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Abstract
Background: Much work in systems biology, but also in the analysis of social network and communication and 
transport infrastructure, involves an in-depth analysis of local and global properties of those networks, and how these 
properties relate to the function of the network within the integrated system. Most often, systematic controls for such 
networks are difficult to obtain, because the features of the network under study are thought to be germane to that 
function. In most such cases, a surrogate network that carries any or all of the features under consideration, while 
created artificially and in the absence of any selective pressure relating to the function of the network being studied, 
would be of considerable interest.

Results: Here, we present an algorithmic model for growing networks with a broad range of biologically and 
technologically relevant degree distributions using only a small set of parameters. Specifying network connectivity via 
an assortativity matrix allows us to grow networks with arbitrary degree distributions and arbitrary modularity. We 
show that the degree distribution is controlled mainly by the ratio of node to edge addition probabilities, and the 
probability for node duplication. We compare topological and functional modularity measures, study their 
dependence on the number and strength of modules, and introduce the concept of anti-modularity: a property of 
networks in which nodes from one functional group preferentially do not attach to other nodes of that group. We also 
investigate global properties of networks as a function of the network's growth parameters, such as smallest path 
length, correlation coefficient, small-world-ness, and the nature of the percolation phase transition. We search the 
space of networks for those that are most like some well-known biological examples, and analyze the biological 
significance of the parameters that gave rise to them.

Conclusions: Growing networks with specified characters (degree distribution and modularity) provides the 
opportunity to create surrogates for biological and technological networks, and to test hypotheses about the 
processes that gave rise to them. We find that many celebrated network properties may be a consequence of the way 
in which these networks grew, rather than a necessary consequence of how they work or function.

Reviewers: This article was reviewed by Erik van Nimwegen, Teresa Przytycka (nominated by Claus Wilke), and Leonid 
Mirny. For the full reviews, please go to the Reviewer's Comments section.

Background
The representation of complex interacting systems as
networks has become commonplace in modern science
[1-5]. While such a representation in terms of nodes and
edges is near-universal, the systems so described are
highly diverse. They range from biological (e.g., protein
interaction graphs, metabolic reaction networks, neu-
ronal connection maps) over engineering (blueprints, cir-

cuit diagrams, communication networks) to social
systems (friends, collaboration, or citation networks).
One of the hallmarks of human-designed systems appears
to be their modularity [6]: systems designed in a modular
fashion are more robust to component failure, can be
quickly repaired by switching out defective modules, and
their designs are easier to understand for a human engi-
neer. Systems that emerged via biological evolution rather
than design do not have to be easily understandable, but
robustness and repair are still important characteristics.
Beyond those, it appears that biological systems need to
be evolvable [7-9]. While this criterion seems circular
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because obviously biological systems have evolved, there
are differences in the degree of evolvability, which deter-
mine how well a system can adapt to changing environ-
ments. Modularity has been identified as possibly a key
ingredient in evolvability, because it can both supply
mutational robustness via the isolation of components
and fast adaptation via the recombination of parts, or by
altering the connections between the modules [8,10-13].
While our intuitive understanding of modularity is simple
(from a designer's point of view) as "discrete entities
whose function is separable from those of other modules"
[10], the identification of modules from a representation
of the system as a network is not straightforward. Com-
monly, modules in networks are identified via clustering
algorithms that identify groups of strongly intercon-
nected nodes that are only weakly connected to other
such nodes [14-17], but often information external to the
purely topological structure is used to determine modu-
lar relationships, such as co-regulation [18,19] or evolu-
tionary conservation [20-22]. When the modular or
community structure of a network is given or known, dif-
ferent measures exist to quantify the extent of modularity
in the network [17,23-27].

Another defining characteristic of networks is their
edge (or degree) distribution: the probability p(k) that a
randomly chosen node of the network has k edges. Regu-
lar graphs, for example, are networks where each node
has exactly the same number of edges as any other (a
square lattice is a regular graph of degree four, except for
the edge and corner nodes). Graphs can also be con-
structed randomly, by adding edges between nodes with a
fixed probability. The first description of the connectivity
distribution of such random graphs is due to Erdös and
Rényi [28-30] and Solomonoff and Rapoport [31]. These
authors found that the distribution of edges in such
graphs is binomial, or, in the limit of a large number of
nodes, approximately Poisson. While networks with such
a degree distribution can be found in social interaction
and engineering networks [32], they are comparatively
rare in nature. For example, the edge distribution of the
only biological neural network mapped to date (the brain
of the nematode C. elegans) [33] is consistent with that of
an Erdös-Rényi network [32,34].

