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Abstract
Consecutive measurements performed on the same quantum system can reveal fun-
damental insights into quantum theory’s causal structure, and probe different aspects 
of the quantum measurement problem. According to the Copenhagen interpretation, 
measurements affect the quantum system in such a way that the quantum superposi-
tion collapses after each measurement, erasing any memory of the prior state. We 
show here that counter to this view, un-amplified measurements (measurements 
where all variables comprising a pointer are in principle controllable) have coher-
ent ancilla density matrices that encode the memory of the entire set of (un-ampli-
fied) quantum measurements that came before, and that the chain of this entire set is 
therefore non-Markovian. In contrast, sequences of amplified measurements (meas-
urements where at least one pointer variable has been lost) are equivalent to a quan-
tum Markov chain. We argue that the non-Markovian nature of quantum measure-
ment has empirical consequences that are incompatible with the assumption of wave 
function collapse, thus elevating the collapse assumption into a testable hypothe-
sis. Finally, we find that all of the information necessary to reconstruct an arbitrary 
non-Markovian quantum chain of measurements is encoded on the boundary of that 
chain (the first and the final measurement), reminiscent of the holographic principle. 
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1 Introduction

The physics of consecutive (sequential) measurements on the same quantum system 
has enjoyed increased attention as of late, as it probes the causal structure of quan-
tum mechanics [7]. It is of interest to researchers concerned about the apparent lack 
of time-reversal invariance of Born’s rule [46, 53], as well as to those developing 
a consistent formulation of covariant quantum mechanics [45, 52], which does not 
allow for a time variable to define the order of (possibly non-commuting) projec-
tions [47]. Consecutive measurements on the same quantum system have also been 
used to test whether the statistics of the set of measurements is compatible with a 
macroscopic description of them [36]. 

Consecutive measurements can be seen to challenge our understanding of quan-
tum theory in an altogether different manner, however. According to standard the-
ory, a measurement causes the state of a quantum system to “collapse”, re-preparing 
it in an eigenstate of the measured operator so that after multiple consecutive meas-
urements on the quantum system any memory about the initial preparation is erased. 
However, recent investigations of sequential measurements on a single quantum sys-
tem with the purpose of optimal state discrimination have already hinted that quan-
tum information survives the collapse [5, 43], and that information about a chain of 
sequential measurements can be retrieved from the final quantum state [25]. Such 
observations are incompatible with a Markovian—that is, memory-less—view of 
quantum measurement, which posits that for a set of detectors X1 …Xj that measure 
the state of a quantum system in j consecutive steps, the probability to obtain out-
come xj can only depend on the preceding state:

where p(xj|xj−1) is the conditional probability to observe outcome xj for detector Xj 
if we previously had observed outcome xj−1 on detector Xj−1 . In terms of the Shan-
non entropy of this chain, the Markov condition can be written succinctly as

where H(X) = −
∑

i p(xi) log2 p(xi).
Here we investigate what circumstances confer the Markov property on chains 

of quantum measurements—meaning that each consecutive measurement “wipes 
the slate clean” so that retrodiction of quantum states [25] is impossible—and 
under what conditions the quantum trajectory remains coherent so that the mem-
ory of previous measurements is preserved. In particular, we study the relative 
state of measurement devices (both quantum and classical) in terms of quan-
tum information theory, to ascertain how much information about the quantum 
state appears in the measurement devices, and how this information is distrib-
uted among them. We find that a crucial distinction refers to the “amplifiability” 
of a quantum measurement, that is, whether a result is encoded in the states 
of a closed or an open system. We also determine that a unitary relative-state 
description of quantum measurement makes predictions that are different from a 
formalism that assumes quantum state reduction, and that these differences can 

(1.1)p(xj|xj−1 … x1 ) = p(xj|xj−1 ) ,

(1.2)H(Xj|Xj−1 …X1 ) = H(Xj|Xj−1 ) ,
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be observed. But most importantly, we will argue that whatever the state of the 
measurement devices, the quantum state itself is not “projected”, so that all the 
initial amplitudes of the quantum state can continue to influence future meas-
urements. Decoupling the state of the measurement device from the state of the 
quantum system—implying that one does not necessarily reflect the other even 
though one just measured the other—solves a number of long-standing para-
doxes that have plagued quantum theory, but also opens up new puzzles about 
the nature of reality. 

While the suggestion that the relative state description of quantum measure-
ment [19] (see also [8, 10, 14, 22, 69]) and the Copenhagen interpretation of 
reduction of the wave function are at odds and may lead to measurable differ-
ences has been made before [14, 69], here we frame the problem of consecutive 
measurements in the language of quantum information theory, which allows us 
to make these differences manifest. We begin by outlining in Sect. 2 the unitary 
description of quantum measurement discussed previously [8, 10, 22], and apply 
it in Sect. 3 to a sequence of quantum measurements where the pointer—mean-
ing a set of quantum ancilla states—remains under full control of the experi-
menter. In such a closed system, the pointer can in principle decohere if it is 
composed of more than one qubit, but this decoherence can be reversed in prin-
ciple. We prove in Theorems  1 and  2 properties of the entropy of a chain of 
consecutive measurements that imply that the entropy of such chains resides in 
the last (or first and last) measurements, depending on whether or not the initial 
quantum state was known or not. We then show that for coherence to be pre-
served in such chains, measurements cannot be arbitrarily amplified—in contrast 
to the macroscopic measurement devices that are necessarily open systems.

In Sect. 4, we analyze sequences of amplifiable—that is, macroscopic—meas-
urements and prove in Theorem  3 that amplified measurement sequences are 
Markovian. Corollary 1 asserts an information-theoretic statement of the general 
idea that two macroscopic measurements anywhere on a Markov chain must be 
uncorrelated given the state of all the measurement devices that separate them 
in the chain. This corollary epitomizes the essence of the Copenhagen idea of 
quantum state reduction in terms of the conditional independence of measure-
ment devices that are not immediately in each other’s past or future. It is consist-
ent with the notion that the measurements collapsed the state of the wave func-
tion, erasing any conditional information that a detector could have had about 
prior measurements. However, no irreversible reduction actually occurs, since 
all amplitudes in the underlying pure-state wave function continue to evolve 
unitarily.

Section 5 unifies the two previous sections by proving three statements (The-
orems 4, 5, and 6) that relate information-theoretic quantities pertaining to un-
amplified measurements to the corresponding expressions for amplified meas-
urements. We show that, in general, amplification leads to a loss of information.

After a brief application of the collected concepts and results to standards 
such as quantum state preparation, the double-slit experiment and the quantum 
Zeno effect, we close with conclusions in Sect. 6.
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2  Theory of Quantum Measurement

2.1  The Measurement Process

Suppose a given quantum system is in the initial state

where !(1)
x1

 are complex amplitudes. Here, Q is expressed in terms of the d orthonor-
mal basis states |̃x1⟩ associated with the observable that we will measure. The von 
Neumann measurement is implemented with a unitary operator that entangles the 
quantum system Q with an ancilla A1,1

where Px1
= |̃x1⟩⟨x̃1| are projectors on the state of Q. The operators Ux1

 transform the 
initial state |0⟩ of the ancilla to the final state Ux1

|0⟩ = |x1⟩ , where |x1⟩ are the ortho-
normal basis states of the ancilla. The unitary interaction (2.2) between the quantum 
system and the ancilla leads to the entangled state [10]

The coefficients !(1)
x1

 reflect the degree of entanglement between Q and A1 : the num-
ber of non-zero coefficients is the Schmidt number [44] of the Schmidt 
decomposition.

Here we argue that this entanglement operation is sufficient to reproduce all 
experimental results for up to two consecutive projective measurements, without 
at the same time projecting the quantum state itself. The entanglement operation, 
already discussed by von Neumann [65], is often termed a “pre-measurement” or 
“latent measurement” [15], awaiting the second stage of measurement, namely the 
projection of the measurement device. However, it turns out that projecting the 
measurement device (by macroscopically recording its state) is not a necessary oper-
ation at this stage, as Dicke has shown [15]. Instead, a sequence of latent measure-
ments can be performed on the quantum states in a coherent manner, projecting all 
measurement devices only after the last measurement has been performed. In fact, 
we will show below that as long as the density matrix of the measurement devices 

(2.1)|Q⟩ =
d−1∑
x1 =0

!(1 )
x1

|̃x1 ⟩,

(2.2)UQA1
=

d−1∑
x1 =0

Px1
⊗ Ux1

,

(2.3)|QA1 ⟩ = UQA1
|Q⟩ |0 ⟩ =

∑
x1

!(1 )
x1

|̃x1 ⟩ |x1 ⟩.

1 We focus here on orthogonal measurements, a special case of the more general POVMs (positive oper-
ator-valued measures) that use non-orthogonal states. What follows can be extended to POVMs, while at 
the same time Neumark’s theorem guarantees that any POVM can be realized by an orthogonal measure-
ment in an extended Hilbert space.
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are diagonal in the measurement basis, this final projection has no consequences for 
either the devices or the quantum state.

Tracing out the ancilla from (2.3), the density matrix of the quantum system can 
be written in the standard form,

where the probability to observe outcome x1 is given by

and Px1
 is a Kraus operator. This, of course, is just Born’s rule.

Similarly, the density matrix of the ancilla A1 is

From the symmetry of the state (2.3), the marginal von Neumann entropy of A1 is 
the same as Q, which, in turn, is equal to the Shannon entropy of the probability dis-
tribution q(1)

x1
= |!(1)

x1
|2:

We denote the Shannon entropy of a d-dimensional probability distribution pxi by 
H[p] = −

∑d−1
xi=0

pxi logd pxi . The von Neumann entropy of a density matrix !(X) is 
defined as S(X) = S(!(X)) = −Tr

[
!(X) logd !(X)

]
 , which on account of the logarithm 

to the base d, gives entropies the units “dits”.
The ancilla and quantum system are not classically correlated in (2.3) 

(as is required for decoherence models), but in fact are entangled. This 
entanglement is characterized by a negative conditional entropy [9, 10], 
S(A1|Q) = S(QA1) − S(Q) = −S(A1) , where the joint entropy vanishes since 
(2.3) is pure. We illustrate the entanglement between A1 and Q with an entropy 
Venn diagram [10] in Fig.  1a. The mutual entropy at the center of the diagram, 

(2.4)!(Q ) =
∑
x1

Px1
|Q⟩⟨Q |Px1

,

(2.5)q(1 )
x1

= TrQ
[
Px1

!(Q )
]
= |"(1 )

x1
|2 .

(2.6)!(A1 ) = TrQ
(|QA1 ⟩⟨QA1 |

)
=
∑
x1

|"(1 )
x1
|2 |x1 ⟩⟨x1 |.

(2.7)S(Q ) = S(A1 ) = H [q(1 )] = −
∑
x1

q(1 )
x1

log d q
(1 )
x1
.

Q A1

(a)

−S1 2 S1 −S1

Q A1

(b)

0 1 0

Fig. 1  Entropy Venn diagrams [10] for the quantum system and ancilla. a For prepared quantum states, 
Q and A1 are entangled according to Eq. (2.3). b For unprepared quantum states, Q and A1 are correlated 
according to Eq. (2.12) when the reference R has been traced out. In this figure, we use the notation 
S1 = S(A1) for the marginal entropy of ancilla A1



1013

1 3

Foundations of Physics (2020) 50:1008–1055 

S(Q ∶ A1) = S(Q) + S(A1) − S(QA1) , reflects the entropy that is shared between 
both systems and is twice as large as the classical upper bound [1, 9, 10]. However, 
if mixed states are measured using the von Neumann measurement, the quantum 
system and the ancilla will appear classically correlated, but the joint system that 
includes the preparer is entangled, as we now show.

2.2  Unprepared Quantum States

In the previous section, we considered measurements of a quantum system that is 
prepared in a pure state (2.1) with amplitudes !(1)

x1
 (a “known” state). Suppose instead 

that we are given a quantum system about which we have no information, that is, 
where no previous measurement results could inform us of the state of Q. In this 
case, we should write the quantum system’s initial state as a maximum entropy 
mixed state

with amplitudes that now correspond to a uniform probability distribution. We call 
this an unprepared quantum system. We can “purify” !(Q) by defining a higher-
dimensional pure state where Q is entangled with a reference system R [44],

such that !(Q) is recovered by tracing (2.9) over R. Here and earlier, the states of 
Q are written with a tilde, |̃x0⟩ , to distinguish them from the states of R, which are 
denoted by |x0⟩.

To measure Q with an ancilla A1 , we express the quantum system in the eigenba-
sis |̃x1⟩ (which corresponds to the eigenstates of the observable that ancilla A1 will 
measure) using the unitary matrix U(1)

x0x1
= ⟨x̃1 |̃x0⟩ . The orthonormal basis states of 

the ancilla, |x1⟩ , with x1 = 0,… , d − 1  , automatically serve as the “interpretation 
basis” [14]. We then entangle [10] Q with A1 , which is in the initial state |0⟩ , using 
the unitary entangling operation UQA1

 in Eq. (2.2),

where !R is the identity operation on R. We always write the states on the right hand 
side in the same order as they appear in the ket on the left hand side. Note that this 
entanglement operation is simply a generalization of the CNOT operation used 
explicitly in many quantum measurements (see, e.g. [2, 12, 16, 23, 30, 32, 34, 63]). 
We express the reference’s states in a new basis by defining |x1⟩R =

∑
x0
U (1)

x1x0
|x0⟩R 

with the transpose of U(1) , so that the joint system QRA1 appears as

(2.8)!(Q) =
1

d

d−1∑
x0 =0

|̃x0 ⟩⟨x̃0 | ,

(2.9)|QR⟩ = 1√
d

d−1∑
x0 =0

|̃x0 ⟩|x0 ⟩ ,

(2.10)|QRA1 ⟩ = !R ⊗ UQA1
|QR⟩ |0 ⟩ = 1√

d

∑
x0 x1

U (1 )
x0 x1

|̃x1 ⟩ |x0 ⟩ |x1 ⟩,
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Note that (2.11) is a tripartite Schmidt decomposition of the joint density matrix 
!(QRA1) = |QRA1⟩⟨QRA1| , which is possible here because the entanglement opera-
tor UQA1

 ensures the bi-Schmidt basis R⟨x1|QRA1⟩ has Schmidt number one [49].
Tracing out the reference system from the full density matrix !(QRA1) , we note 

that the ancilla is perfectly correlated with the quantum system,

in contrast to Eq. (2.3) where A1 and Q are entangled. Such correlations are indicated 
by a vanishing conditional entropy [10], S(A1|Q) = S(QA1) − S(Q) = 0 . Tracing 
over (2.12), we find that each subsystem has maximum entropy S(Q ) = S(A1) = 1 . In 
Fig. 1, we compare the entropy Venn diagrams that are constructed from the states 
(2.3) and (2.12). We note in passing that R can be thought of as representing all pre-
vious measurements of the quantum system that have occurred before A1.

