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Abstract 

We present a measure of representation in neural networks 
that we call ‘R’, which is based on information theory. We 
show how R relates to an analysis of distributed 
representation, viz. a principal components analysis of 
activation space. Finally, we argue that R is well suited to 
measure representation in neural networks. 
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Introduction 
Representation is a key term in cognitive science. From 
“good old fashioned artificial intelligence” to neural 
network processing, the concept of representation is used to 
describe and explain how cognitive systems compute 
(O’Brien & Opie, 2009; Pylyshyn, 1984). It is easy to apply 
the concept of representations to symbolic computational 
systems by simply mapping representations onto symbols. 
Rules or productions then operate on the symbolic 
representations to yield results. While this is a 
straightforward computational method, we are confronted 
with serious problems once we attempt to measure 
representation in artificial neural networks (ANNs). 

ANNs do not trade in internal symbols but process 
information sub-symbolically (Smolensky 1987). Hence, it 
is very difficult to apply the division between symbols and 
rules. If it were possible, one should find representational 
vehicles, i.e. physical structures on which representational 
content supervenes.  

We argue that instead of trying to apply the method of 
symbolic computation to ANNs and trying to identify clear 
representational vehicles, the terms should be reinterpreted. 
Consequently, we do not insist on the distinction between 
representational vehicles and computational processes. We 
see our measure as a first step in this direction and propose 
the use of information theory as a means to re-define the 
term representation for ANNs. 

Information theory is suitable for this task because it 
allows to capture the meaning of representation without the 
need to exactly define its vehicles. As far as we understand 
it, representation refers to a relation between internal states 

of a system and some properties of its environment. 
Specifically such properties or states of its environment that 
are not actually existing (as goal states, possible outcomes 
of an action, or past states), not actually perceptible 
(because they are outside its input resolution), or not 
actually possible (counterfactual states) are useful in solving 
“representation hungry problems” (Clark 1997: 166), i.e. 
problems “for which a representational understanding seems 
most appropriate” (dto.). Representation then refers to 
“inner states that exhibit a systematic kind of coordination 
with a whole space of environmental contingencies” (Clark 
1997: 147). We suggest that information theory and 
especially mutual information is able to measure this 
“systematic kind of coordination”. 

However, it is still the widely accepted assumption that 
the concept of representation in terms of symbolic 
computation can be applied to ANNs without essentially 
changing its meaning. One such approach is developed in 
the idea of distributed representations. Here it is assumed 
that instead of single discrete symbols, representations in 
ANNs consist of the activity of several processing units at 
once. That is, representations in ANNs are considered to be 
spread across several physical vehicles instead of just one. 

There exist many methods to analyze neural networks in 
terms of distributed representation. They concentrate mainly 
on a principal components analysis (PCA) of the activation 
space of the hidden layer of a feed-forward network (see 
below).  

Such methods have the advantage of correlating 
representations with regions in activation space but they are 
unable to provide a quantitative measure of the 
representational capacity of a given ANN. In order to fill 
this gap and to provide a new interpretation of 
representation, we present a measure of representation R 
that is not based on activation space partitioning but on the 
mutual information relations between an ANN and its 
world. In addition, we show how R is related to the concept 
of distributed representations in activation space. 

We first review the established method of using PCA to 
analyze the activation space of the hidden units of ANNs. 
We then proceed to define our alternative measure R and 
relate it to the PCA method of identifying distributed 
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representations in ANNs. Finally, we give an interpretation 
of how R measures representation and argue that it has the 
capacity to complement standard analyses of representation 
in ANNs. 

Distributed Representations 
In ANNs, computation is achieved by spreading information 
processing over a number of simple units. There is no 
central processor that, as in a Turing machine, manipulates 
symbol structures according to certain rules. Instead, each 
processing unit in an ANN transforms its input according to 
a mathematical function (a threshold function such as the 
hyperbolic tangent). The output of a unit is then sent to 
other units for further processing. 