Most other networks found in nature, however, have a
scale-free edge distribution, implying that just a few
nodes have very many edges, while most nodes are con-
nected to only a few. The emergence of this scale-free
degree distribution can be understood in many different
ways [35-38] (see also [39,40]) and usually requires a
growth process where either nodes with many edges pref-
erentially attach to other nodes with many edges, or else
grow via node duplication and mutation [41] (see [42] for
a review of growth models). Indeed, graphs obtained by a
growth process appear to show preferential attachment

naturally [37] (because the oldest nodes usually have
more edges than younger nodes) and are fundamentally
different from those where edges are placed between
nodes probabilistically [43]. Many other network's degree
distributions are the result of a growth process even
though the models currently in existence cannot produce
them. The model we present here can be used to generate
a wide variety of networks, and can be used to study a
number of practical issues that arise when studying net-
works. For example, the model can falsify any hypothesis
about network evolution that claims that a particular
functional constraint is necessary for the evolution of a
network feature, because no constraints other than the
growth process and module connectivity restrictions are
placed on the process. The purpose of this work is to pro-
duce a tool that allows a user to create networks with
baseline characteristics to study network growth, and
produce null models for the purpose of hypothesis test-
ing. At the same time, the model can be used to create
hypotheses about the processes that were in force histori-
cally when a network was formed, by finding the parame-
ters that produce networks with similar structure.

For most of the applications studied here, we use a set
of five independent probabilities to grow networks, which
is not sufficient to produce networks with arbitrary
degree distributions, but which appear to produce most
of the biologically and technologically relevant degree
distributions while generating many interesting distribu-
tions interpolating between them. In order to generate
any particular degree distribution, the parameters in an
assortativity matrix allow you to specify a network's ulti-
mate connectivity directly. We use this matrix predomi-
nantly to generate graphs with defined functional
modules, and study how modularity depends on a num-
ber of different parameters. We also introduce a new
measure of functional modularity that only takes into
account whether or not nodes that have been assigned to
the same functional group connect to each other. Using
this measure, we can show that some classes of networks
can be anti-modular, that is, they show a tendency of
nodes with the same functional assignment not to be con-
nected to each other. Finally, we use the network growth
model to investigate global properties of networks, and
study the set of parameters giving rise to networks similar
to well-known biological networks.

Models and Methods
A fundamental difference between random graphs
(defined as graphs obtained via a random process of edge
addition resulting in degree distributions of the Erdös-
Rényi type) and networks with scale-free edge distribu-
tion is thought to be the way in which these networks are
generated. Scale-free networks are usually generated by
growth via preferential attachment [35,43-46] or else
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grown via duplication with subsequent diversification
[41,47,48]. For some networks (mostly metabolic reaction
networks [49,50]) preferential attachment is not sufficient
to explain their degree distribution [51]. Here we describe
an algorithm that will grow networks with a broad range
of degree distributions based on a growth model with
only a few parameters. Depending on those parameters,
we can obtain Erdös-Rényi-like graphs, networks with
scale-free degree distribution, small-world networks, reg-
ular graphs and lattices, bi-partite and k-partite graphs,
and anything in between. In addition, this algorithm is
able to grow those networks with any degree of modular-
ity and arbitrary size. The growth parameters can even be
chosen in such a way that the resulting networks actually
show a negative modularity score, that is, they can be
anti-modular.

Our networks are usually generated from a single seed
node, but can take any specified initial configuration of
nodes and edges as starting condition. Subsequent events,
determined by user-chosen probabilities, occur stochasti-
cally and usually lead to network growth. For example,
the node-event probability PN determines that a node is
either added (without edges) or deleted, depending on a
second parameter, the node addition probability p. Thus,
for a single node event, the probability that a node will be
added is pPN while the probability that a node will be
deleted is PN (1-p) (see Figure 1). A second type of event
affects edges with probability PE: the edge-event probabil-
ity. Just as with nodes, edges will be added with an edge-
addition probability q, so that a single edge event will add
an edge with probability qPE while an edge is removed
with probability (1-q)PE. Note that while node addition or
removal happens unconditionally, edge addition or

removal is not guaranteed. The algorithm will only place
an edge if the pair of nodes that is randomly selected is
unconnected. Similarly, an edge removal instruction is
only carried out if the pair of nodes that is randomly
selected already has a connection, and otherwise fails. As
a consequence, even edge addition probabilities q < 0.5
will lead to a steady-state distribution of edges to nodes.
The main parameters of the growth model are summa-
rized in Table 1. Note that because a rescaling of the
probabilities pPN, qPE, and rPD by a common factor only
changes the time it takes to achieve a network of a partic-
ular size, these probabilities are not independent (for
example, pPN can be used to rescale all parameters). How-
ever, for many applications it is interesting to vary these
probabilities independently.