2.3  Composition of the Quantum Ancilla

The ancilla A1 may, in practice, be composed of many qudits A(1)
1
…A

(n)
1

 , which all 
measure Q in some basis, according to the sequence of entangling operations 
UQA

(n)
1
…UQA

(1)
1

 between Q and A(i)
1

 (see Fig. 2). In this case, Eq. (2.3), for example, is 
extended to

Tracing out the quantum system from Eq. (2.13), the joint state of the entire ancilla 
is !(A1) = !(A(1)

1
…A

(n)
1
) =

∑
x1
|"(1)

x1
|2|x1 … x1⟩⟨x1 … x1| , that is, each component of 

A1 is perfectly correlated with every other component, so that A1 is internally self-
consistent (“all parts of A1 tell the same story”). However, while A1 appears classi-
cal, and could conceivably consist of a macroscopic number of components, it is 
potentially fragile, in the sense that its entanglement with other devices may become 
hidden when any part A(i)

1
 of A1 is lost (traced over). In the following, we will distin-

guish “amplifiable” from non-amplifiable devices: A state is termed amplifiable if 

(2.11)|QRA1 ⟩ = 1√
d

∑
x1

|̃x1 ⟩|x1 ⟩|x1 ⟩ .

(2.12)!(QA1 ) =
1

d

∑
x1

|̃x1 x1 ⟩⟨x̃1 x1 |,

(2.13)|QA1 ⟩ =
∑
x1

!(1 )
x1

|̃x1 ⟩ |x1 ⟩A(1 )
1
… |x1 ⟩A(n)

1
.

Fig. 2  Composition of the quan-
tum ancilla. Dashed lines indi-
cate entanglement between the 
quantum system, Q, and each of 
the n qudits, A(1 )

1
,… ,A

(n)
1

 , in the 
ancilla A1

Q

A
(1)
1

A
(2)
1

A
(n)
1

...
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tracing over any of its components does not affect the correlations between its 
subsystems.

To do this, we will consider an additional step to the measurement process in our 
discussion of Markovian quantum measurements in Sect. 4.2, by introducing a macro-
scopic detector D1 that measures the quantum ancilla A1 . In other words, D1 observes 
the quantum observer A1 . This second system, which is also composed of many qudits, 
amplifies the measurement with A1 , by recording the outcome on a macroscopic 
device. While A1 may be fragile depending on the situation, D1 is by definition robust: 
any part of D1 could be traced over without affecting its correlations with other mac-
roscopic measurement devices. While such a procedure (a quantum system observed 
by a quantum ancilla, which is observed by a classical device) may appear arbitrary, it 
merely represents a convenient way of splitting up the second stage of von Neumann’s 
measurement [65] to better keep track of the fate of entanglement.

In the following sections, we formally define the concept of a quantum Markov 
chain that we use in the present article, in the context of consecutive measurements 
of a quantum system. We also further develop the formalism to describe series of 
un-amplified measurements with quantum ancillae Ai (which we will show to be 
non-Markovian) as well as amplified measurements with macroscopic detectors, Di , 
which are Markovian. The relationship between amplifiability and the Markov prop-
erty will be the subject of Theorem 3 in Sect. 4.4.

3  Non-Markovian Quantum Measurements

In the previous section, we introduced the concept of non-Markovian measurements 
as those sequences of measurements that are not amplified by macroscopic devices 
(latent measurements). In preparation for Theorem 3 in Sect. 4.4 that establishes this 
correspondence, we first consider consecutive measurements with quantum ancil-
lae of prepared and unprepared quantum states, and demonstrate the non-Markovian 
character of the chain of ancillae. In particular, we will use entropy Venn diagrams 
to study the correlations between subsystems and the distribution of entropies dur-
ing consecutive measurements.

3.1  Consecutive Measurements of a Prepared Quantum State

Building on the discussion from Sect. 2.1 where we described a single measurement 
of a quantum system, we now introduce a second ancilla A2 that measures Q. This 
measurement corresponds to a new basis, |̃x2⟩ , that is rotated with respect to the old 
basis, |̃x1⟩ , via the unitary transformation U(2)

x1x2
= ⟨x̃2 |̃x1⟩ . Unitarity requires that

(3.1)
∑
x2

U(2 )
x1 x2

U
(2 )∗

x′
1
x2
= !x1 x′1

,

(3.2)
∑
x1

U(2 )
x1 x2

U
(2 )∗

x1 x
′
2

= !x2 x′2
.
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After entangling Q and A2 with an operator analogous to (2.2), the wavefunction 
(2.3) evolves to

where the eigenstates of the second ancilla, A2 , are |x2⟩.
Tracing out Q, the quantum ancillae are correlated according to the joint density 

matrix,

while A1 and A2 together are entangled with the quantum system. The marginal 
ancilla density matrices, obtained from (3.4), are

where q(1)
x1

= |!(1)
x1
|2 is the probability distribution of ancilla A1 , while the probability 

distribution of A2 is the incoherent sum q(2)
x2

=
∑

x1
|!(1)

x1
|2 |U(2)

x1x2
|2 . We can compare 

this expression to the coherent probability distribution ∑x1
|!(1)

x1
U(2)

x1x2
|2 for A2 , had 

the first measurement with A1 never occurred. The marginal entropy of both A1 and 
A2 is the Shannon entropy S(Ai) = H[q(i)] of the probability distribution q(i)

xi
.

A third measurement of Q with an ancilla A3 yields

where U(3)
x2x3

= ⟨x̃3 |̃x2⟩ , and |x3⟩ are the basis states of ancilla A3 . The quantum system 
is entangled with all three ancillae in (3.6), as illustrated by the negative conditional 
entropies in Fig. 3. The degree of entanglement is controlled by the marginal entropy 
S(A3) = H[q(3)] of ancilla A3 , with the probability distribution 
q(3)
x3

=
∑

x1x2
|!(1)

x1
|2 |U(2)

x1x2
|2 |U(3)

x2x3
|2 . This procedure can be repeated for an arbitrary 

(3.3)|QA1 A2 ⟩ =
∑
x1 x2

!(1 )
x1

U (2 )
x1 x2

|̃x2 x1 x2 ⟩,

(3.4)!(A1 A2 ) =
∑
x1 x

′
1
x2

"(1 )
x1
"(1 )∗

x′
1

U (2 )
x1 x2

U
(2 )∗

x′
1
x2
|x1 x2 ⟩⟨x′1 x2 |,

(3.5)!(Ai) =
∑
xi

q(i)
xi
|xi⟩⟨xi| , i = 1, 2

(3.6)|QA1 A2 A3 ⟩ =
∑
x1 x2 x3

!(1 )
x1

U (2 )
x1 x2

U (3 )
x2 x3

|̃x3 x1 x2 x3 ⟩,

Q A1A2A3

−S3 2 S3 −S3

Fig. 3  Entropy Venn diagram for the state (3.6). The presence of negative conditional entropies reveals 
that the quantum system, Q, is entangled with all three ancillae, A1A2A3 . In this figure, we use the nota-
tion S3 = S(A3) , which is the marginal entropy of the last ancilla A3 in the measurement sequence. To 
generalize this diagram from three to n consecutive measurements of a prepared quantum system, S3 is 
replaced by Sn , the entropy of the last ancilla An in the chain
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number of consecutive measurements and can be used to succinctly describe the 
quantum Zeno and anti-Zeno effects (see Sect. 6.2).

3.2  Consecutive Measurements of an Unprepared Quantum State

Sequential measurements of an unprepared quantum system yield entropy distribu-
tions between the quantum system and ancillae that are different from those created 
by measurements of prepared quantum systems described in Sect. 3.1. In this sec-
tion, we consider a sequence of measurements of an unprepared quantum system 
that is initially entangled with a reference system as in (2.9). Adding to the calcula-
tions in Sect. 2.2, we measure Q again in a rotated basis U(2)

x1x2
= ⟨x̃2 |̃x1⟩ , by entan-

gling it with an ancilla A2 . Then, with |x2⟩ the basis states of ancilla A2 , the wave-
function (2.11) becomes

It is straightforward to show that the marginal ancilla density matrices are maxi-
mally mixed, !(A1) = !(A2) = 1∕d ! , where ! is the identity matrix of dimension d. 
It follows that A1 and A2 have maximum entropy S(A1) = S(A2) = 1.2 The joint state 
of A1 and A2 is diagonal in the ancilla product basis,

in contrast to Eq. (3.4). Still, the quantum ancillae A1 and A2 are correlated. Equa-
tions (3.4) and (3.8) immediately imply that if the quantum system is measured 
repeatedly in the same basis ( U(2)

x1x2
= !x1x2 ) by independent devices, all of those 

devices will be perfectly correlated and will reflect the same outcome [8, 10].
Let us entangle a third ancilla, A3 , with the quantum system such that 

U(3)
x2x3

= ⟨x̃3 |̃x2⟩ . We find that (3.7) evolves to

The entropic relationships between the variables Q, R, and A1A2A3 are shown in 
Fig. 4. The vanishing ternary mutual entropy S(Q ∶ R ∶ A1A2A3) = 0 indicates that 
the entropy S(A1A3) = S13 that is shared by R and A1A2A3 is in fact not shared with 
the quantum system. Tracing out the reference state, we find that the quantum sys-
tem is still entangled with all three ancillae. However, this entanglement is now 
shared with the reference system, which yields a Venn diagram that is different from 
Fig. 3.

(3.7)|QRA1 A2 ⟩ = 1√
d

∑
x1 x2

U (2 )
x1 x2

|̃x2 x1 x1 x2 ⟩ .

(3.8)!(A1 A2 ) =
1

d

∑
x1

|x1 ⟩⟨x1 |⊗
∑
x2

|U (2 )
x1 x2

|2 |x2 ⟩⟨x2 | ,

(3.9)|QRA1 A2 A3 ⟩ = 1√
d

∑
x1 x2 x3

U (2 )
x1 x2

U (3 )
x2 x3

|̃x3 x1 x1 x2 x3 ⟩.

2 Recall that all logarithms are taken to the base d, giving entropies the units dits. If d = 2 , the units are 
bits.
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Consecutive measurements provide a unique opportunity to extract informa-
tion about the state of the quantum system from the correlations created between 
the ancillae, as we do not directly observe either the quantum system or the refer-
ence. Tracing out Q and R from the full density matrix associated with Eq. (3.9) 
yields the joint state of the three ancillae,

Unlike the pairwise state !(A1A2) in Eq. (3.8), the state of all three ancillae is not 
an incoherent mixture. Performing a third measurement has, in a sense, revived the 
coherence of the A2 subsystem, and the set A1A2A3 is now non-classical.

An apparent collapse has taken place after the second consecutive measure-
ment in Eq. (3.8), as the corresponding density matrix has no off-diagonal terms. 
However, the third measurement seemingly undoes this projection, as can be seen 
from the appearance of off-diagonal terms in Eq. (3.10). This “reversal” is differ-
ent from protocols that can “un-collapse” weak measurements [29, 35], because 
it is clear that the wavefunction (3.9) underlying the density matrix (3.10) was 
never projected in the first place. The presence of the cross terms in Eq. (3.10) 
has fundamental consequences for our understanding of the measurement pro-
cess, and may open up avenues for developing new quantum protocols. In par-
ticular, the cross terms in Eq. (3.10) enable the implementation of disentangling 
protocols [22].

As mentioned in Sect. 2.3, the ancilla Ai may be composed of a large number of 
qudits. To account for a possibly macroscopic ancilla, we suppose that n qudits 

(3.10)
!(A1 A2 A3 ) =

1

d

∑
x1

|x1 ⟩⟨x1 |⊗
∑
x2 x

′
2

U (2 )
x1 x2

U
(2 )∗

x1 x
′
2

|x2 ⟩⟨x′2 |

⊗
∑
x3

U (3 )
x2 x3

U
(3 )∗

x′
2
x3
|x3 ⟩⟨x3 |.

R

Q

A1A2A3

(a)

−1

2−
S13

−1

S13

0
S13

−S13

Q

A1A2A3

(b)

1−S13

S13

0

Fig. 4  Entropy Venn diagrams for the pure state (3.9), where S13 = S(A1A3) is the joint entropy 
of Eq. (3.12). a The entropy S13 that is shared by the reference state, R, and the chain of ancil-
lae, A1A2A3 , is not shared with the quantum system Q, since the ternary mutual entropy must vanish: 
S(Q ∶ R ∶ A1A2A3) = 0 . b Tracing out the reference leaves Q entangled with all ancillae. To general-
ize these diagrams from three to n consecutive measurements of an unprepared quantum system, S13 is 
replaced by S1n , the joint entropy of the first and last ancillae, A1 and An , in the chain
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A
(1)
i

…A
(n)
i

 , which comprise the ith ancilla Ai , measure the quantum system in the same 
given basis. In this case, the joint density matrix (3.10) is extended to

In principle, accounting for macroscopic ancillae does not destroy the coherence of 
the joint state (3.11), which is concentrated in the A2 subsystem. The coherence is 
protected as long as no qudits in the intermediate ancilla A2 are ‘lost’, implying a 
trace over their states, which removes all off-diagonal terms. In practical implemen-
tations, it may be effectively impossible to prevent decoherence when the number of 
qudits is sufficiently large. On the other hand, the pairwise density matrices !(A1A2) , 
!(A2A3) , and !(A1A3) are unaffected by a loss of qudits as they are already diagonal. 
In addition, it can be easily shown that the coherence in Eqs. (3.10) and (3.11) is 
fully destroyed if just the A2 measurement is amplified by a detector D2 (as we will 
see in Sect. 4.3). That is, amplification of the first and last ancillae has no effect on 
the coherence of (3.10) and (3.11).