 
Figure 1: Artificial Neural Network  

 
In an ANN, the global structure of the network plays a 
crucial role. In a network, each unit receives input from and 
sends output to many other units via connections with 
different weights. In a standard feed-forward ANN, there 
are usually at least three layers. Each unit of one layer is 
connected to all the units in the next layer (cf. Figure 1). 
Generally, the layered structure of the network is chosen by 
the researcher who determines a fit between network and 
task. The performance of any given network is optimized by 
tuning the weights of the connections. The functioning of 
the network itself can be analyzed by studying the activation 
space of the network’s hidden layer, which can be viewed as 
the computing machinery that connects the input to the 
output. 

Activation Space Partitioning 
Activation space partitioning is performed by taking the 
different output values that a single unit in the ANN can 
produce, and render them as a vector. Taken together, 
multiple units constitute a vector space that represents all 
possible value combinations these units can assume. Each 
input to such a set of units occupies a specific location in 
this so-called activation space. 

Representations are then identified as partitions in 
activation space of the hidden layer units. In order to be part 
of the same representation, inputs to the network must share 
certain properties. This sharing of properties is then 

reflected in the representations as a spatial property, that is, 
it is assumed that representational systems pick out these 
properties by weighing the connections between the units so 
that similar inputs elicit activations that are close to each 
other in activation space (cf. Churchland & Sejnowski, 
1992). However, these activations seldom occupy identical 
locations in activation space simply because the inputs they 
represent do not share all properties, but only those that are 
relevant. In other words, the grouping of vectors in 
activation space corresponds to relevant properties of 
inputs. 

In order to find the representations that are distributed 
over the unit value vectors, several methods are used to 
carve up the activation space into partitions. In general 
terms, partitioning activation space is the task of finding 
groups of activations on the basis of spatial proximity. But 
since a vector space of n units is n-dimensional, this space 
has to be projected onto a space of lower dimensions. 

A common method to achieve this is principal 
components analysis (PCA). Sets of vectors that each 
encode the state of the hidden layer in response to a certain 
input are correlated in complicated ways. In order to find 
these correlations, the eigenvectors of this set are computed. 
Eigenvectors can be seen as the canonical form of such a 
set. The transformation of a set of vectors into its eigenbasis 
is such that if operation A is applied to an eigenvector , 
this vector is simply scaled by the eigenvalue λ, so that: 

 
,  

Equation 1: Eigenvalue equation 
 

rather than changing the vector’s direction. For each 
eigenvector there exists a specific eigenvalue, and 
eigenvectors are linearly independent. PCA then is a way to 
analyze a set of vectors into a set of eigenvectors so that the 
first principal component of the set is the eigenvector with 
the largest eigenvalue. This means that a vector space is 
reduced to a set of eigenvectors that are ordered according 
to how much each of them accounts for the variability found 
in that vector space. By focusing only on the components of 
the initial vectors that account for the most variability, the 
dimensionality of the activation space of an ANN can be 
reduced tremendously. 

Elman (1991) describes a PCA of a simple recurrent 
network for sentence processing. In this task, the network 
had to predict the next word in a sentence (or rather the 
context-dependent likelihood vector of the next word in a 
sentence; cf. Elman, 1991: 204). After applying a PCA, 
Elman correlates regions of the subspace that is defined by a 
small number of principal components with linguistic 
properties such as agreement, verb-argument structure, and 
relative clauses (Elman, 1991: 211-7).1 As a consequence 

                                                             
1 The regions are actually defined as attractor basins. That is, 

certain states are identified by PCA to act as attractors. The 
activation space can thus be partitioned on the basis of the attractor 
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each of these elements could reliably be correlated to 
particular trajectory pattern in low-dimensional principal 
component spaces. 

In this manner, PCA allows the identification of 
distributed representations. As we will show, such a 
description is closely related to our measure of 
representation R. 