We can calculate the steady-state distribution of edges
per node (mean degree �k�) by calculating the total num-
ber of nodes n and edges m as a function of the number of
events N and the parameters PN, PE, p, and q (we do not
consider duplications in this calculation). The number of
nodes added per event is pPN and the number of nodes
removed is (1- p)PN, so that the net number of nodes
added after N events

The net number of edges m added is more complicated,

because edges are only added with probability q(1 - ξ),

and removed with probability (1 - q)ξ per event, where ξ

is the graph sparseness , and represents the

probability that a random pair of nodes is connected by

n NP pN= −( ).2 1 (1)

x = −
2

1
m

n n( )

Table 1: Parameters of network growth model

Abbreviation probability

PN Node-event probability

PE Edge-event probability

PD Duplication-event probability 
(duplication or fusion)

p Conditional node-addition 
probability (given a node event). 
Conditional probability of node 
removal is 1 - p

q Conditional edge-addition 
probability (given an edge event). 1 - 
q is the conditional probability that 
an edge is removed

r Conditional node-duplication 
probability (given a duplication/
fusion event). Conditional node-
merging probability is 1 - r

Figure 1 Network growth events and probabilities. Growth (or 
shrinkage) of network is determined by node, edge, and duplication 
events with specified probabilities, as described in the text.
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an edge. At the same time, every time a node is removed,

the algorithm removes the edges attached to it. On aver-

age then, a node removal event subtracts the average

degree of that node, which is �iki/n = 2m/n = �k�, so that

We can then write an equation for the asymptotic
dependence of the mean degree

or

where η = PE/PN, and using ξ ≈ �k�/n, which holds for
large n. Thus we see that in the limit of large n,

a behavior that is borne out in the simulations (data not
shown).

A third type of event leads to node duplication or
merger (fusion), controlled by the parameter PD. Here, a
node is duplicated with probability rPD, while two nodes
are fused with probability (1 - r)PD (the parameters are
summarized in Table 1). While edge and node events are
straightforward, node duplication/fusion events need
more explanation because there are several different ways
in which nodes can be duplicated or fused. Here, we
implement an algorithm in which node duplication is
directly related to the concept of modules: When dupli-
cating a node, the new node is by definition in the same
module as its ancestor, and the new node is connected to
all nodes the ancestor is connected to. In order to imple-
ment this, nodes have to be assigned a tag that deter-
mines the module they belong to, the moment the node is
created. (It is convenient to represent different tags by
different colors, so we often refer to nodes in different
modules-that is, carrying different tags-as having differ-
ent colors).

In order to assign a module to a duplicated node, the

number of modules has to be given at the outset, and the

probability for a node of color k to connect to a node of

color � is obtained from the assortativity matrix e, which

stores the fraction of edges between pairs of colors. For

Nc modules M1,..., , this matrix can be written as

For the case of node merging, two nodes (A and B) are
picked at random. Node A keeps its connections and in
addition obtains all the connections that node B had,
upon which node B is deleted. The selection of the nodes
to be merged is module independent, and thus could
either merge nodes within a module or across modules.

When growing modular networks, nodes are assigned a
color based on a vector of probabilities that can be speci-
fied beforehand (for all the results in this paper, nodes are
assigned to a module randomly at the time they are cre-
ated). If an edge event specifies the placement of an edge,
a random pair of nodes is selected and the identity of the
colors determined. At this time, a random uniform num-
ber is drawn, and the edge is placed if this number is
smaller than the corresponding probability in the e-
matrix (6). If no edge is set, the algorithm tries to set the
edge for a different pair of nodes, and attempts this up to
1,000 times.

We determine a growth stop criterion either by specify-
ing a maximum number of nodes, or by specifying a fixed
number of iterations of the algorithm. In principle, the
algorithm allows for the generation of both directed and
undirected graphs. Here, we restrict ourselves to net-
works with undirected edges, and furthermore prevent
nodes from connecting to themselves. Finally, two differ-
ent growth initial conditions are possible: one in which
we start with a single node from the first module in the e-
matrix, the other where we start with a single node from
every module. The Nc(Nc - 1)/2 entries in the assortativity
matrix, together with the number of colors and the six
probabilities for stochastic network growth described
above fully determine the structure of the network.

Software availability
The program to grow the networks described in this arti-
cle will be made freely available.

Results and Discussion
Growing networks with complex degree distributions
The standard model for growing graphs with exponential
degree distribution is due to Callaway et al. [43], who
introduced a model where a node is added at each event,
and an edge is added with a given probability per event.
While there are no duplications in this model and edges
are not preferentially attached to high-degree nodes,
there is still a form of preferential attachment because
older nodes have had more opportunities of obtaining
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edges, and also have a higher probability of connecting to
nodes with more edges [43]. This model produces expo-
nential degree distributions whose form can be predicted
exactly, but scale-free distributions cannot be produced.
With the present network growth model, it is easy to
grow networks with more complex degree distribution,
by changing just a few parameters.