From the joint ancilla density matrix (3.10), we now derive several properties of 
the chain of quantum ancillae and summarize them using an entropy Venn diagram 
between A1 , A2 , and A3 . First, we construct all three pairwise ancilla density matrices 
and compute their entropies. Tracing out A3 from the joint density matrix (3.10) recov-
ers !(A1A2) in Eq. (3.8), as it should because the interaction between Q and A3 does not 
affect the past interactions of Q with A1 and A2 . Tracing over A2 in Eq. (3.10) gives

while tracing over A1 yields

All three pairwise density matrices are diagonal in the ancilla product basis (see 
Theorem 2 in Sect. 3.3 for a general proof). We take “diagonal in the ancilla product 
basis” to be synonymous with “classical”. From Eqs. (3.8), (3.12), and (3.13), we 
can calculate the entropy of each pair of ancillae and of the joint state of all three 
ancillae from Eq. (3.10). The pairwise entropies are

(3.11)

!(A1 A2 A3 ) =
1

d

∑
x1

|x1 … x1 ⟩⟨x1 … x1 |⊗
∑
x2 x

′
2

U (2 )
x1 x2

U
(2 )∗

x1 x
′
2

|x2 … x2 ⟩⟨x′2 … x′
2
|

⊗
∑
x3

U (3 )
x2 x3

U
(3 )∗

x′
2
x3
|x3 … x3 ⟩⟨x3 … x3 | .

(3.12)!(A1 A3 ) =
1

d

∑
x1

|x1 ⟩⟨x1 |⊗
∑
x2 x3

|U (2 )
x1 x2

|2 |U (3 )
x2 x3

|2 |x3 ⟩⟨x3 |,

(3.13)!(A2 A3 ) =
1

d

∑
x2

|x2 ⟩⟨x2 |⊗
∑
x3

|U (3 )
x2 x3

|2 |x3 ⟩⟨x3 | .

(3.14)S(A1 A2 ) = 1 −
1

d

∑
x1 x2

|U (2 )
x1 x2

|2 log d |U (2 )
x1 x2

|2 ,
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where |!(13)
x1x3

|2 = ∑
x2
|U(2)

x1x2
|2|U(3)

x2x3
|2 . Furthermore, it is straightforward to show that 

S(A1A2A3) , the entropy of !(A1A2A3) in Eq. (3.10), is equal to S(A1A3) . This equality 
holds for any set of three consecutive measurements in an arbitrarily-long measure-
ment chain as we will later prove in Theorem 2 of Sect. 3.3. With these joint entro-
pies, we construct the entropy Venn diagram for the three ancillae that consecutively 
measured an unprepared quantum system, as shown in Fig. 5.

Let us apply the formalism presented thus far to the specific case of qubits (Hil-
bert space dimension d = 2 ). Measurements with ancilla A2 at an angle !2 relative to 
the previous measurement with A1 , and with ancilla A3 at an angle !3 relative to A2 , 
can each, without loss of generality, be implemented with a rotation matrix of the 
form3

For measurements at orthogonal angles ( !2 = !3 = "∕2 ), for example, we have 
|U(2)

x1x2
|2 = |U(3)

x2x3
|2 = 1∕2 , and we expect each ancilla to be maximally entropic: 

S(A1)=S(A2)=S(A3)=1 bit. The joint entropy of each pair of ancillae is two bits, as 
can be read off of Eqs. (3.14–3.16). Because of the non-diagonal nature of !(A1A2A3) 
in Eq. (3.10), the joint density matrix of the three ancillae (using !z , the third Pauli 
matrix, and ! , the 2 × 2 identity matrix),

(3.15)S(A2 A3 ) = 1 −
1

d

∑
x2 x3

|U (3 )
x2 x3

|2 log d |U (3 )
x2 x3

|2 ,

(3.16)S(A1A3 ) = 1 −
1

d

∑
x1x3

|!(13 )
x1x3

|2 log d |!(13 )x1x3
|2 .

(3.17)U(i) =

(
cos(!i∕2 ) − sin (!i∕2 )
sin (!i∕2 ) cos(!i∕2 )

)
.

Fig. 5  Entropy Venn diagram 
for three quantum ancillae that 
measured an unprepared quan-
tum system. In this figure, we 
use the notation S(AiAj) = Sij for 
the pairwise entropy of any two 
ancillae Ai and Aj

A1

A2

A3

S13 −S23

S23 −1

0

S12+S23
−S13 −1

3−S12

−S23

S12−1

S13 −S12

3 An arbitrary rotation by angle ! about the n̂ axis is implemented with the operator U(!) = e−i!n̂⋅!∕2 , 
where ! is the vector of Pauli matrices.
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has entropy S(A1A2A3) = 2 bits, as can be checked by finding the eigenvalues of 
(3.18). Figure 6 summarizes the entropic relationships for un-amplified consecutive 
qubit measurements at !2 = !3 = "∕2.

It is instructive to note that the Venn diagram in Fig. 6 is the same as the one 
obtained for a one-time binary cryptographic pad (the Vernam cipher [56]) where 
two classical binary variables (the source and the key) are combined to a third (the 
message) via a controlled-NOT operation [54] (the density matrices underlying the 
classical and quantum Venn diagrams are, however, very different). The Venn dia-
gram implies that the state of any one of the three quantum ancillae can be pre-
dicted from knowing the joint state of the two others. However, the prediction of A3 , 
for example, cannot be achieved using expectation values from A2 ’s and A1 ’s states 
separately, as the diagonal of Eqs. (3.10) and (3.18) corresponds to a uniform prob-
ability distribution. Thus, quantum coherence can be seen as encrypting classical 
information about past states.

3.3  Coherence of the Chain of Un-amplified Measurements

So far we have seen that the joint ancilla density matrices describing un-amplified 
measurements generally contain a non-vanishing degree of coherence. This suggests 
that coherence is not lost in the measurement sequence, but is actually contained 
in specific ancilla subsystems. In this section, we extend our unitary description of 
consecutive un-amplified measurements of a quantum system to an arbitrarily-long 
chain of ancillae, and derive several properties of the measurement chain.

Many of the joint ancilla density matrices that we have encountered in describing 
consecutive quantum measurements are so-called “classical-quantum states”. Such 
states have a block-diagonal structure of the form ! =

∑
i pi !i ⊗ |i⟩⟨i| , where the 

density matrix !i appears with probability pi . However, the ancilla states that we 
derive here have the additional property that the density matrices !i are always pure 
quantum superpositions.

For measurements of a prepared quantum system, classical-quantum states occur 
in the joint density matrices of two or more consecutive ancillae. For instance, recall 
the state !(A1A2) from Eq. (3.4) that resulted from two measurements of a prepared 

(3.18)!(A1 A2 A3 ) =
1

8

⎛
⎜
⎜
⎜⎝

! − "z 0 0
−"z ! 0 0
0 0 ! "z
0 0 "z !

⎞
⎟
⎟
⎟⎠
,

Fig. 6  Entropy Venn diagram 
for three qubit ancillae that 
measured an unprepared quan-
tum system. Ancilla A2 meas-
ured Q at an angle !2 = "∕2 
relative to the basis of A1 , and 
A3 measured Q at !3 = "∕2 rela-
tive to the basis of A2 A1 A3

A2

0
−1

0

0

1 1

1
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quantum system. We can diagonalize this state with the set of non-orthogonal states 
!(2)
x2

|"x2
⟩ = ∑

x1
!(1)
x1

U(2)
x1x2

|x1⟩ for subsystem A1 , so that (3.4) appears as

where the normalization is equal to the probability distribution for the second ancilla 
A2,

On the other hand, classical-quantum states occur for measurements of unprepared 
quantum systems when there are at least three consecutive measurements, as the first 
measurement in that sequence can be viewed as the state preparation. For example, 
Eq. (3.10) can be diagonalized with the set of non-orthogonal states 
!(13)
x1x3

|"x1x3
⟩ = ∑

x2
U(2)

x1x2
U(3)

x2x3
|x2⟩ for the A2 subsystem, so that

where the normalization is

Evidently, from (3.19) and (3.21), each density matrix !i in the general state 
! =

∑
i pi !i ⊗ |i⟩⟨i| corresponds to a pure state in our ancilla density matrices. This 

leads to the interesting observation that the entropy of a chain of ancillae is con-
tained in either just the last device, or in both the first and last devices together. In 
the first example above for !(A1A2) , it is straightforward to show using Eq. (3.19) 
that S(A1A2) = S(A2) . That is, the entropy of the sequence A1A2 is found at the end 
of the chain, A2 . From the definition of conditional entropy [9], it follows that the 
entropy of A1 vanishes (it is in the pure state |!x2

⟩ ), given the state of A2:

In the second example above for !(A1A2A3) , we find from Eq. (3.21) that 
S(A1A3) = S(A1A2A3) . In other words, the entropy of the chain resides in the bound-
ary, A1 and A3 . It follows that, given the joint state of A1 and A3 , A2 ’s state has zero 
entropy (see the grey region in Fig. 5) and is fully determined (it is in the pure state 
|!x1x3

⟩):

In the following Theorems 1 and 2, we extend these results to an arbitrarily-long 
chain of quantum ancillae. These findings are important as they show that un-ampli-
fied measurement chains retain a finite amount of coherence. Specifically, for meas-
urements on prepared quantum states, the coherence is contained in all ancillae up to 

(3.19)!(A1 A2 ) =
∑
x2

q(2 )
x2

|"x2
⟩⟨"x2

|⊗ |x2 ⟩⟨x2 |,

(3.20)q(2 )
x2

= |!(2 )
x2
|2 =

∑
x1

|!(1 )
x1
|2 |U(2 )

x1 x2
|2 .

(3.21)!(A1A2 A3 )=
1

d

∑
x1x3

p(13 )
x1x3

|x1x3 ⟩⟨x1x3 |⊗ |#x1x3
⟩⟨#x1x3

|,

(3.22)p(13 )
x1x3

= |!(13 )
x1x3

|2 =
∑
x2

|U(2 )
x1x2

|2 |U(3 )
x2 x3

|2 .

(3.23)S(A1 |A2 ) = S(A1 A2 ) − S(A2 ) = 0.

(3.24)S(A2 |A1 A3 ) = S(A1 A2 A3 ) − S(A1 A3 ) = 0 .



1023

1 3

Foundations of Physics (2020) 50:1008–1055 

the last, while for unprepared quantum states coherence is maintained in all ancillae 
except for the boundary.

To begin, we define (ancilla) random variables Ai that take on states xi with 
probabilities q(i)

xi
 . Each ancilla has d orthogonal states and the set of outcomes for 

the ith ancilla is labeled by the index xi , where xi = 0,… , d − 1 .

Theorem 1 The density matrix describing j + 1 ancillae that consecutively meas-
ured a prepared quantum system is a classical-quantum state such that its joint 
entropy is contained only in the last device in the measurement chain. That is,

Proof Generalizing the result (3.6), the wavefunction |!⟩ = |QA1 …Aj+1⟩ for j + 1 
consecutive measurements of a prepared quantum state is

The first ket |̃xj+1⟩ in the joint state on the right hand side of (3.26) describes the 
quantum system, which is written in the basis corresponding to the last observable. 
Each Ai measures the quantum system in a basis that is rotated relative to the basis 
of the previous Ai−1 , such that U(i)

xi−1 ,xi
= ⟨x̃i |̃xi−1 ⟩ . The unitarity of U(i) requires that

Recasting expression (3.26) in terms of the following set of non-orthogonal states,

yields

This is not a true tripartite Schmidt decomposition [49] as the states |!xj+1
⟩ are not 

orthogonal: the partial inner product ⟨!xj+1
|"⟩ does not give a state with a Schmidt 

number of one. Although the states |!xj+1
⟩ are not orthogonal, they are normalized 

according to

which is the probability distribution of ancilla Aj+1.

(3.25)S(A1 …Aj+1 ) = S(Aj+1 ).

(3.26)
|!⟩ =

∑

x1 … xj+1

"(1 )
x1

U(2 )
x1 x2

…U(j+1 )
xjxj+1

|̃xj+1 x1 x2 … xjxj+1 ⟩.

(3.27)

∑
xi−1

U(i)
xi−1 xi

U
(i)∗

xi−1 x
′
i

= !xix′i
,

∑
xi

U(i)
xi−1 xi

U
(i)∗

x′
i−1

xi
= !xi−1 x′i−1

.

(3.28)!(j+1 )
xj+1

|"xj+1
⟩ =

∑
x1 …xj

!(1 )
x1

U(2 )
x1 x2

… U(j+1 )
xjxj+1

|x1 … xj⟩,

(3.29)|!⟩ =
∑
xj+1

"(j+1 )
xj+1

|̃xj+1 $xj+1
xj+1 ⟩.