Representation: The R-Measure 
Our measure R contains two components: the relation 
between the network’s internal state and the network’s 
input, as well as the relation between the input of a network 
and the represented world-state. Thus, instead of giving a 
definition of representation in terms of the relation between 
a representing and a represented, we argue that – in the case 
of distributed representations – this relation is better 
explained as a higher-order relation that holds between the  
two components just described. More precisely, we define R 
as the difference between the first and the second 
component, viz. the difference between the relation between 
input and internal state, and the relation between internal 
state and the represented world-state (cf. Equation 3). The 
reason for this is that the internal states of the network are 
causally determined by the input states. That means that 
every correlation that exists between the internal states and 
the represented world might be due to the correlation 
between the input and the world states. If the correlation 
between the latter is subtracted from the former, we can be 
sure that representation is based on the relation between the 
internal states and the world states. 

This higher-order relation also captures the difference 
between a camera and a representational system, for 
example. A camera’s internal states do not qualitatively 
differ from its inputs, in the sense that there is a one-to-one 
relationship between the relevant characters of the input 
(such as location and color of a pixel), and the camera’s 
state. Between the two, there is no substantial loss of 
information as far as human perceptual systems are 
concerned, that is, we can base our actions on what we see 
with our own eyes or by courtesy of an implanted camera. 

But there is a difference between a camera and a 
representational system: The way a camera picture 
represents a visual scene is not what we are interested in 
when we use the concept of representation in cognitive 
science. What we mean by representation implies some kind 
of knowledge2, some capacity to generalize from the 
specific object to a concept. A system that represents a 
particular object knows, in a sense, that there is this kind of 
object. Thus, the term representation as it is used in 
cognitive science refers to higher-order properties a system 
is able to discern over and above, e.g., the different 
wavelengths of the input to its visual system. The lower-

                                                                                                       
landscape. For the sake of simplicity, we will use the terms region 
and attractor synonymously. 

2 Knowledge as understood in the sense that representations are 
“inner structures that act as operators upon the world via their role 
in determining actions” (Clark, 1997: 47). 

order relations between the input and the internal state and 
between the internal state and the world-state are defined by 
mutual information, which we introduce below. 

Mutual Information and R 
Mutual information is an information-theoretic measure that 
describes the statistical dependence (correlation) of two 
variables on each other. If two variables are correlated, one 
can predict (in part or in total) the other. Thus, mutual 
information also measures how predictive one variable is 
about another. The mutual information between  X and Y is 
defined as (Shannon, 1948) 
 

 
 

Equation 2: Mutual information of X and Y 
 
where the random variable X is a set of symbols x that are 
elements of X, and the probability px defines the chance of 
finding the symbol x in the set X. The mutual information 
between X and Y (also sometimes called “shared entropy”), 
quantifies how well X can be predicted from knowing Y, and 
vice versa. In other words, it quantifies how much X and Y 
know about each other. For example it can easily be seen 
that I(X;Y) = 0 if X and Y are independent because then pxy= 
px* py and log1 = 0. At the other extreme, if I(X;Y) is 
maximal, then drawing x from the set X predicts which y 
will be drawn. 

The relation between input (I) and world (W) and between 
input and internal states (S) can then be cast in terms of 
mutual information. We define our measure R thus as 

 
 , 

Equation 3: Representation R 
 
that is, the difference between what the internal states know 
about the world and what they know about what is reflected 
of the world in the input. Using mutual information to 
quantify the lower-order relations between a system’s 
internal states and the world-states, and between internal 
states and input, follows our intuition about representation. 
Representations are used in cognitive science to describe 
structures that make the relevant higher-level properties of 
the world available for processing (cf. Clark, 1993: 87ff.; 
Thornton, 2009). This concept is fleshed out in the 
difference between I(S;I) and I(S;W). Higher-level 
properties are something over and above what is 
immediately present in the system’s input, that is, they are 
generalizations of that what is represented in the inputs. 
Consequently, if the system’s internal states only reflect 
what is present in the input, the system is not representing at 
all, it is merely mirroring. A camera, for example, has R=0 
because in that case, I(S;W) is equal to I(S;I). This 
observation also fleshes out the above claim that a camera’s 
internal state is not qualitatively different from its input. 
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This definition of R also ensures that it is compatible with 
the analysis of distributed representation by partitioning the 
network’s activation space. 