To begin with, we test whether the exponential distri-
bution of the Callaway model morphs into a scale-free
distribution as the duplication event probability is
increased. In Fig. 2 we show the degree distribution with
a fixed node and edge event probability, but changing the
node duplication probability PD, and confirm that if net-
works grow with duplication, the scale-free edge distribu-
tion is unavoidable [41]. Networks that are scale-free over
more decades actually emerge if nodes are added more
often than edges (see Fig. 3A). Choosing a low PN, on the
other hand, leads to the growth of networks with a Pois-
son-like degree distribution (Fig. 3B). Note that the scale-
free and the Erdös-Rényi-type distributions depicted in
Fig. 3 were obtained using the same set of parameters
except that the node addition probability was 100 times
less for the graph that resulted in an Erdös-Rényi-like
edge distribution. In principle, keeping the relative ratio
of the three probabilities PN, PE, and PD the same (when p
= q = r = 1) results in the same edge distribution (see
Models and Methods).

Choosing probabilities in between the parameter values
described allows us to grow very different networks, with
edge distributions in between exponential and Poisson.
For example, there are interesting "transition stages"
where parameter combinations lead to networks that are

neither scale-free nor Erdös-Rényi. We show in Fig. 4
extreme and intermediate edge distributions where we
varied the node-event probability (PN) from 0.001 to 1.0
while keeping all other probabilities constant. The distri-
bution obtained for PN = 0.001 has all the characteristics
of an Erdös-Rényi-type edge distribution, such as the one
depicted in Fig. 2B (note the difference in scales). We
conclude that the edge distribution can be controlled
entirely with the node addition probability and the edge
duplication probability (as long as the edge addition
probability is not too low): for low edge duplication, tun-
ing PN from 1 to small values morphs the degree distribu-
tion from exponential to Erdös-Rényi. If the edge
duplication probability is substantial, however, the same
change in PN moves the distribution from scale-free to
Erdös-Rényi. As a corollary, moving PD from small values
to larger values for moderate to high PN changes an expo-
nential towards a scale-free distribution, as we saw in Fig.
2. While we have not conducted an exhaustive parameter
exploration, we can summarize how the main parameters
affect the degree distribution in a qualitative manner. In
the absence of duplication, the degree distribution is
exponential or approximately Poisson, depending on the
size of the ratio of the edge- to node-event probability η =
PE/PN and the edge addition probability PD. For q = 1, the
Callaway model [43] predicts an exponential edge proba-
bility distribution

with mean number of edges per node (degree) �k� = 2η
in agreement with Eq. (4) (see Fig. 5 center). If η becomes
large, however, this distribution starts to resemble a Pois-
son distribution, as indicated in Fig. 5. An Erdös-Rényi-
type distribution can also be obtained without touching
η, by simply decreasing q (the probability that a node is
added per edge event) because as long as edges are added
slowly, a small enough q will lead to the random rewiring
of a graph (see Fig. 5 lower left). In both cases (η Ŭ 1 or q
< 1 while η ≈ 1) the edge probability distribution quickly
becomes independent of the network size. As we increase
the node duplication probability, we move towards the
distributions on the right hand size of Fig. 5. While the
distribution starts to develop a form reminiscent of a
power-law for low degrees when η < 1, the duplications
lead to a hump at larger degrees. Whether or not this dis-
tribution is independent of the size of the network is
unclear: when duplications enter the generation process,
may of the graph properties depend not only on the initial
configuration used for the graph, but also the length of
the process. Likewise, it is unclear whether the parame-
ters that give rise to power law distributions for a finite

p k
k

k
( )

( )

( )
=

+ +
2

1 2 1
h

h
(7)

Figure 2 Degree distribution as a function of duplications. The de-
gree distribution of randomly grown networks with different node du-
plication probabilities PD (r = 1), at fixed PN = 0.2, PE = 0.75 (with p = 1, q 

= 1). PD = 0 (black), PD = 0.1 (red), PD = 0.2 (magenta), PD = 0.3 (green), PD 

= 0.4 (blue), and PD = 0.5 (yellow). Average of 100 replicates of networks 
grown to size n = 1,000.
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process (as in the lower right graph in Fig. 5) are the same
if the size of the network tends to infinity. Fortunately,
real-world networks are not infinite, so the model is use-
ful for the generation of surrogate networks even if the
asymptotic distribution is not known.

The algorithm can be used to create lattices with an
arbitrary degree or connectivity by making use of the
assortativity matrix in an unconventional manner: Each
node of the lattice is assigned a unique module, where the
probability of having an edge between modules reflects
the desired neighborhood relations in the lattice. Instead
of seeding the growth process with a single node, the

algorithm is started with a fixed number of nodes and no
edges, and PN = 0. The growth process then enacts a per-
colation problem with edge probability qPE, and a geome-
try dictated by the assortativity matrix. To create
bipartite graphs with edges only connecting nodes from
different groups, we can grow networks from an assorta-
tivity matrix with a vanishing diagonal [see Fig. 6A].
Nearly bipartite graphs are obtained by varying the
entries in the matrix accordingly. Clearly, the algorithm
can generate arbitrary k-partite graphs, by extending the
dimension of the assortativity matrix. We show in Figure
6B a network iterated for 1,000 steps with the same
parameters as Fig. 6A, but with k = 4 (nodes colored
according to the group label).