(3.30)q(j+1 )
xj+1

= |!(j+1 )
xj+1

|2 =
∑
x1 …xj

|!(1 )
x1
|2 |U(2 )

x1 x2
|2 … |U(j+1 )

xjxj+1
|2 ,
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Tracing out the quantum system from the density matrix |!⟩⟨! | formed from 
(3.29), the state of all j + 1 ancillae can be written as

This state is non-diagonal in the ancilla product basis |x1 … xj+1⟩ , but is diagonalized 
by (3.28). The density matrix (3.31) is a classical-quantum state where the first j 
ancillae are in the pure state |!xj+1

⟩.
The appearance of classical-quantum states in the sequence of measurements 

leads to the interesting (and perhaps surprising) observation that the joint entropy of 
all ancillae in Eq. (3.31) resides only in the last device in the measurement chain. 
Since the joint state |!xj+1

⟩⊗ |xj+1⟩ is orthonormal, it is easy to see that the entropy 
of (3.31) is equal to the Shannon entropy of the probability distribution q(j+1)xj+1

 . This is 
equivalent to the entropy of the last ancilla, so that

  ◻

Note that this implies that there is an upper bound to the joint entropy: 
max[S(A1 …Aj+1)] = max[Sj+1] = 1.

From this property it immediately follows that the entropy of the first j ancillae, 
conditional on the state of the last ancilla, vanishes,

Therefore, if the state of the end of the measurement chain is known, then all pre-
ceding ancillae exist in a pure quantum superposition: The state of A1 …Aj is fully 
determined (a zero entropy state), given Aj+1 . This implies that the entropy of all 
ancillae in an arbitrarily-long sequence of measurements resides only at the end of 
the chain.4 The entropy Venn diagram for these two subsystems is shown in Fig. 7.

(3.31)!(A1 …Aj+1 ) =
∑
xj+1

q(j+1 )
xj+1

|"xj+1
⟩⟨"xj+1

|⊗ |xj+1 ⟩⟨xj+1 |.

(3.32)S(A1 …Aj+1 ) = S(Aj+1 ).

(3.33)S(A1 …Aj|Aj+1 ) = S(A1 …Aj+1 ) − S(Aj+1 ) = 0.

Aj+1 A1 · · ·Aj

Sj+1

−Sj

Sj 0

Fig. 7  Entropy Venn diagram for the un-amplified measurement sequence with ancillae 
A1 ,A2 ,… ,Aj,Aj+1  . According to (3.31), the joint entropy of the first j ancillae vanishes when given Aj+1 , 
since the entropy resides only at the end of the chain. In this figure, we use the notation Sj = S(Aj) for the 
marginal entropy of the jth ancilla

4 It is worth noting that this is the essence of Hans Bethe’s observation described in the Acknowledge-
ments of [8], which gave rise to the latter reference, and ultimately to this work.



1025

1 3

Foundations of Physics (2020) 50:1008–1055 

Theorem 2 For j + 1 consecutive measurements of an unprepared quantum system 
where the reference is traced out, the density matrix for three or more consecutive 
ancillae is a classical-quantum state such that its joint entropy is contained only in 
the first and last device of the measurement chain. That is,

Proof Generalizing the result (3.9), the wavefunction |! ′⟩ = |QRA1 …Aj+1⟩ of j + 1 
ancillae that consecutively measured an unprepared quantum state is

Of the full set of consecutive measurements, consider the subset Ai−1 ,Ai,… ,Aj,Aj+1  , 
where 1 < i < j . Tracing out Q, the reference, and all other ancilla states from the 
full density matrix |! ′⟩⟨! ′| , and using the unitarity of each U(i) as stated in Eq. 
(3.27), the density matrix for this subset can be written as

This is a classical-quantum state with the intermediate ancillae Ai,… ,Aj in the pure 
state |!xi−1xj+1

⟩ . In the ancilla product basis |xi−1xi … xjxj+1⟩ , this matrix is block-
diagonal due to the non-diagonality of the subsystem Ai,… ,Aj . However, it is diag-
onalized by the non-orthogonal states

which are normalized according to

These normalization coefficients obey the sum rule

The density matrix for any two ancillae is already diagonal in the ancilla product 
basis (it is classical). For example, the joint state of Ai−1 and Aj+1 is

(3.34)S(Ai−1 Ai …AjAj+1 ) = S(Ai−1 Aj+1 ).

(3.35)|! ′⟩ = 1√
d

∑

x1 … xj+1

U(2 )
x1 x2

…U(j+1 )
xjxj+1

|̃xj+1 x1 x1 x2 … xj+1 ⟩.

(3.36)

!(Ai−1 …Aj+1) =
1

d

∑

xi−1
xj+1

p(i−1,j+1)
xi−1xj+1

|xi−1⟩⟨xi−1|

⊗ |#xi−1xj+1
⟩⟨#xi−1xj+1

|⊗ |xj+1⟩⟨xj+1| .

(3.37)
!(i−1,j+1)
xi−1xj+1

|"xi−1xj+1
⟩ =

∑

xi … xj

U(i)
xi−1xi

…U(j+1)
xjxj+1

|xi … xj⟩,

(3.38)
p(i−1,j+1)
xi−1xj+1

= |!(i−1,j+1)
xi−1xj+1

|2 =
∑

xi … xj

|U(i)
xi−1xi

|2 … |U(j+1)
xjxj+1

|2 .

(3.39)
∑

xi−1

p(i−1,j+1)
xi−1xj+1

=
∑

xj+1

p(i−1,j+1)
xi−1xj+1

= 1 .
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so that its entropy reduces to the Shannon entropy H[p(i−1,j+1)∕d] of the distribution 
p
(i−1,j+1)
xi−1xj+1

∕d . However, the density matrix for three or more consecutive ancillae cor-
responds to a classical-quantum state (3.36). This state has non-zero coherence that 
is contained in the subsystem of the intermediate ancillae, which are in the (non-
orthogonal) pure state |!xi−1xj+1

⟩ . Since the joint state |xi−1⟩⊗ |"xi−1xj+1
⟩⊗ |xj+1⟩ is 

still orthonormal, it is straightforward to show that the entropy of (3.36) is equal to 
the (Shannon) entropy of (3.40), despite the fact that the underlying state (3.36) is 
non-classical:

  ◻

It follows directly that the entropy of the intermediate ancillae Ai,… ,Aj van-
ishes when given the joint state of the ancillae Ai−1 and Aj+1,

Evidently, if the state of the boundary of the chain is known, then the intermediate 
ancillae exist in a pure quantum superposition. The joint state of Ai,… ,Aj is fully 
determined (a zero-entropy state), given the joint state of Ai−1 that measured Q in 
the past, together with Aj+1 that measured Q in the future. Thus, for measurements 
on unprepared quantum systems, the entropy of an arbitrarily-long ancilla chain is 
found only in its boundary. The entropy Venn diagram for the boundary and the bulk 
of the measurement chain is shown in Fig. 8.

That the entropy of a chain of measurements is determined entirely by the 
entropy of the chain’s boundary may seem remarkable, but is reminiscent of the 
holographic principle [58, 59, 62]. Indeed, it is conceivable that an extension of 
the one-dimensional quantum chains we discussed here to tensor networks [18] 
could make this correspondence more precise [60]. We contrast this result with 
the previous Theorem 1 for measurements on prepared quantum systems, where 

(3.40)
!(Ai−1Aj+1) =

1

d

∑

xi−1
xj+1

p(i−1,j+1)
xi−1xj+1

|xi−1xj+1⟩⟨xi−1xj+1|,

(3.41)S(Ai−1 Ai …AjAj+1 ) = S(Ai−1 Aj+1 ).

(3.42)S(Ai …Aj|Ai−1 Aj+1 ) = S(Ai−1 Ai …AjAj+1 ) − S(Ai−1 Aj+1 ) = 0.

Ai−1Aj+1 Ai · · ·Aj

Si−1,j+1

−Sij

Sij 0

Fig. 8  Entropy Venn diagram for an un-amplified measurement sequence with ancillae 
Ai−1 ,Ai,… ,Aj,Aj+1  . According to (3.36), the entropy of all intermediate ancillae, Ai,… ,Aj , vanishes 
when given Ai−1 and Aj+1 , since the entropy resides at the boundary of the chain. In this figure, we use 
the notation Sij = S(AiAj) for the pairwise entropy of any two ancillae Ai and Aj
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the entropy resided only at the end of the chain since the preparation was already 
known.

4  Markovian Quantum Measurements

The non-Markovian measurements we have been discussing up to this point are 
potentially fragile: while the pointers can consist of many subsystems (even a mac-
roscopic number), the entanglement they potentially display with other quantum sys-
tems will be lost even if only a single qudit escapes our control (and therefore, math-
ematically speaking, must be traced over). In this section we discuss a second step 
within von Neumann’s second stage of quantum measurement, where we observe 
the latent (fragile) quantum ancilla using a secondary observer. While this quantum 
“observer of the observer” also potentially consists of many different subsystems, it 
is robust by definition, in the sense that tracing over any of the degrees of freedom 
making up the pointer variable does not affect the relative state of the pointer and 
the quantum system or other devices.

4.1  Amplifying Quantum Measurements

To amplify a measurement, we observe the first quantum observer (denoted by A1 ) 
by measuring A1 in the same basis with a detector D1 . This additional interaction 
with the first ancilla in (2.3) leads to the tripartite entangled state

Tracing over the quantum system, we find that detector D1 is perfectly correlated 
with the quantum ancilla A1 according to the density matrix

where q(1)
x1

= |!(1)
x1
|2 . This implies that the detector states consistently reflect the same 

measurement outcomes as the ancilla states. Together, A1 and D1 are still entangled 
with the quantum system. In Fig.  9 we show the entropy Venn diagrams for the 
entangled state (4.1) and the correlated state (4.2). Since the underlying state (4.1) is 
pure, the ternary mutual entropy vanishes, S(Q ∶ A1 ∶ D 1) = 0 . In other words, the 
correlations that are created between the devices [the S(A1 ∶ D 1) dits of information 
that are gained in the measurement] are not shared with the quantum system. It is 
worth pausing to digest this result: two measurement devices agree on a measure-
ment outcome that, however, has no power of inference about the quantum state.

The macroscopic device D1 is composed of many qudits D(1 )
1
,… ,D

(n)
1

 that all 
measure the quantum ancilla A1 according to the sequence of entangling operations 
UA1D

(n)
1
…UA1D

(1)
1

 (see Fig. 10). We can thus expand Eq. (4.1) to

(4.1)|QA1 D 1 ⟩ = !Q ⊗ UA1 D 1
|QA1 ⟩ |0 ⟩ =

∑
x1

"(1 )
x1

|̃x1 x1 x1 ⟩.

(4.2)!(A1 D 1 ) =
∑
x1

q(1 )
x1

|x1 x1 ⟩⟨x1 x1 |,
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The measurement outcome is read out from the state of the joint system

where it is clear that the device D1 is self-consistent and all of its components reflect 
the same measurement outcome. This state is robust in the sense that it is not neces-
sary to “keep track” of all qudits in the detector D1 to observe correlations. Thus, 
tracing over any of the states in the expression above returns an equivalently self-
consistent state.

In the following two sections, we amplify a chain of consecutive measurements 
of a prepared and an unprepared quantum system. Unlike our previous results for un-
amplified measurements, we will find that the joint state of detectors is now always 
classical (diagonal in the ancilla product basis), leading to entropy distributions that 
are significantly different from those of the un-amplified ancillae.

(4.3)|QA1 D 1 ⟩ =
∑
x1

!(1 )
x1

|̃x1 ⟩ |x1 ⟩ |x1 ⟩D (1 )
1
… |x1 ⟩D (n)

1
.

(4.4)!(D(1 )
1
…D

(n)
1
) =

∑
x1

q(1 )
x1

|x1 … x1 ⟩⟨x1 … x1 |,

A1

Q

D1

(a)

−S1

S1

−S1

S1

0
S1

−S1

A1 D1

(b)

0 S1 0

Fig. 9  Entropy Venn diagram for a the tripartite entangled state (4.1). b Tracing over the quantum sys-
tem, A1 and D1 are perfectly correlated as in Eq. (4.2). The S(A1 ∶ D 1) = S1 bits of information gained 
in the measurement are not shared with the quantum system since the mutual ternary entropy vanishes, 
S(Q ∶ A1 ∶ D 1) = 0 . The quantity S1 = H[q(1)] is the marginal entropy of each of the three subsystems, 
Q, A1 and D1

Fig. 10  Observing the quantum 
observer A1 with a detector D1 . 
Dashed lines indicate the entan-
glement created by the meas-
urement between the ancilla 
A1 and each of the n qudits 
D

(1 )
1
,… ,D

(n)
1

 that comprise the 
detector D1

Q

A1

D
(1)
1

D
(2)
1

D
(n)
1

...
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4.2  Amplifying Consecutive Measurements of a Prepared Quantum State

We begin by first considering the amplification of consecutive measurements of a 
prepared quantum state. Introducing a second pair of devices A2 and D2 , Eq. (4.1) 
evolves to

Again, we find detector D2 to be perfectly correlated with the quantum ancilla A2 . 
The joint state of the detectors D1 and D2 is the classical density matrix

This state is diagonal in the ancilla product basis, unlike the state (3.4) before ampli-
fication. Thus, the effect of amplifying the ancillae is a removal of all off-diagonal 
elements in the joint density matrices.

From (4.6), we see that for repeated measurements in the same basis 
( U(2)

x1x2
= !x1x2 ) the results are fully correlated: when D2 measures in the same basis as 

D1 , the joint density matrix (4.6) reduces to !(D1D2) =
∑

x1
|"(1)

x1
|2 |x1x1⟩⟨x1x1| so 

that the entropy of D2 given D1 vanishes, S(D2|D1) = S(D1D2) − S(D1) = 0 . The 
conditional probability to record the outcome x2 , given that the first measurement 
yielded x1 , is simply p(x2|x1) = !x1x2 . In other words, both devices agree on the out-
come, as expected. It appears as if the quantum system had indeed collapsed into an 
eigenstate of the first device D1 since the second device D2 correctly confirms the 
measurement outcome. This result is consistent with the Copenhagen view of the 
quantum state during the measurement sequence as |Q⟩ → |̃x1⟩ → |̃x1⟩ . However, we 
see that no collapse assumption is needed for a consistent description of the meas-
urement process, and in fact, all amplitudes of the quantum system are preserved. 
That is, (4.5) continues to evolve as a pure state, while the quantum system itself 
appears to be pure only conditional on the state of the measurement device: it is only 
“conditionally pure”.