R and PCA 
As shown above, the PCA of a network’s state yields a set 
of independent eigenvectors describing that state. 
Distributed representations are encoded as regions in the 
space of a subset of eigenvectors. This approach is an 
attempt to apply the representational-computational 
framework to ANNs, and assumes that representations are 
nothing more than regions in state space. In a certain sense 
then, PCA categorizes activation states and labels them as 
representations. This is problematic because in ANNs, 
computation and representation cannot be easily 
distinguished. 

Let us compare the R measure to PCA. If we apply PCA 
to the image generated on the CCD of a simple camera, we 
will find that it generates a number of eigenvectors that is 
equal to the number of inputs. So for example if the camera 
has 16 inputs, the PCA yields 16 eigenvectors. What is 
more, the eigenvectors are all equidistant to each other. This 
implies that the processing that the camera applies to its 
inputs does not in fact generate any information besides the 
signals on the CCD.  

While a PCA of the camera states may or may not yield 
results that can be interpreted as a camera creating 
representations of the world, it appears obvious that it 
should not.  The problem arises because the whole concept 
of representation, as applied to ANNs, is not rooted in the 
idea that representations are about something in the world. 
Instead, the identification of the relation between 
representing and represented is, when it comes to using 
PCA as gauge of representation, left to the beholder. 

In contrast, our measure R begins with assuming that the 
states represented in the system are about the world, and that 
the concepts we form about them have to pass through the 
filter of the sensory system. (cf. Equation 3). Still, R can be 
thought of as encompassing PCA, because the regions in 
vector space that are identified by PCA are interpreted as 
corresponding to some property of the world. In other 
words, PCA attempts to create a mapping between world 
and regions in state space. These mappings are a set of 
many-to-one relations, as each region is a set of points in 
state space that corresponds to a number of states in the 
world.3  

This is certainly the case for the network analyzed in 
Elman (1991) because there the number of inputs is equal to 
the number of entities in the world. In real world examples, 
where many different states of the world elicit a similar 
pattern on the sensory inputs, the mapping relation has to be 
extended. Instead of a single mapping, there exist two sets 
of many-to-one mappings: one from the world to the inputs, 

                                                             
3 Thus, the regions can be interpreted as being centered around 

an attractor that, semantically, is a prototype (cf. Churchland & 
Sejnowski, 1992: 167f.). 

and one from the inputs to the regions. Furthermore, not all 
states of the world map onto the regions with the same 
probability (this is only the case in the camera example). 
Instead, for R the probability distribution of the mapping is 
included in the definition of mutual information as the joint 
probabilities of events pxy (cf. Equation 2). 

PCA identifies specific regions in activation space that are 
qualitatively interpreted as representations. If the activation 
space is partitioned so that the regions are easily 
distinguishable, then the system is able to perform a 
classification task better. In other words, in that case there is 
a likelihood for the states of an ANN to end up in a given 
region, given a set of input states that represent the same 
concept. This probabilistic relationship allows us to link the 
PCA concept of representations to that implied by R as 
follows. 

The concept of activation space partitioning can be 
extended to information theory by assigning each possible 
state (be it world, input, or internal state) a particular 
symbol. Then, mutual information can be used to learn how 
much each symbol/state is predictive about another 
symbol/state. As a result, a region becomes interpretable as 
a symbol that is informative about another symbol. In the 
camera example, the camera would map each possible input 
state to exactly one internal state. So the probability of 
having exactly one internal state given (that is, seeing) a 
particular input state is p = 1.0. As a consequence, when the 
internal states have perfect information about the input 
states, I(S;I) becomes maximal. Further, if there are as many 
inputs as there are states in the world, then each state of the 
ANN automatically describes the world perfectly. In this 
case, I(S;W) = I(S;I) because I=W (the world is what it 
seems), implying a vanishing R  – no representation. 