Modularity
That biological, technological, and social networks are
organized in a modular fashion is by now a commonplace
observation. Yet, there is no standard measure of modu-
larity, nor is there a standard algorithm that will partition
networks into modules. There are several reasons for this
apparent shortcoming. On the one hand, while the term
"modular organization" is fairly intuitive, anyone who is
familiar with the structure of real-world networks under-
stands that this intuitive notion can only be applied
approximately, and with a good amount of prudence.
Modules are often identified using the topological struc-
ture of the network, for example by counting the number
of shortest paths between nodes, or by identifying an
excess number of edges between nodes as compared to a
random (Erdös-Rényi-type) network. However, it is also
possible that groups of nodes function together as a mod-

Figure 3 Edge distribution of networks grown with different parameters. (A) Scale-free edge distribution p(k) of networks obtained with a 
growth algorithm using PN = 0.2625, p = 1.0, PE = 0.15, q = 1.0, PD = 0.225, and r = 1.0, undirected edges, no modules, average over 1,000 networks grown 
to 10, 000 nodes. (B) Edge distribution of networks grown with PN = 0.002625, all other parameters as in (A), averaged over 10,000 networks grown to 
1,000 nodes.

Figure 4 Edge distributions for networks grown under different 
regimes. PN = 1.0 (black line, exponential distribution) PN = 0.1 (green), 
PN = 0.01 (blue), and PN = 0.001 (red). All other parameters are set to PE 

= p = q = 0.75, PD = 0.5, r = 1.0. Networks are unmodular and undirected, 
grown to size n = 10, 000, averaged over 100 replicates.
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ule without any obvious topological signature. Further-
more, functional modules often overlap, while
topological modules are usually defined in such a way
that they are mutually exclusive. Therefore, we expect
that topological and functional measures of network

modularity can disagree, and that this disagreement can
be more or less severe depending on the type of network
under consideration.

We would also like to highlight the difference between
modularity measures, which quantify the modularity in a

Figure 5 Changing a network's degree distribution. This sketch indicates how different degree distributions morph into one another as several 
different parameters of the growth model are changed. From the "default" exponential degree distribution of the Callaway model (center of diagram) 
Erdös-Rényi-like distributions can be obtained in two different ways: either by increasing the probability to add edges while keeping the node addition 
probability constant, or by randomizing edges using a small q (distributions on the left, note the non-logarithmic axes). Approximately scale-free dis-
tributions can be obtained from the exponential one by increasing the node duplication probability, but doing so while decreasing the number of 
edges per node creates a hybrid between scale-free and Erdös-Rényi-type distributions (distributions on the right).

η >> 1.0

q < 1.0
  η ~ 1.0
P  ~ 0.3

  η < 1.0
P  > 0.0

η = 1.0
q = p = 1.0
P  = 0D

D

D

Figure 6 Bipartite and k-partite graphs. (A) Bipartite graph, nodes from one group colored in red, nodes from the other group colored in black, PN/
PE = 0.3, p = 0.85, q = 0.75, PD = 0.0. The graph was grown for 1,000 iterations of the algorithm, with undirected edges. (B) Graph grown with the same 
parameters as (A), but for k = 4.
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network whose modules have already been determined,
and module-discovery algorithms, which partition a net-
work into groups of nodes. Often, module-discovery is
performed by attempting to maximize a modularity mea-
sure, but in principle neither does a modularity measure
imply an algorithm for module discovery, nor does a
module-discovery algorithm necessitate a measure of
modularity.

A commonly used measure of modularity is due to
Newman [17], who assumes that modularity implies that
nodes in the same module have more connections
between them than would be expected for a random con-
trol, that is, a network where all the module assignments
have been randomized. If ki is the number of edges of
node i, and m = 1/2�i ki is the total number of edges in the
network, then the probability that two nodes i and j are
connected by chance is kikj/2m (as long as the degrees for
node i and j are independent). Now, define the network
adjacency matrix A, in such a way that Aij = 1 if node i
connects to node j and Aij = 0 otherwise. This matrix is
symmetric for undirected networks, and can have non-
integer entries if the strength of a connection is taken into
account. Here, we limit ourselves to undirected networks
that have "binary" edges, but the extension is obvious. We
furthermore limit ourselves to networks without node
self-connections, which implies that the diagonal of A
vanishes. If furthermore the module assignment for each
node is known, we can define a modularity matrix S in
such a way that Sij = 1 if nodes i and j belong to the same
module, and zero otherwise. Newman's modularity QN is
then defined as [17]