In addition, the probability distribution for the second measurement with the pair 
A2D 2 is consistent with a collapse postulate as it is given by the incoherent sum 
q(2)
x2

=
∑

x1
|!(1)

x1
|2 |U(2)

x1x2
|2 , instead of the coherent expression ∑x1

|!(1)
x1

U(2)
x1x2

|2 , which 
is the result if the first measurement with A1D 1 had never occurred.

4.3  Amplifying Consecutive Measurements of an Unprepared Quantum State

In this section, we study consecutive measurements of an unprepared quantum state, 
which will yield an entropy Venn diagram for the detectors that differs significantly 
from Fig. 5 for the quantum ancillae. To begin, we follow the procedure introduced 
in Sect.  4.1, and amplify the state (3.9) of three consecutive measurements of an 
unprepared quantum state.

(4.5)|QA1 D 1 A2 D 2 ⟩ =
∑
x1 x2

!(1 )
x1

U (2 )
x1 x2

|̃x2 x1 x1 x2 x2 ⟩.

(4.6)!(D1 D2 ) =
∑
x1 x2

|"(1 )
x1
|2 |U(2 )

x1 x2
|2 |x1 x2 ⟩⟨x1 x2 |.
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First, we show that amplifying the qubits on the boundary of the chain of 
measurements does not affect the coherence of the joint state (3.10). Introduc-
ing macroscopic devices D1 and D3 that amplify the quantum ancillae A1 and A3 , 
respectively, we find that the state (3.9) evolves to

As before, each pair of systems AiD i are perfectly correlated and reflect the same 
outcome from their measurement of Q. Tracing over the density matrix formed 
from this wavefunction, we find that the new state of A1A2A3 is unchanged from Eq. 
(3.10).

In contrast, amplifying the intermediate ancilla destroys all of the coherence in 
the original state (3.10), that is, measuring A2 with a detector D2 leads to a fully 
incoherent density matrix for A1A2A3 that is now equivalent to the joint state of 
detectors

We can contrast this state to the result we obtained for un-amplified measurements 
in Eq. (3.10) using entropy Venn diagrams. Compare the diagram in Fig.  11 for 
the state !(D1D2D3) [Eq. (4.8)] to the diagram in Fig. 5 for the un-amplified state 
!(A1A2A3) [Eq. (3.10)]. Clearly, amplification of just the intermediate ancilla A2 (or, 
equivalently, all three quantum ancillae) has destroyed the coherence of the original 
state !(A1A2A3) , which was encoded in the A2 subsystem. Note that pairwise entro-
pies are the same for both amplified and un-amplified measurements of unprepared 
quantum systems, e.g., S(AiAj) = S(DiD j) . We proved previously in Theorem  2 of 
Sect. 3.3 that pairwise density matrices (3.40) are always diagonal, so that amplify-
ing those ancillae does not affect their joint density matrix.

Let us apply these results to the case of qubit measurements ( d = 2 ), which 
are implemented with the rotation matrix in Eq. (3.17). For three consecutive 

(4.7)|QRA1 D 1 A2 A3 D 3 ⟩ =
1√
d

∑
x1 x2 x3

U (2 )
x1 x2

U (3 )
x2 x3

|̃x3 x1 x1 x1 x2 x3 x3 ⟩.

(4.8)!(D1 D2 D3 ) =
1

d

∑

x1 x2 x3

|U(2 )
x1 x2

|2 |U(3 )
x2 x3

|2 |x1 x2 x3 ⟩⟨x1 x2 x3 |.

Fig. 11  Entropy Venn diagram 
for the sequence of detectors 
D1 , D2 , and D3 that observe 
(amplify) the quantum ancillae 
A1 , A2 , and A3 , according to 
(4.8). Only amplification of the 
intermediate ancilla A2 is suf-
ficient to destroy the coherence 
in the original state (3.10). Note 
that all the pairwise entropies 
are unchanged by amplification, 
S(AiAj) = S(DiD j) = Sij

D1

D2

D3

S12−1

S13−
S12

S12+S23−S13−1

0

2−S13

S13−
S23

S23−1
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measurements with !2 = !3 = "∕2 , the joint density matrix of all three detectors, 
which we show for comparison to the un-amplified state (3.18), is diagonal:

As with the un-amplified state (3.18), the pairwise entropies for the detectors are 
also 2 bits. However, the tripartite entropy has increased to S(D1D2D3) = 3 bits from 
the 2 bits we found for S(A1A2A3) . Compare the resulting entropy Venn diagram in 
Fig. 12 to the diagram in Fig. 6 obtained for un-amplified qubit measurements.

The difference between the un-amplified density matrix !(A1A2A3) in Eq. (3.10) 
and the amplified state !(D1D2D3) in Eq. (4.8) can be ascertained by revealing the 
off-diagonal terms via quantum state tomography (see, e.g., [67]), by measuring 
just a single moment [61] of the density matrix, such as Tr[!(A1A2A3)

2] , or else by 
direct measurement of the wavefunction [42].

The results in the two preceding sections are compatible with the usual for-
malism for orthogonal measurements [26, 50], where the conditional probability 
p(x2|x1) to observe outcome x2 , given that the previous measurement yielded out-
come x1 , is given by

Indeed, our findings thus far are fully consistent with a picture in which a meas-
urement collapses the quantum state (or alternatively, where a measurement recali-
brates an observer’s “catalogue of expectations” [17, 20, 55]).

To see this, we write the joint density matrix !(D1D2) , found by tracing (4.8) 
over D3 , in the collapse picture. For a detector D1 that records outcome x1 with 
probability 1/d and a detector D2 that measures the same quantum state (at an 
angle determined by the rotation matrix U(2) ), the resulting density matrix is

(4.9)!(D1 D2 D3 ) =
1

8

⎛
⎜
⎜
⎜⎝

! 0 0 0
0 ! 0 0
0 0 ! 0
0 0 0 !

⎞
⎟
⎟
⎟⎠
.

(4.10)p(x2 |x1 ) = |U(2 )
x1 x2

|2 .

D1 D3

D2

1
0

1

1

0 0

0

Fig. 12  Entropy Venn diagram for amplification with detectors D1 , D2 , and D3 in (4.9) of three qubit 
ancillae that measured an unprepared quantum system. Ancilla A2 measured Q at !2 = "∕2 relative to the 
basis of A1 , while A3 measured Q at !3 = "∕2 relative to A2 . In this case, all three detectors are uncorre-
lated. Amplification of A2 with D2 alone is sufficient to destroy the coherence in (3.18).
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where the state !x1
D2

 of D2 is defined using the projection operators Px1
= |x1⟩⟨x1| on 

the state of D1,

In other words, the state !(D1D2) that was obtained in a unitary formalism is equiva-
lent to the collapse version "̃ (D1D2) . However, despite these consistencies with the 
collapse picture, we emphasize that the actual measurements induce no irreversible 
collapse and that all amplitudes in the underlying pure-state wavefunction (4.7) are 
preserved and evolve unitarily throughout the measurement process.

4.4  Quantum Markov Chains

One of the key differences between the entropy Venn diagrams in Figs. 5 and 11 
is the vanishing conditional mutual entropy [10] for amplified measurements, 
S(D1 ∶ D3|D2) = 0 . Before amplification, the equivalent quantity for the quantum 
ancillae is in general non-zero, S(A1 ∶ A3|A2) ≥ 0 . Evidently, the intermediate meas-
urement with D2 has, from the perspective of D2 (meaning, given the state of D2 ) 
erased all correlations between the first detector D1 and the last detector D3 in the 
measurement sequence. The vanishing of the conditional mutual entropy is precisely 
the condition that is fulfilled by quantum Markov chains as we will outline below.

Using the results for unprepared quantum states (this holds equally for prepared 
quantum states), we demonstrate that the chain of detectors, D1 ,D2 ,D3  , which con-
secutively measured a quantum system is Markovian, as defined in [24] (see also 
[13] and references therein). We prove later in this section in Theorem 3 that this 
result can be extended to any number of consecutive measurements, not just three. 
To show that S(D1 ∶ D3|D2) is indeed zero, we compute the joint entropy S(D1D2D3) 
of all three detectors. From Eq. (4.8), we find

or, S(D1D2D3) = S(D1) + S(D2|D1) + S(D3|D2) . However, using the chain rule 
for entropies [10], the tripartite entropy can also be written generally in the form 
S(D1D2D3) = S(D1) + S(D2|D1) + S(D3|D2D1) . From these two expression, we see 
immediately that

(4.11)"̃ (D1 D2 ) =
1

d

∑
x1

|x1 ⟩⟨x1 |⊗ "
x1
D2

,

(4.12)!
x1
D2

=
TrD1

[
Px1

!(D1 D2 )P
†
x1

]

TrD1 D2

[
Px1

!(D1 D2 )P
†
x1

] =
∑
x2

|U (2 )
x1 x2

|2 |x2 ⟩⟨x2 |.

(4.13)
S(D1 D2 D3 ) =1 −

1

d

∑
x1 x2

|U (2 )
x1 x2

|2 log d |U (2 )
x1 x2

|2

−
1

d

∑
x2 x3

|U (3 )
x2 x3

|2 log d |U (3 )
x2 x3

|2 ,

(4.14)S(D3 |D2 D1 ) = S(D3 |D2 ).
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Thus, the entropy of the detector D3 is not reduced by conditioning on more than the 
state of the previous detector D2 . This is the Markov property for entropies [13, 24].

The Markov property further implies that detectors D1 and D3 are independent 
from the perspective of D2 , since the conditional mutual entropy [10] vanishes (see 
the grey region in Fig. 11),

This result is consistent with the notion that the measurement with D2 collapsed 
the state of the wavefunction, erasing any (conditional) information that detector 
D3 could have had about the prior measurement with D1 . The conditional mutual 
entropy does not vanish for un-amplified measurements, S(A1 ∶ A3|A2) ≥ 0 , reflect-
ing the fundamentally non-Markovian nature of the chain of quantum ancillae. In 
other words, as long as the measurement chain remains un-amplified (for example, 
the A2 subsystem in (3.10)), the intermediate measurement does not erase the cor-
relations between A1 and A3 (compare the gray region in Fig. 11 to the same region 
in Fig. 5).

We now provide a formal proof of the statement that the chain of detectors that 
amplified the quantum ancillae is equivalent to a quantum Markov chain.

Theorem 3 A set of consecutive quantum measurements is non-Markovian until it 
is amplified. Specifically, the sequence of devices Di,… ,Dj, with i < j, that measure 
(amplify) the quantum ancillae Ai,… ,Aj (which themselves measured a quantum 
system Q) forms a quantum Markov chain:

Proof We first show that the Markov property of probabilities implies the Markov 
property for entropies (see, e.g., Refs. [13, 24]). If consecutive measurements on 
a quantum system can be modeled as a Markov process, the probability to observe 
outcome xj in the jth detector, conditional on previous measurement outcomes, 
depends only on the last outcome xj−1,

Inserting Eq. (4.17) into the expression for the conditional entropy [9] gives

A partial summation over the joint probability distribution gives

(4.15)S(D1 ∶ D3 |D2 ) = S(D3 |D2 ) − S(D3 |D2 D1 ) = 0 .

(4.16)S(Dj|Dj−1 …Di) = S(Dj|Dj−1 ).

(4.17)p(xj|xj−1 … xi) = p(xj|xj−1 ).

(4.18)

S(Dj|Dj−1 …Di) = −
∑

xi … xj

p(xi … xj) log d p(xj|xj−1 … xi)

= −
∑

xi … xj

p(xi … xj) log d p(xj|xj−1 ) .

(4.19)p(xj−1 xj) =
∑

xi…xj−2

p(xi … xj),
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so that the entropic condition satisfied by a quantum Markov chain is

We now show that the chain of amplified measurements satisfies the entropic Markov 
property (4.20). For n consecutive measurements, the state |!⟩ = |QA1 …An⟩ of Q 
and all ancillae is given by

After amplifying this state, we find that the density matrix for the joint set of sequen-
tial detectors, Di,… ,Dj , with i < j , is diagonal, as expected:

The probability distribution q(i)
xi

 of the ith device can be obtained from (3.30). The 
entropy of (4.22) is

where q(j−1)xj−1
 is the probability distribution of Dj−1 . The first term in Eq. (4.23) is just 

the joint entropy S(Di …Dj−1) , so that the entropy of the jth detector, conditional on 
the previous detectors, is

All that remains is to show that (4.24) is equal to S(Dj|Dj−1) . A simple calculation 
using the density matrix for two amplified consecutive measurements with Dj−1 and 
Dj,

(4.20)
S(Dj|Dj−1 …Di) = −

∑
xj−1 xj

p(xj−1 xj) log d p(xj|xj−1 )

= S(Dj|Dj−1 ), .

(4.21)|!⟩ =
∑
x1 …xn

"(i)
xi
U(2 )

x1 x2
…U(n)

xn−1 xn
|̃xn x1 … xn⟩.

(4.22)

!(Di …Dj) =
∑

xi

q(i)
xi
|xi⟩⟨xi|

⊗
∑

xi+1

|U(i+1 )
xixi+1

|2 |xi+1 ⟩⟨xi+1 |

⋯ ⊗
∑

xj

|U(j)
xj−1 xj

|2 |xj⟩⟨xj|.