In contrast to a camera, an ANN represents if two 
conditions are fulfilled: First, the possible number of input 
states has to be less than the number of possible world 
states, i.e. I<W. In this case, the maximum of I(S;I) can 
become smaller than the maximum of I(S;W) and R can 
become positive. In other words, ANNs perform a 
computation only if the number of possible states is 
reduced. Second, the internal states have to reflect some 
properties of the world that are not immediately accessible 
in the input states. An ANN can be in a state corresponding 
to a state of the world w ∈ W (have information about state 
w) even though it is never reflected in the input states, i.e., 
I(I;W=w)=0. Therefore, R can be positive if the internal 
states share information with the world even though this 
information was never directly encoded in the input, but had 
to be inferred or generalized from the input. 

From this it can be seen that our measure R includes the 
mappings from the regions in state space to properties in the 
world. If all regions in activation space and their mappings 
were known, it would be possible to reconstruct R. Thus, R 
appears to include, or is at least compatible with, the PCA 
of an ANN. However, the crucial difference is that R is a 
quantitative measure whereas state space partitioning is a 
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qualitative approach. This has further implications for the 
interpretation of R. 

Interpretation of R 
Critics might argue that our measure R measures  
computation instead of representation because in our 
definition representation is the result of a computation. We 
think that such arguments are based on the assumption that a 
clear-cut distinction between representation and 
computation is possible in ANNs. But we oppose this view 
mainly because we see a need for a re-interpretation of the 
terms representation and computation in ANNs. 

Skeptics might worry that our measure R is not able to 
capture individual representations (that it does not measure 
how well individual states of the world are represented) and 
thus does not measure representation at all. But our 
formalism  allows to quantify R for specific states:  

 
 

Equation 4: R for specific states. 
 

where Iw is a random variable with a probability distribution 
given by  

   

that is, it is the set of inputs that one observes when looking 
at the world in state w (cf. Adami & Cerf, 2000). With this, 
R can be calculated for any representations identified by a 
PCA. 

Even though R itself does not quantify any single 
representation, it nonetheless captures representation 
because representation can be thought of as an actualized 
representational capacity. The maximal representational 
capacity of a system is defined as the difference between the 
entropy of its internal states (S) and the entropy of the input 
(I) (with W denoting world): 

 
 

Equation 5: Maximal Representation Rmax 

In case R is negative, the system has to be interpreted as 
relying on external rather than internal representations. 
External representations are structures that are so reliable in 
the system’s environment that it is ‘cheaper’ to access them 
via the input than to internally represent them (cf. Brooks, 
1991). This idea is reflected in our measure: R < 0 if I(I;W) 
> I(S:W), that is, the network’s input predicts the world 
better than its internal states. Using external representation 
in this way is an alternative to saying that such systems do 
not, in fact, realize cognitive processes. But since we 
assume that all systems that realize cognitive processes are 
to a certain degree representational, the representations have 
to be externally realized. 

A related problem is that in order to measure R one has to 
know the states of the world that could potentially be 
represented. It is necessary to compute H(W) because the 

probability of events is based on their observed frequency 
(cf. Equation 2). In well-defined experimental situations this 
is not a problem. But in real world examples one would first 
have to define the task and the information in the world that 
is necessary to accomplish it. But this presupposes that one 
can define the minimal system that is necessary to solve the 
task. But the task might have many possible solutions. 
However, an estimate can be given for most situations. The 
only caveat is that one shouldn’t assume that one is always 
in a position to control the design space (cf. Clark, 1997: 
160). 

Conclusion 
We have shown how R, a new quantitative measure of 
representation, can be related to a widely used approach to 
distributed representations (PCA), and possibly 
encompasses it. In contrast to PCA, R is a quantitative 
measure that allows us to gauge the actualized 
representational capacity of an ANN precisely. It does so 
without identifying individual representational vehicles and 
thus does not try to apply a specific conceptual-explanatory 
framework to the analysis of ANNs. Rather, R is compatible 
with other approaches especially those that are based on 
information theory and dynamical systems theory. Further, 
by providing a quantitative and computable measure, R can 
be used to compare ANNs and even assess their 
computational efficiency. 
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