There is clearly a certain amount of arbitrariness in
modularity measures of this kind. For example, a different
measure using similar ideas is often called the "assortativ-
ity" of a network. This measure is also due to Newman
[25], and quantifies how likely it is that nodes of the same
"kind" attach to each other, where "kind" can be any tag
that is attached to a node to distinguish it from another
class of nodes. As before, we refer to this tag as the node's
color, so that assortativity measures how often nodes of
the same color connect to each other rather than to nodes
of a different color. Let us define the assortativity matrix e
(sometimes called the "mixing matrix") such that ek� gives
the fraction of edges that attach a node of color k to a
node of color �, and ak = �� ekl is the fraction of edges that
either begin or end at a node of color k (we again restrict
ourselves to undirected networks here, so that e is sym-
metric). Newman's assortativity is then given by [25]

Both measures (8) and (9) are bounded from above by
1, and they can both become negative (indeed, Newman's
modularity and assortativity measures are closely related,
see Appendix). While the assortativity is constructed in
such a way that networks with random assignment of col-
ors (modules) to nodes gives rise to a vanishing measure,
this is not generally true for QN. Furthermore, both mea-
sures can in principle detect in networks a tendency of
nodes of the same module or color not to connect to each
other (a phenomenon we call anti-modularity or anti-
assortativity). However, the measures do not treat anti-
modularity (or anti-assortativity) on the same footing as
modularity or assortativity.

It is possible to introduce a measure of modularity that
is closely related to both of Newman's measures, but gives
more weight to "like"-edges if the number of colors is
large. This is obtained by modifying the modularity
matrix that enters Eq. (8) so that

where Nc is the number of modules or colors. (As in the
following we will tag nodes that belong to the same func-
tional module with the same color, we often refer to col-
ors or modules interchangeably.) With such a modularity
matrix, connections between nodes of unlike color are
penalized, most heavily so if there are only a few colors.
We define our functional modularity measure in terms of
this generalized modularity matrix

but note that we omitted the term -kikj/2m in New-
man's measure that subtracts the probability that two
nodes connect at random. Indeed, the latter bias is typical
for modularity measures that attempt to capture the way
modules are reflected in network topology, while our
measure QH focuses on function only. Because QH can
also be written as (see Appendix)
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we see that QH vanishes for non-associative (non-mod-

ular) networks, because when color is assigned randomly

to nodes we have  so that Tr e = 1/Nc. At the

same time, QH is maximal for graphs if colors only con-

nect to like colors (Tr e = 1). But in contrast to Newman's

measures, QH can become significantly negative, more so

if the number of modules is small. For bipartite graphs,

for example (graphs with nodes of two colors where only

unlike colors connect) we find Tr e = 0, so that QH = -1.
To study how the different modularity measures

depend on the number of modules in the network as well
as the strength of the module's interconnectivity, we gen-
erate networks with a tunable amount of modularity. A
simple model for generating modular networks is an
assortativity matrix for Nc colors where like-colors con-
nect to each other with probability π (the intra-module
edge probability), and connect to nodes of a different
color with probability (1 - π)/(Nc - 1), irrespective of color
(the "equal opportunity" model, see Appendix). The prob-
ability 1 - π can then be viewed as an inter-module edge
probability and can be used to dial between perfectly
modular (π = 1) and perfectly anti-modular (π = 0) net-
works. The functional modularity QH seen in Fig. 7B
depends strongly on the number of modules, and is larger
than QN (depicted in Fig. 7A) for modular networks, and
smaller than QN for the anti-modular ones. Indeed, the
inherent bias in Newman's measure for modules whose
member nodes are strongly connected to each other leads

to an underestimate of the modularity for strongly con-
nected modular graphs, and an equally underestimated
antimodularity for multipartite graphs, as compared to
the measure QH, when the number of modules is small.
The functional measure QH, in turn, cannot be used to
detect the number of modules or communities, for pre-
cisely this reason: because no connection bias is assumed,
there are no topological means to identify clusters. If the
number of modules is given, on the other hand, QH can be
used to guide a graph partitioning algorithm. Note that
the measures become indistinguishable in the limit of an
infinite number of modules.

We can also investigate the impact node fusion has on
modularity (Figure 8), for the modularity measures QN
and QH, by studying how modularity depends on module
strength in networks grown with different node fusion
probabilities. Irrespective of the measure, modularity is
highest if nodes are not fused (r = 1) and decreases as the
node fusion probability increases (r < 1) because node
fusion is blind to the module assignment, while node
duplication creates another node with the same color and
the same edges as the original node. The larger the proba-
bility for adding an edge within modules is (larger π), the
more modular the networks are, as expected. Because QH
does not penalize modules if they do not have an excess
of edges between them, QH is mostly larger than QN. For
small π, more connections exist between nodes of differ-
ent modules than within them, so that both modularity
measures become negative.