(4.23)

S(Di …Dj) = −
∑

xi … xj−1

(
q(i)
xi
|U (i+1 )

xixi+1
|2 … |U (j−1 )

xj−2 xj−1
|2
)

× log d

(
q(i)
xi
|U (i+1 )

xixi+1
|2 … |U (j−1 )

xj−2 xj−1
|2
)

−
∑

xj−1 xj

q(j−1 )
xj−1

|U (j)
xj−1 xj

|2 log d |U (j)
xj−1 xj

|2 ,

(4.24)
S(Dj|Dj−1 …Di) = S(Di …Dj) − S(Di …Dj−1 )

= −
∑

xj−1 xj

q(j−1 )
xj−1

|U (j)
xj−1 xj

|2 log d |U (j)
xj−1 xj

|2.
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yields the joint entropy,

The first term in this expression is the entropy of Dj−1 (all marginal density matrices 
and entropies are the same for amplified and un-amplified ancillae; this is proved 
formally later in Lemma 2 of Sect. 5.1),

The conditional entropy S(Dj|Dj−1) is thus

which is the same as (4.24).   ◻

We emphasize that the result that amplified measurements are Markovian holds 
for measurements of unprepared as well as prepared quantum states.

Corollary 1 The Markovian nature of amplified measurements implies that the detec-
tors Di and Dj share no entropy (are independent) from the perspective of the inter-
mediate detectors, Di+1 ,… ,Dj−1  , since the conditional mutual entropy vanishes:

Proof The conditional mutual entropy is defined [10] as a difference between two 
conditional entropies,

From Theorem 3, the two quantities on the right hand side of this expression are 
both equal to S(Dj|Dj−1) . Therefore the conditional mutual entropy vanishes [24].  
 ◻

For three detectors, the Markov property is

(4.25)!(Dj−1 Dj) =
∑
xj−1 xj

q(j−1 )
xj−1

|U(j)
xj−1 xj

|2 |xj−1 xj⟩⟨xj−1 xj|,

(4.26)

S(Dj−1 Dj) = −
∑

xj−1

q(j−1 )
xj−1

log d q
(j−1 )
xj−1

−
∑

xj−1 xj

q(j−1 )
xj−1

|U (j)
xj−1 xj

|2 log d |U (j)
xj−1 xj

|2 .

(4.27)
S(Dj−1 ) = H[q(j−1 )] = −

∑

xj−1

q(j−1 )
xj−1

log d q
(j−1 )
xj−1

.

(4.28)
S(Dj|Dj−1 ) = S(Dj−1 Dj) − S(Dj−1 )

= −
∑

xj−1 xj

q(j−1 )
xj−1

|U (j)
xj−1 xj

|2 log d |U (j)
xj−1 xj

|2 ,

(4.29)S(Di ∶ Dj|Di+1 …Dj−1 ) = 0.

(4.30)
S(Di ∶ Dj|Di+1 …Dj−1 ) = S(Dj|Dj−1 …Di+1 )

− S(Dj|Dj−1 …Di).
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We see that from the strong subadditivity (SSA) of quantum entropy [38, 39],

and amplified measurements satisfy SSA with equality.
The previous theorem established that the sequence of amplified measurements 

is a quantum Markov chain. Now we will demonstrate that, conversely, un-ampli-
fied measurements are non-Markovian. In the following calculation, we use the state 
(3.35) for measurements of unprepared quantum states for simplicity. We will find 
that the Markov property (4.20) is violated in this case, so that in general un-ampli-
fied measurements are non-Markovian.

First, consider the joint density matrix for the sequence of quantum ancillae 
Ai,… ,Aj (with i < j ), similarly to (3.35). As in Eq. (3.36), we find

where the coefficients p(ij)xixj
= |!(ij)xixj

|2 and the normalized (but non-orthogonal) states 
|!xixj

⟩ were defined in Eq. (3.37). The joint states |xi !xixj
xj⟩ are orthonormal, so the 

entropy of Eq. (4.33) is simply

The coefficients p(ij)xixj
 can be equivalently expressed in terms of U(j) as

Inserting this into (4.34) and using the log-sum inequality5 with bxj−1 = 1 and 
axj−1 = p

(i,j−1 )
xixj−1

|U(j)
xj−1 xj

|2  , we find that the joint entropy is bounded from below by

(4.31)S(Di−1 ∶ Di+1 |Di) = S(Di+1 |Di) − S(Di+1 |DiDi−1 ) = 0.

(4.32)S(Di+1 |DiDi−1 ) ≤ S(Di+1 |Di),

(4.33)!(Ai…Aj) =
1

d

∑
xixj

p(ij)
xixj

|xi⟩⟨xi|⊗ |#xixj
⟩⟨#xixj

|⊗ |xj⟩⟨xj|,

(4.34)S(Ai …Aj) = 1 −
1

d

∑
xixj

p(ij)
xixj

log d p
(ij)
xixj

.

(4.35)p(ij)
xixj

= |!(ij)
xixj

|2 =
∑
xj−1

p(i,j−1 )
xixj−1

|U(j)
xj−1 xj

|2 .

(4.36)

S(Ai …Aj) ≥ −
1

d

∑
xixj−1

p(i,j−1 )
xixj−1

log d p
(i,j−1 )
xixj−1

−
1

d

∑
xj−1 xj

|U (j)
xj−1 xj

|2 log d |U (j)
xj−1 xj

|2 .

5 The log-sum inequality [11] states that for non-negative numbers a1 ,… , ad and b1 ,… , bd,

 with equality if and only if axi∕bxi = const.

d∑
xi=1

axi log
axi

bxi
≥

(
d∑

xi=1

axi

)
log

∑d

xi=1
axi∑d

xi=1
bxi

,
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The first term on the right hand side of Eq. (4.36) is simply S(Ai …Aj−1) − 1 , while 
the second term is S(Aj−1Aj) − 1 . Given that S(Aj−1) = 1 , it is straightforward to show 
that Eq. (4.36) can be rewritten as a difference between two conditional entropies,

with equality only when p
(i,j−1 )
xixj−1

|U(j)
xj−1 xj

|2  is a constant. This occurs when 
|U(j)

xj−1xj
|2 = 1∕d and |U(!)

x
!−1x!

|2 = 1∕d for one or more of the ! = i + 1,… , j − 1 
matrices. This shows that conditioning on more than just the state of the last ancilla 
Aj−1 will reduce the conditional entropy of ancilla Aj (by at most 1). Since Eq. (4.37) 
is not equal to zero in general, we conclude that the sequence of un-amplified meas-
urements is non-Markovian.

5  Effects of Amplifying Quantum Measurements

In the previous Sects. 3 and 4, we focused on consecutive measurements of a quan-
tum system and discussed the concepts of non-Markovian (un-amplified) and Mark-
ovian (amplifiable) sequences, respectively. It is reasonable to ask whether there are 
entropic relationships between those two kinds of measurements. Introducing a sec-
ond step to von Neumann’s second stage serves precisely to establish such relation-
ships. In this section, we establish the following three properties: Markovian detec-
tors carry less information about the quantum system than non-Markovian devices; 
the shared entropy between consecutive non-Markovian devices is larger than the 
respective quantity for amplified measurements; the last Markovian detector in a 
quantum chain is inherently more random than its non-Markovian counterpart, given 
the combined results of all previous measurements.

5.1  Information About the Quantum System

We first calculate how much information about the quantum system Q is encoded in 
the last device in a chain of consecutive measurements of Q. To do this, we prove 
two Lemmas that state that the marginal entropy of the quantum system is always 
equal to the entropy of the last ancilla in the chain of measurements, and that the 
marginal entropy of a quantum ancilla is unaffected by amplification.

Lemma 1 The entropy of the quantum system Q is equal to the entropy of the last 
ancilla, An , in the chain of measurements:

Proof Consider a series of consecutive measurements on a quantum system Q, with 
n ancillae. Following those measurements, in general the joint state of the quantum 

(4.37)S(Aj|Aj−1) − S(Aj|Aj−1 …Ai) ≤ 1,

(5.1)S(Q ) = S(An).
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system and all ancillae |!⟩ = |QA1 …An⟩ is given by the pure state [see also Eq. 
(3.26)]

The density matrix for the quantum system is found by tracing out all ancilla states 
from the full density matrix associated with (5.2),

where q(n)
xn

 is the probability distribution for the last ancilla An that can be obtained 
generally from Eq. (3.30). Clearly, (5.3) is equivalent to the density matrix for the 
last ancilla, and so the corresponding entropies are the same: S(Q ) = S(An) = H[q(n)] . 
An alternative proof is to note that a Schmidt decomposition of the pure state |!⟩⟨! | 
implies that S(Q ) = S(A1 …An) . And, by Theorem  6 (see Sect.  5.2), 
S(An) = S(A1 …An) , so that S(Q ) = S(An) .   ◻

Lemma 2 The entropy of a quantum ancilla Ai is unchanged if it is measured by an 
amplifying detector Di , so that for all i in the chain of measurements

Proof Amplifying the ith ancilla Ai in (5.2) with a detector Di yields the joint den-
sity matrix for Ai and Di

where q(i)
xi

 is the probability distribution for Ai , as defined in (3.30). The two subsys-
tems are perfectly correlated so that the density matrix and marginal entropy of Ai is 
equivalent to Di : S(Di) = S(Ai) = H[q(i)] .   ◻

In the remaining sections, we will use the shortened notation S(Ai) = S(Di) = Si 
for the marginal entropies. Using Lemmas 1 and 2, we are now ready to prove the 
first theorem regarding information about the quantum system.

Theorem 4 The information that the last device in a series of measurements has 
about the quantum system is reduced when the measurements are amplified, that is

for n consecutive measurements of a prepared quantum state Q.

Proof We start with the state (5.2) for an un-amplified chain of consecutive meas-
urements of a prepared quantum state Q, with n ancillae. Tracing out all previous 

(5.2)|!⟩ =
∑
x1 …xn

"(1 )
x1

U(2 )
x1 x2

…U(n)
xn−1 xn

|̃xn x1 … xn⟩.

(5.3)!(Q ) = TrA1 …An
(|"⟩⟨" |) =

∑
xn

q(n)
xn

|̃xn⟩⟨x̃n|,

(5.4)S(Ai) = S(Di).

(5.5)!(AiD i) =
∑
xi

q(i)
xi
|xixi⟩⟨xixi|,

(5.6)S(Q ∶ Dn) ≤ S(Q ∶ An)
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ancilla states from (5.2), the joint density matrix for the quantum system and the last 
ancilla is

where q(n−1)
xn−1

 is An−1 ’s probability distribution. If we amplify the measurement chain 
(or, equivalently, just the last measurement) the state (5.7) becomes diagonal:

Note that the amplification is equivalent to a completely dephasing channel [4, 28, 
40] since we can write

where Pxn
= |xn⟩⟨xn| are projectors on the state of An . In other words, !(QDn) 

is formed from the diagonal elements of !(QAn) . To show that the amplified 
mutual entropy is reduced as in Eq. (5.6), it is sufficient to show that the joint 
entropy is increased. The mutual entropy for two subsystems is defined [10] 
as S(Q ∶ An) = S(Q) + S(An) − S(QAn) and similarly for S(Q ∶ Dn) . Since, by 
Lemma 2, the marginal entropies are unchanged by the amplification, S(An) = S(Dn) , 
we have

Therefore, we just need to show that S(QDn) ≥ S(QAn) , which is easi-
est by considering the relative entropy of coherence [3, 68]. This quantity, 
Crel.ent.(!) = S(!diag) − S(!) , is the difference between the entropies of a density 
matrix ! and a matrix !diag that is formed from the diagonal elements of ! . It is 
derived by minimizing the relative entropy S(! ‖ ") = Tr(! log ! − ! log ") over the 
set of incoherent matrices ! . By Klein’s inequality, the relative entropy is non-nega-
tive so that S(!diag) ≥ S(!) , with equality if and only if ! is an incoherent matrix. In 
our case, ! and !diag are given by !(Q ∶ An) and !(Q ∶ Dn) , respectively. Therefore, it 
follows that S(QDn) ≥ S(QAn) and

with equality if and only if !(QAn) is already diagonal in the ancilla product basis.  
 ◻

To directly compute the mutual entropies in Theorem  4, we first diagonalize the 
density matrix (5.7) with the orthonormal states |!xn−1

⟩ = ∑
xn
U(n)

xn−1xn
|̃xn xn⟩ , so that

(5.7)!(QAn) =
∑

xn−1 xnx
′
n

q(n−1 )
xn−1

U (n)
xn−1 xn

U
(n) ∗
xn−1 x

′
n

|̃xn xn⟩⟨x̃′n x′n|,

(5.8)!(QDn) =
∑
xn−1 xn

q(n−1 )
xn−1

|U(n)
xn−1 xn

|2 |̃xn xn⟩⟨x̃n xn|.

(5.9)!(QDn) =
∑
xn

Pxn
!(QAn)Pxn

,

(5.10)S(Q ∶ Dn) = S(Q ∶ An) + S(QAn) − S(QDn).

(5.11)S(Q ∶ Dn) ≤ S(Q ∶ An),

(5.12)!(QAn) =
∑
xn−1

q(n−1 )
xn−1

|"xn−1
⟩⟨"xn−1

|.
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The joint entropy of this state is simply the marginal entropy of An−1 
[ S(QAn) = S(An−1) = Sn−1 ], which can also be derived using the Schmidt decompo-
sition and the results of Theorem 6 (see Sect. 5.2). Thus, using Lemma 1, the infor-
mation that the last ancilla has about the quantum system is

If we now amplify the measurement chain (or, equivalently, just the last measure-
ment) the information that Dn has about Q will be reduced from (5.13). From Eq. 
(5.8), the joint density matrix of Q and Dn can also be written as

which leads to S(QDn) = S(Dn) = Sn . Therefore, amplifying the measurement 
reduces the quantity (5.13) to

where we used Lemmas 1 and 2 to write S(Q ) = S(An) = S(Dn) = Sn . This quantity 
depends explicitly on only the last measurement, unlike (5.13), which depends on 
the last two. The amount of information (5.13) that the last device has about the 
quantum system before amplification is related to the information after amplification 
(5.15), by

Thus, the marginal entropies in a chain of consecutive measurements never decrease, 
Sn ≥ Sn−1 , since S(Q ∶ Dn) ≤ S(Q ∶ An) . The entropy Venn diagrams for the devices 
An and Dn and the quantum system are shown in Fig. 13.

