼ I1 þ
X‘

i<j

Iði : jÞ : ð13Þ

Thus, I1 measures the information content of the protein without considering any interactions
among protein residues, and I2 includes information contained in pairwise interactions
between protein positions over and above I1, but ignores any other higher-order interactions
between residues. The second term in Eq (13) is the sum of pairwise mutual information for all
pairs of residues in the protein. Note that if information was only described by I1, mutations
that provide resistance reduce the information in the ensemble, as they increase sequence
entropy. Achieving an increase in total information must then occur via correlated mutations.

Changes in physicochemical properties of the residues
The site-wise changes in physicochemical properties of residues such as the iso-electric point
pI and residue weight in the protease are calculated by averaging their values across the sub-
samples from each year and environment (treated and untreated). The physicochemical prop-
erties of residues and their changes are discussed in S3 Text.

Finite-size corrections for entropy estimates
Small datasets do not correctly estimate the amino acid probabilities due to dataset-dependent
observed frequencies of residues: this introduces a bias in the entropy and mutual information
calculations (see, e.g., [89, 90]). Several priors and estimators have been proposed to estimate
entropies from undersampled probability distributions [90], and our analysis suggests that a
sample size of 300 with NSB (Nemenman-Shafee-Bialek) entropy bias correction gives reliable
estimates of entropy and mutual information values (see S6 Text).

Since the number of treated and untreated protease sequences in our dataset is different
across years (Table 1), we sampled (with replacement) 10 sets/year of 300 sequences each to
account for sample size bias. We calculate bias-corrected entropies and pairwise mutual infor-
mation for the subsampled datasets, and report the average values (along with ±1 SD). Because
several protease sequences had gaps at the sequence ends, we calculated the I1, I2, and sum of
pairwise mutual information for a truncated sequence length (from positions 15 to 90 instead
of positions 1 to 99 of the protease sequence, see S2 Fig).

Statistical analysis of temporal trend of protein information
To compare the temporal trends of I1, I2, and sum of pairwise mutual information for
untreated and treated sequence data, we first fit linear regression models to the yearly data
using the R statistical analysis platform [91] and then determine if the slopes of the regression
models (for treated and untreated datasets) are significantly different or not.
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Although the data used in this analysis is not longitudinal (protease sequences are collected
from different patients participating in different clinical trials/studies across the years), the lin-
ear regression model is fit to the average values of the response variables (I1, I2, and sum of
pairwise mutual information) calculated by sampling ten sets of 300 sequences each, and thus
reflect the approximate temporal trends of the response variables with respect to the two fac-
tors (untreated and treated).

Supporting Information
S1 Fig. Change in per-site entropies in HIV-1 protease over time. Average entropy change
(compared to 1998) at every position of the HIV-1 protease in the untreated (top panel) and
treated (bottom panel) data sets. The size of the circles is proportional to the entropy change,
and blue marks an increase while red implies a decrease in entropy at that site, compared to
1998 (the first year in our analysis). Site-specific variation mostly increased across the protein
even in the absence of treatment, but decreased at some sites. In the treated data set, the
entropy increased at most sites (in particular starting in 2003) while some sites became less
entropic.
(PDF)

S2 Fig. Number of amino acids in each sampled set of 300 sequences for years 1998–2006.
Gaps at the beginning and ends of the protease sequence imply uneven sample size for posi-
tions�15 and� 90, and thus the ends were truncated for calculation of per-site entropies and
pairwise mutual information. Filled circles represent average number of residues in the sam-
pled sets at each protease position and error bars represent unit SD.
(PDF)

S1 Table. Protease Inhibitors (PIs) and the years they were approved by FDA.
(PDF)

S1 Text. Phylogenetic structure of protease sequence data.
(PDF)

S2 Text. Sequence Logos for HIV-1 protease sequences.
(PDF)

S3 Text. Changes in physicochemical properties at protease positions mirror per-site
entropy changes.
(PDF)

S4 Text. Changes in epistatic interactions in a longitudinal study.
(PDF)

S5 Text. Information between epistatic pairs in protease of treated and un-treated subjects,
for spatially close and distant epistatic residue pairs.
(PDF)

S6 Text. Correction for sample-size bias in entropy and mutual information estimates.
(PDF)

S7 Text. Three-loci two-allele model for understanding relationship between epistasis and
information.
(PDF)
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