The impact of node duplication on modularity is more
complicated. On the one hand, because node duplication
brings with it the duplication of the edges that the dupli-

e Nij c= 1 2/

Figure 7 Comparison of modularity metrics. Comparison of the modularity measures defined in Eqs. (8) and (11). Networks with between 2 and 16 
modules were grown depending on the intra-module edge probability π. (For π = 0 the networks are as anti-modular as possible and become k-partite 
(where k is the number of modules), while for π = 1 they are as modular as possible). (A): QN [defined in Eq. (8)] for Nc = 2 (2 modules, black line), Nc = 4 
(red), Nc = 8 (green), Nc = 16 (blue). (B) QH [defined in Eq. (11)]. Colors as in (A). Each point was averaged over 50 networks with 1,000 nodes. The net-
works were grown with PN = 0.5, p = 1.0, PE = 1.0, q = 1.0 and PD = 0.0, using undirected edges.
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cated node is attached to, whether or not node duplica-
tion leads to an increase in modularity depends on
whether the network sports more inter-module or more
intra-module edges. On the other hand, node duplication
can skew the fraction of nodes that belong to any particu-
lar module by amplifying stochastic events that occur
early-on in network growth. While node colors are cho-
sen either randomly or according to a node probability
vector when a node is created (see Model), the color of a
node (that is, its module membership) is inherited under
duplication. As a consequence, module sizes fluctuate
considerably across different realizations of the network,
and the modularity can become significantly different
from that predicted by the e-matrix generating the net-
work. A detailed analysis of duplication on modularity is
beyond the scope of this manuscript, and will be pre-
sented elsewhere.

Global properties
A number of interesting global topological properties
have been observed in networks, both in the case of bio-
logical or engineering networks that are built via growth
processes, and in Erdös-Rényi-type networks that form
via random edge addition. Foremost in the first category
is the "small-world" effect: the observation that many bio-
logical and technological networks have a short mean
path between nodes (as compared to an equivalent ran-
domized network), while being highly clustered (again
with respect to a randomized equivalent network [52],
see also the review [53]). Humphries and Gurney [53]
introduced a quantitative measure to study the "small-
world-ness" of a network, which is particularly useful

because networks that have a high edge-density can auto-
matically appear to be in the small-world class, but trivi-
ally so. Following Humphries and Gurney, we define the
ratio of the "mean shortest path between nodes" in a net-
work to the mean shortest path in the randomized ver-
sion of the network (an Erdös-Rényi network with the
same number of nodes and edges):

and the ratio of the graph clustering coefficient 

with respect to that of the randomized version 

The symbol Δ in the superscript of the clustering coef-
ficients serves to remind us that this coefficient is
obtained by counting the number of "triangles" of nodes
normalized to the number of pairs [54], which can be dif-
ferent from the clustering coefficient obtained by averag-
ing the number of edges of the adjacent nodes [52].

As small-world networks are identified by having a
large γg and a small λg, the ratio of these quantities can be
used to measure small-world-ness:

We show the behavior of λg and  in Fig. 9 as a func-

tion of the ratio of node- to edge-event probability PN/PE

for networks grown to a size of 200 nodes. As more and

more nodes are added per edge-addition event (increas-

ing ratio PN/PE towards 1), the normalized mean shortest

path first drops, and indeed, as long as PN/PE < 1.5 (for q =

1), the shortest paths in these networks are shorter than

those in randomized networks. But once passed this

threshold, the addition of more nodes without a com-

mensurate increase in edges leads to longer and longer

shortest paths (see Fig. 9, solid red line). The normalized

correlation coefficient increases rapidly with an increas-

ing ratio PN/PE up until PN ≈ 0.65PE, after which the ratio

drops very fast.
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Figure 8 Modularity depends on node-fusion probability. Aver-
age modularity (from 50 independent networks with five modules, 
grown to 1000 nodes) for different node duplication probabilities r = 
0.5 (blue), r = 0.75 (red), and r = 1.0 (black), for the modularity measures 
QN (solid lines) and QH (dashed lines). The networks were grown with 
the stochastic parameters set to PN = 0.5, PE = 1, p = q = 1.0, PD = 0.2.
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We also tested how decreasing the conditional edge-

addition probability q affects λg and . We expect that a

decrease in q will move the mean shortest path and the

correlation coefficient towards their randomized graph

equivalents, because a q < 1 implies that sometimes edges

are removed (for q = 1/2 edges are added as often as they

are removed during an edge event), and the edge

removal/edge addition process is tantamount to a ran-

domization of the graph. We do indeed observe that 

T Crandom as q decreases (we show the case of q = 0.75 in

Fig. 9), but Lg/Lrandom actually increases for decreasing q as

long as PN/PE d 2.
In order to determine what graph-growth parameters

give rise to small-world networks, we plot the ratio SΔ

defined in Eq. (15) (which is just the ratio of the two
curves depicted in Fig. 9) as a function of the ratio PN/PE
(Fig. 10). In this figure, we also plot the edge density (or
"sparseness") of the network (here m is again the number
of edges, and n the number of nodes in the network)

because it is known that networks with a high density
of edges can be trivially of the small-world kind [53]. We
see from Figs. 9 and 10 that networks grown with a ratio
PN/PE < 1.3 have a small-world character, and further-
more that this character is maintained even for small
ratios PN/PE down to about PN/PE ≈ 0.2, where the edge
density is ξ ~ 0.1. This behavior is similar to that observed
in the Watts-Strogatz model [52], which becomes "trivi-
ally small-world" in the limit of increasing randomness
[53].