We can illustrate this loss of information about the quantum system by consider-
ing consecutive qubit measurements. Suppose that ancilla An−1 measures Q at an 
angle !n−1 = 0 relative to An−2 and that An measures Q at an angle !n = "∕2 relative 
to An−1 . In this case, the marginal entropies are Sn−1 = Sn−2 = H[q(n−2)] and Sn = 1 

(5.13)S(Q ∶ An) = 2 Sn − Sn−1 .

(5.14)!(QDn) =
∑
xn

q(n)
xn

|̃xn xn⟩⟨x̃n xn|,

(5.15)S(Q ∶ Dn) = Sn,

(5.16)S(Q ∶ Dn) = S(Q ∶ An) + Sn−1 − Sn .

Q An

(a)

Sn−1

−Sn

2Sn

−Sn−1

Sn−1

−Sn

Q Dn

(b)

0 Sn 0

Fig. 13  The entropy Venn diagrams for a the quantum system and the un-amplified ancilla according to 
Eq. (5.7), and b the quantum system and the amplifying detector according to Eq. (5.14). The informa-
tion that the last device has about the quantum system is reduced when the measurement is amplified. 
That is, S(Q ∶ Dn) ≤ S(Q ∶ An)
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bit. The last detector, Dn , has one bit of information about quantum system, which 
is less than that of the un-amplified ancilla: S(Q ∶ An) = 2 − H[q(n−2)]≥ 1 . Interest-
ingly, how much we know about the state of Q prior to amplification is controlled by 
the entropy of an ancilla, An−2 , located two steps down the measurement chain.

5.2  Information About Past Measurements

We now calculate how much information is encoded in a measurement device about 
the state of the measurement device that just preceded it in the quantum chain. In 
particular, we will show that the shared entropy S(An ∶ An−1) between the last two 
devices in the measurement chain is reduced by the amplification process so that 
S(Dn ∶ Dn−1) ≤ S(An ∶ An−1) . These calculations have obvious relevance for the 
problem of quantum retrodiction [25], but we do not here derive optimal protocols 
to achieve this.

Theorem 5 The information that the last device has about the previous device is 
reduced when that measurement is amplified, that is,

Proof From the wavefunction (5.2), the density matrix for the last two ancillae in the 
measurement chain is

Amplification removes the off-diagonals of !(An−1An) so that

where Pxn−1
= |xn−1⟩⟨xn−1| are projectors on the state of An−1 . Note that from (5.18), 

it is sufficient to amplify just the second-to-last measurement with An−1 . Since the 
marginal entropies are unchanged by the amplification (Lemma 2), the amount of 
information before amplification, S(An ∶ An−1) , and after, S(Dn ∶ Dn−1) , is related by

In a similar fashion to the calculations in Theorem 4, it is evident from (5.19) that 
the joint entropy is increased, S(Dn−1Dn) ≥ S(An−1An) . It follows that the informa-
tion that the last device has about the device that preceded it in the measurement 
sequence is reduced:

(5.17)S(Dn ∶ Dn−1 ) ≤ S(An ∶ An−1 ) .

(5.18)

!(An−1 An) =
∑

xn−2 xn−1
x′
n−1

xn

q(n−2 )
xn−2

U (n−1 )
xn−2 xn−1

U
(n−1 )∗

xn−2 x
′
n−1

× U (n)
xn−1 xn

U
(n)∗

x′
n−1

xn
|xn−1 xn⟩⟨x′n−1 xn|.

(5.19)!(Dn−1 Dn) =
∑
xn−1

Pxn−1
!(An−1 An)Pxn−1

,

(5.20)S(Dn ∶ Dn−1 ) = S(An ∶ An−1 ) + S(An−1 An) − S(Dn−1 Dn).

(5.21)S(Dn ∶ Dn−1 ) ≤ S(An ∶ An−1 ),
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with equality if and only if !(An−1An) is already diagonal in the ancilla product 
basis.   ◻

Let us show how amplification reduces the amount of information about 
past measurements in the case of qubits. In this example, suppose that the last 
two measurements in the chain are each made at the relative angle !∕2 . As 
expected, the amplified density matrix (5.19) in that case becomes uncorrelated, 
!(Dn−1Dn) =

1

2
!Dn−1

⊗ 1

2
!Dn

 , where ! is the 2 × 2 identity matrix, and the shared 
entropy vanishes S(Dn ∶ Dn−1) = 0 . In other words, the last detector has no informa-
tion about the detector preceding it. In contrast, prior to amplification the density 
matrix (5.18) is coherent with joint entropy S(An−1An) = 1 + Sn−2 . Therefore, the 
corresponding shared entropy is nonzero, S(An ∶ An−1) = 1 − Sn−2 = 1 − H[q(n−2)] , 
revealing that information about the previous measurement survives the sequential 
!∕2 measurements (as long as An−1 is not amplified).

The calculations described above can be extended to include the information that 
the last device has about all previous devices in the measurement chain. We claim 
in Theorem 6 that the amplification process reduces this information by a specific 
minimum (calculable) amount. To prove this statement, we make use of Theorem 1, 
where we showed that the joint entropy of all quantum ancillae that measured a pre-
pared quantum system is simply equal to the entropy of last ancilla in the un-ampli-
fied chain.

Theorem 6 For n consecutive measurements of a quantum system, the information 
that the last device has about all previous measurements is reduced by amplification 
by at least an amount !n:

where !n = S(An−1|An) ≥ 0 is a non-negative conditional entropy that quantifies the 
uncertainty about the prior measurement given the last.

Proof We begin by recognizing that the amplified mutual entropy S(Dn ∶ Dn−1 …D1) 
for the full measurement chain is equal to S(Dn ∶ Dn−1) by the Markov property (see 
Theorem  3). Then, by Theorem  5 we can place an upper bound on the amplified 
information

where S(An ∶ An−1) is the mutual entropy before amplifying the measurement. Next, 
we will relate S(An ∶ An−1) to S(An ∶ An−1 …A1) . From Theorem 1, the latter quan-
tity can be written simply as

so that with the definition of S(An ∶ An−1) , we come to

(5.22)S(Dn ∶ Dn−1 …D 1 ) ≤ S(An ∶ An−1 …A1 ) − !n ,

(5.23)S(Dn ∶ Dn−1 …D 1 ) = S(Dn ∶ Dn−1 ) ≤ S(An ∶ An−1 ),

(5.24)S(An ∶ An−1 …A1 ) = Sn−1 ,

(5.25)S(An ∶ An−1 …A1 ) = S(An ∶ An−1 ) + !n,
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where !n = S(An−1|An) represents the information gained by conditioning on all pre-
vious measurements. Inserting (5.25) into the inequality (5.23), we obtain

The information is reduced as long as !n ≥ 0 . To show this, we recall the joint den-
sity matrix (5.18) for An−1 and An . This state can be written as a classical-quantum 
state

where

and the non-orthogonal states |!xn−2xn
⟩ were previously defined in Eq. (3.37). In this 

block-diagonal form, the entropy is

so that the quantity of interest, !n , can be written as

This quantity is clearly non-negative since both q(n)
xn

≥ 0 and S(!xn) ≥ 0 ∀ xn . There-
fore, with !n ≥ 0 , we find that the information is indeed reduced by the amplifica-
tion process, and by at least an amount equal to !n .   ◻

Continuing with our qubit example that followed Theorem  5, if the last 
two measurements were each made at the relative angle !∕2 , the ancilla An 
has 1 bit of information about the joint state of all previous ancillae. That is, 
S(An ∶ An−1 …A1) = 1 bit, while the amplifying detector Dn has no information at 
all, S(Dn ∶ Dn−1 …D1) = 0.

Corollary 2 Amplifying the measurement chain increases the entropy of the last 
device conditioned on all previous devices by at least an amount !n:

Proof By definition, the mutual entropy and conditional entropy are related by

which, from Theorem  6, is bounded from above by 
S(An ∶ An−1 …A1) − !n = Sn − S(An|An−1 …A1) − !n . Therefore,

(5.26)S(Dn ∶ Dn−1 …D 1 ) ≤ S(An ∶ An−1 …A1 ) − !n.

(5.27)!(An−1 An) =
∑
xn

q(n)
xn

!xn ⊗ |xn⟩⟨xn|,

(5.28)q(n)
xn

!xn =
∑
xn−2

q(n−2)
xn−2

p(n−2,n)
xn−2xn

|"xn−2xn
⟩⟨"xn−2xn

|,

(5.29)S(An−1 An) = Sn +
∑
xn

q(n)
xn

S(!xn ),

(5.30)!n = S(An−1 |An) =
∑
xn

q(n)
xn

S("xn ) ≥ 0.

(5.31)S(Dn|Dn−1 …D 1 ) ≥ S(An|An−1 …A1 ) + !n.

(5.32)S(Dn ∶ Dn−1 …D1 ) = Sn − S(Dn|Dn−1 …D1 ),
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and the uncertainty in the last measurement is increased by at least an amount !n .  
 ◻

This section quantified a number of unsurprising—but nevertheless impor-
tant—results: amplifying measurements reduces information, and increases 
uncertainty. The key quantity that characterizes the difference between un-ampli-
fied and amplified chains is !n , which quantifies how much we do not know about 
the state preparation, An−1 , given the state determination, An . Depending on the 
relative state between An−1 and An , we may know nothing ( !n = 1 ), or everything 
( !n = 0 ). We summarize the results presented in this section with the entropy 
Venn diagrams in Fig. 14.

6  Applications of Consecutive Quantum Measurements

In this section we apply the formalism developed in this article to several paradig-
matic measurement scenarios, specifically the double-slit experiment, the quantum 
Zeno effect, and quantum state preparation.

6.1  The Double-Slit Experiment

Suppose a photon in the state

(5.33)S(Dn|Dn−1 …D 1 ) ≥ S(An|An−1 …A1 ) + !n,

(6.1)|!⟩ = |h⟩P ⊗ |#⟩Q

An

Q

A1 · · ·An−1

(a)

−Sn

2Sn−
Sn−1

−Sn

Sn−1

0
Sn−1

−Sn−1

Dn

Q

D1 · · ·Dn−1

(b)

0

S(Dn|Dn-1)

0

0

S(Dn:Dn-1)

0

S(D1...Dn)

−Sn

Fig. 14  Entropy Venn diagrams a before amplification with n ancillae that consecutively measured a 
quantum system Q, and b after amplification with macroscopic detectors
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is incident on a double-slit apparatus. Initially, the state’s polarization (P) degree of 
freedom is h, while the spatial (Q) degree of freedom is ! . Once past the slits, the 
quantum state’s spatial state evolves to the superposition

where |!j⟩Q is the state corresponding to the photon passing through slit j. The pho-
ton is then detected by a CCD camera DX , which acts as an interference screen. This 
interaction can be modeled as a von Neumann measurement of the spatial states by 
the screen. Writing the spatial states of the photon in terms of the position basis of 
the screen yields

where j = 0, 1 labels each slit. The states |x⟩ can be discretized into n distinct loca-
tions according to

which denote the location x at which a photon is detected by DX . Inserting this basis 
into the expression (6.2) and performing the measurement of Q with DX (which 
starts in the initial state |x = 0⟩ = |0… 0⟩ ), we arrive at

Tracing out the photon states, the density matrix describing the screen is

where the probability to detect the photon at a position x is a coherent superposition 
of probability amplitudes and leads to the standard double-slit interference pattern.

We can extend this description to the case of multiple measurements in the con-
text of the quantum eraser experiment. We first tag the photon’s path in order to 
obtain information about which slit it passed through. In practice, we can imple-
ment the tagging operation by placing different wave plates in front of each slit. As a 
simple example, we assume the tagging takes the form of a controlled-NOT operation 
so that horizontal polarization h is converted to vertical polarization v if the photon 
traverses the second slit. Thus, instead of (6.2), the polarization (P) and spatial (Q) 
degrees of freedom are now entangled, leading to

(6.2)|!⟩ = |h⟩P ⊗
|#1 ⟩Q + |#2 ⟩Q√

2
,

(6.3)|!j⟩Q =

n∑
x=1

!j(x) |x⟩Q,

(6.4)

|x = 1⟩ = |100… 0⟩,
|x = 2 ⟩ = |010… 0⟩,

⋮

|x = n⟩ = |0… 001⟩,

(6.5)|! ′⟩ = |h⟩P ⊗
n∑

x=1

#1 (x) + #2 (x)√
2

|xx⟩QDX
.

(6.6)!(DX) =
1

2

n∑
x=1

||"1 (x) + "2 (x)
||2 |x⟩DX

⟨x|,
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Of course, the entanglement in (6.7) destroys the interference pattern on the screen. 
The fringes can be restored by measuring the photon’s polarization with a detector 
DP in a rotated basis, before the photon hits the screen. Rewriting the polarization 
states in the new basis, |0⟩ and |1⟩ , which are rotated by an angle ! with respect to |h⟩ 
and |v⟩ [see (3.17)],

and measuring P with the detector DP yields

The angle at which we measure the polarization determines the coherence of the 
spatial states Q, which is reflected in the visibility of the recovered interference pat-
terns. Repeating the measurement with the screen, (6.10) becomes

The density matrix for the screen is, as expected, still completely mixed and 
describes two intensity peaks on the screen. However, an interference pattern can 
be extracted if we condition on the outcome of the polarization measurement, as we 
now show. Consider

where

is the state of Q, given that the polarization measurement yielded the outcome i. The 
probability distribution of this state is a coherent sum of amplitudes and describes 
an interference pattern with a visibility that is controlled by the measurement angle, 

(6.7)|!⟩ =
|h⟩P ⊗ |#1 ⟩Q + |v⟩P ⊗ |#2 ⟩Q√

2
.

(6.8)|v⟩P = U 00 |0⟩P + U 01 |1 ⟩P,

(6.9)|h⟩P = U 10 |0 ⟩P + U 11 |1⟩P,

(6.10)
|! ′⟩ = 1√

2

(
U10 |"1⟩Q+ U00 |"2 ⟩Q

)
⊗ |00⟩PDP

+
1√
2

(
U11 |"1⟩Q+ U01 |"2 ⟩Q

)
⊗ |11⟩PDP

.

(6.11)
|! ′′⟩ = 1√

2

n∑
x=1

[(
U10"1(x)+ U00"2 (x)

)
|00⟩PDP

+
(
U11"1(x)+ U01"2 (x)

)
|11⟩PDP

]
⊗ |xx⟩QDX

.

(6.12)!(QDP) =
1

2

1∑
i=0

!(i)
Q
⊗ |i⟩DP

⟨i|,

(6.13)!(i)
Q
=

n∑
x=1

||U1 i "1 (x) + U0 i "2 (x)
||2 |x⟩DX

⟨x|,
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! . In particular, measuring at ! = 0 leads to no interference, while ! = "∕2 recovers 
the standard fringe (or anti-fringe) pattern.

We refer the reader to Ref. [22] for a detailed information-theoretic analysis of 
the Bell-state quantum eraser experiment, where the degree of erasure is controlled 
by an entangled photon partner, even after the original photon has hit the screen.

6.2  Quantum Zeno and Anti-Zeno Effects

The quantum Zeno effect [57] (see also the review [27]) has been called a “paradox” 
because of the perceived back-reaction of the measurement devices on the quantum 
state. In the original formulation, an atom undergoing radioactive decay was shown 
to be prevented from decaying by measuring it repeatedly [57]. Here we derive the 
standard results of the quantum Zeno and anti-Zeno effects in the context of unitary 
consecutive measurements without resorting to a collapse assumption, and without 
a need of amplifying measurements (as all the measurement devices are stable and 
amplifiable).

Instead of a time-varying quantum state controlled by quantum measurements in 
the same basis, we can equivalently study a static quantum state consecutively meas-
ured by quantum detectors whose basis change with their position in the sequence 
[27, 50]. In particular, we focus on the case where n consecutive measurements are 
performed in such a way that each measurement device has the same relative angle 
with the preceding device but all angles adding up to !∕2 , compared to the case 
where the last measurement occurs at an angle !∕2 with respect to the preparation.

The quantum Zeno effect is usually derived by assuming that the wave function 
is collapsed at each measurement, removing (“by hand”, as it were, see e.g., [50, 
p. 392]) the off-diagonal elements of the density matrix at every measurement. We 
will see that we can derive the “freezing” of the quantum state using von Neumann 
measurements only, without state reduction. Instead, all amplitudes continue to be 
present in the joint density matrix, even though the density matrix of every single 
detector and that of the quantum state is diagonal.

To study the Zeno effect using von Neumann measurements, we assume that an 
initial quantum two-state system is in the state !(Q) = p|0⟩⟨0| + (1 − p)|1⟩⟨1| , with 
arbitrary p, which was prepared by a measurement with detector D0 . It is then subse-
quently measured by detectors D1 …Dn , each at an angle !∕(2n) relative to the pre-
vious detector, completing a full !∕2 rotation after n observations (see Fig. 15).The 
density matrix for the preparation (detector D0 ) is !(D1) = p|0⟩⟨0| + (1 − p)|1⟩⟨1| , 
which has an entropy S(D0) = H[p] , where H[p] = −p log2 p − (1 − p) log2(1 − p) is 
the binary entropy function. The density matrix for the first detector, expressed in a 
basis that is rotated with the unitary matrix U, is

where the unitary matrix is given by

(6.14)!(D1 ) =
∑
j

(
p |U0 j|2 + (1 − p) |U1 j|2

)|j⟩⟨j| ,
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Using consecutive von Neumann measurements we can calculate the entropy of the 
first detector to be S(D1) = H[q] with q = 1∕2 + (p − 1∕2) cos

(
!

2n

)
,

In general, following the preparation, the probability q(n) to observe the state |0⟩ 
after n measurements is

with entropy

Figure 16a shows the preparation S(D0) as well as detector entropies S(D1) , S(D2) 
for n = 2 , while Fig. 16b shows the case n = 10 . As n becomes large, the entropies 
appear “frozen”, so that the density matrix of the nth detector is equal to that of the 
preparation with D0.

Had we measured the preparation directly at angle ! = "∕2 , the entropy of that 
detector would be one: this outcome should be completely random. For polarization 
measurements for example, this results in perfect transmission of the initially polar-
ized beam even though the n detectors rotate the plane of polarization by 90° [33].

It is instructive to study the Zeno effect in terms of the detector correlation func-
tion K0n = ⟨D0Dn⟩ which quantifies the correlation between the preparation and last 
detector. If every detector is rotated by an angle ! with respect to the previous detec-
tor, it is easy to show that Ki,i+1 = cos(!) , so if for example a detector is rotated by 
! = "∕2 , we expect K12 = 0 . Now let us perform n such measurements, such that 

(6.15)U =

(
cos( !

4 n
) − sin ( !

4 n
)

sin ( !

4 n
) cos( !

4 n
)

)
.

(6.16)q(n) =
1

2
+
(
p −

1

2

)
cos n

(
!

2 n

)
→ p as n → ∞ .

(6.17)S(Dn) = H
[
1 ∕2 + (p −

1

2
) cosn

(
!

2 n

)]
,

Fig. 15  A sequence of n meas-
urements of a quantum state, 
where each detector Dj measures 
the quantum state at a relative 
angle !∕2n with respect to the 
preceding detector, or angle 
!j = j!∕2n with respect to the 
preparation. After n such meas-
urements, the angle between the 
preparation and the last detector 
is !∕2

θn =
π

2

θj =
jπ

2n

θ1 =
π

2n
θ2 =

2π
2n
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the angle between each subsequent pair is !∕2n . After n measurements we have per-
formed a total rotation of !∕2 . The correlation between the first and last measure-
ment, however, turns out to be K0n = cosn(!∕2n) , which tends to 1 as n → ∞ . If the 
intermediate measurements from n = 1 to n − 1 had not been carried out, the corre-
lation function would be K0n = cos(n!∕2n) = 0 instead.6

Finally, let us study for completeness the anti-Zeno effect, which is often 
described as the complete destruction of a quantum state due to incoherent consecu-
tive measurements [31, 37, 41]. In the present language, this corresponds to the ran-
domization of a given (prepared) quantum state after consecutive measurements at 
random angles with respect to the initial state. We begin again with the prepared 
mixed state !(Q) = p|0⟩⟨0| + (1 − p)|1⟩⟨1| , but now observe it consecutively using 
measurement devices Dk at angles !k drawn from a uniform distribution on the inter-
val [0,!∕2 ] . The probability to observe Q in state |0⟩ after n measurements with 
random phases is now

In order to obtain the most likely state probability for random dephasing, we calcu-
late the expectation value,

(6.18)q(n) =
1

2
+
(
p −

1

2

)
!n

k=1
cos("k) .

(6.19)E
[
!n

k=1
cos("k)

]
= !n

k=1
E
[
cos("k)

]
=
(
2

#

)n
,
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p
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p

(a) (b)

H(D5)

H(D10)

H(D0)

Fig. 16  a The detector entropies for two consecutive measurements D1 and D2 , after the preparation with 
D0 , of the quantum state !(Q) = p |0⟩⟨0| + (1 − p) |1⟩⟨1| , for n = 2 . Each detector is at an angle of !∕4 
relative to the previous detector. b Detector entropies D5 and D10 for a Zeno experiment with n = 10 . 
Each detector is rotated by an angle ! = "∕20 with respect to the preceding one

6 After completion of this manuscript, we discovered that the same set of arguments were made by 
Dicke using latent measurements in his unheralded publication [15].
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so that E
[
q(n)

]
→ 1∕2 as n → ∞ . Thus, any quantum state is randomized via con-

secutive quantum projective measurements in random bases. A similar result was 
derived for the dephasing of photon polarization in Ref. [33].

6.3  Preparing Quantum States

For our final application, we discuss how to prepare quantum states by considering 
consecutive measurements on unprepared quantum states. Suppose a quantum sys-
tem is prepared in the known state

which we already wrote in the eigenbasis of the first observable measured after the 
preparation. We can always prepare a state like (6.20) by measuring an unprepared 
quantum state (2.9), with the pair A1D 1 in a given (but arbitrary) basis. Then, a sec-
ond measurement with A2D 2 at a relative angle !2 gives rise to the state

From this we can compute the operator [10] describing the state of the quantum sys-
tem, conditional on the state of the first detector, D1,

where !(D1)
−1 is the inverse of the density matrix. The density matrix !x1

Q
 is the pre-

pared state (6.20) of the quantum system, given that the outcome x1 was observed in 
the first measurement,

Here, Px1
= |x1⟩⟨x1| are projectors on the state of detector D1 . If we choose for the 

quantum state preparation the outcome x1 = 0 , for example, then px2 = |U(2)
0x2

|2 pro-
vides the probability distribution for the quantum system, and we arrive at the 
desired prepared state (6.20) from (6.23).

The purification of (6.20) in terms of the basis of ancilla A2 is

(6.20)!(Q) =

d−1∑
x=0

px |̃x⟩⟨x̃| ,

(6.21)|QRA1 D 1 A2 D 2 ⟩ = 1√
d

∑
x1 x2

U (2 )
x1 x2

|̃x2 x1 x1 x1 x2 x2 ⟩.

(6.22)
!(Q|D1 ) = !(QD1 )

(
!(D1 )

−1 ⊗ !Q

)

=
∑
x1

!
x1
Q
⊗ |x1 ⟩⟨x1 | ,

(6.23)!
x1
Q
=

TrD1

[
Px1

!(QD1 )P
†
x1

]

TrQD1

[
Px1

!(QD1 )P
†
x1

] =
∑
x2

|U (2 )
x1 x2

|2 |̃x2 ⟩⟨x̃2 |.

(6.24)|QA2 ⟩ =
∑
x2

√
px2 |̃x2 ⟩|x2 ⟩,
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which is an entangled state with the marginal entropies S(Q ) = S(A2) = H[p] . If we 
rename A2 to A1 , then expression (6.24) is equivalent to (2.3). Equipped with this 
state preparation, we can now make the usual consecutive (amplified or un-ampli-
fied) measurements of Q with A2 D 2 , A3 D 3 , etc.

7  Conclusions

Conventional wisdom in quantum mechanics dictates that the measurement pro-
cess collapses (“reduces”) the state of a quantum system so that the probability that 
a particular detector fires depends only on the state preparation and the measure-
ment chosen. This assertion can be tested by considering sequences of measure-
ments of the same quantum system. If a “memory” of the first measurement (the 
state preparation) persists beyond the second measurement, then a reduction of the 
wave packet can be ruled out. We studied this question using two classes of quantum 
measurement: those performed within a closed system where every part of a meas-
urement device (every qudit of the pointer) is under control (latent measurements), 
and those performed within an open system, where part of the pointer variable is 
ignored. We found that sequences of quantum measurements in closed systems are 
non-Markovian (retaining the memory of past measurements) while sequences of 
open-system measurements obey the Markov property. In the latter case, the prob-
ability distribution of future measurement results only depends on the state prepa-
ration and the measurement chosen. It is important to note here that our construc-
tion shows unequivocally that the Markovian measurements are a special case of the 
non-Markovian ones, and that the loss of memory is not a fundamental property of 
quantum measurements, but is merely a consequence of the loss of quantum infor-
mation when tracing over degrees of freedom that participated in the measurement. 
We quantified this loss by calculating the amount of information lost when observ-
ing coherent quantum detectors using incoherent devices.

We have found that the entropy of coherent chains of latent measurements is 
entirely determined by the entropy at the boundary of the chain, namely the entropy 
of the state preparation (the first measurement in the chain) and the last measure-
ment. If the chain is started on a known state, then the entropy of the chain is con-
tained in the last measurement only. This property is a direct consequence of the 
unitarity of quantum measurements, and signifies that any quantum measurement 
outcome is constrained by its immediate past and its immediate future. It has not 
escaped our attention that this property of quantum chains is reminiscent of the 
holographic principle, which posits that the description of a system can be encoded 
entirely on its boundary alone. Because the holographic principle is often thought to 
have its origin in an information-theoretic description of space-time [66], it is per-
haps not surprising that an information-theoretic analysis of chains of measurements 
would yield precisely such an outcome. In particular, it is not too hard to imagine 
that the past-future relationship that consecutive quantum measurements entail cre-
ate precisely the partial order required for the “causal sets” program for quantum 
gravity [6]. Of course, to recover space-time from sets of measurements we would 
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need to consider not just sequential measurements on the same system, but multiple 
parallel chains that are entangled with each other, creating a network rather than 
a chain (we have recently shown that the unitary formalism deployed here can be 
extended to parallel measurements when discussing the Bell-state quantum eraser 
[22]). In that respect, the network of quantum measurements is more akin to van 
Raamsdonk’s [64] tensor networks, created using entangling and disentangling oper-
ations (see also [48]). Incidentally, the present formalism implies the existence of a 
disentangling operation that “undoes” quantum measurements, and that can serve as 
a powerful primitive for controlling quantum entanglement [21].

Using a quantum-information-theoretic approach, we have argued that a col-
lapse picture makes predictions that differ from those of the unitary (relative state) 
approach if multiple consecutive non-Markovian measurements are considered. 
Should future experiments corroborate the manifestly unitary formulation we have 
outlined, such results would further support the notion of the reality of the quantum 
state [51] and that the wavefunction is not merely a bookkeeping device that sum-
marizes an observer’s knowledge about the system [17, 20]. We hope that moving 
discussions about the nature of quantum reality from philosophy into the empiri-
cal realm will ultimately lead to a more complete (and satisfying) understanding of 
quantum physics.
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