Figure 10 suggests that networks with small-world
character are an automatic by-product of a stochastic
growth process where the edge-event probability is of the
order of the node-event probability or larger (here, PE/PN
t 0.75), while the small-world character becomes trivial if
PE is many times PN. This is a plausible scenario for a
number of biological networks, where it is much more
likely to create a new edge (for example, an interaction
between two proteins via a gain-of-function mutation, or
a regulatory interaction) than it is to create a new node
(the evolution of a new protein de novo or via lateral gene
transfer). We can also see that this regime is easily
achieved in social networks, as long as the creation of an
interaction between nodes is more common than the
addition of a new member to the social network.

Critical behavior
Besides degree distribution, modularity, and small-world-
ness, a number of other global properties of networks
have been studied in the literature that we can study with
ease using our network growth model. It is known since
the pioneering work of Erdös, Renyi, and Bollobas that
static random graphs undergo a phase transition where a
"giant component" (a large connected component that
scales with the size of the system) emerges at a critical
probability of connecting edges (see, e.g., [55]). This
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Figure 10 Small-world-ness SΔ as a function of PN/PE. The quanti-
tative measure of small-worldness SΔ (solid line) and the edge density 
ξ [Eq. 16] (dashed line) as a function of the node to edge addition prob-
ability ratio. Networks are non-trivally "small-world" if SΔ > 1 while the 
edge density is low (e.g., ξ < 0.1).

Figure 9 Normalized mean shortest path and correlation coeffi-

cient. The normalized mean shortest path between nodes, Lg/Lrandom 

(red lines) and the normalized correlation coefficient 

 (blue lines) as a function of the ratio PN/PE, for a node 

duplication probability p = 1 and two different edge addition probabil-
ities q = 0.75 (dashed) and q = 1 (solid). Average over 1,000 networks 
grown to 200 nodes, with PD = 0.

C Cg
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phase transition is of the same kind as in percolation
models, and is often referred to as the percolation transi-
tion in random graphs. Callaway et al. [43], Dorogovtsev
et al. [56], as well as Bollobas et al. [57] have pointed out
that random networks that are grown also undergo a per-
colation transition, but that this transition has a very dif-
ferent character: the critical point is infinitely
differentiable (in fact, all the derivatives vanish at the crit-
ical point [43,56,57]). We can study this transition in our
model as a function of parameters not previously investi-
gated, namely PN, p, q, as well PD and r. We observe that
the percolation phase transition only depends on the
ratio PE/PN (see Fig. 11), that is, the size of the giant com-
ponent S only depends on the relative rate at which nodes
and edges are added. Even varying q (allowing for edge
removals) does not change this transition, as long as we
plot the giant components versus qPE/PN instead (results
not shown). Note that this combination of parameters is
related to the asymptotic mean degree �k� (see Eq. (5) in
Models and Methods).

Similarly, allowing for node duplication does not
change the transition, as duplications may change the
absolute size of the giant component, but do not affect its
emergence. Node fusion, on the other hand, does affect
the emergence of the giant component because fusions
can lead to the merger of two separate clusters. We show
in Fig. 12 the relative size of the largest connected com-
ponent of networks grown with different node fusion
probabilities (PD = 0.0, 0.1, 0.25, 0.5, r = 0), where the
value PD = 0 serves as the control (no node fusion). As
expected, the onset of the transition is earlier when nodes
can fuse, because node fusion does not change the giant
component if the nodes are in the same cluster (except for

diminishing its size by one), whereas whole clusters are
fused if the nodes that are fused belong to different clus-
ters. The nature of the phase transition (infinitely differ-
entiable critical point) is unchanged. Of course, as nodes
are fused, the network grows more slowly, but the shape
of the curve in Fig. 12 cannot be recovered simply by scal-
ing PN and PE taking into account the modified number of
nodes and edges for each fusion event (data not shown).

Biological relevance
Given the variability of the networks that can be gener-
ated with this model, we may ask whether it is universal
in the sense that the edge distribution of any biological
network can be characterized by the set of parameters
(five independent constants plus the e-matrix). We tested
whether networks can be grown to have an edge distribu-
tion that is similar to well-known biological reference
examples, and whether the set of parameters giving rise
to these networks allows us, by analogy, to generate
hypotheses about the process that generates them. Spe-
cifically, we grew networks to resemble the edge distribu-
tion of the neuronal network of the nematode C. elegans
[58], as well as a network similar to the protein-protein
interaction network of yeast [59]. The best current data
set for the C. elegans "brain" includes 280 of the 302 neu-
rons and their connections [58]. We binned the edge dis-
tribution from this data set and searched the parameter
space of the model (five parameters, no modules, undi-
rected edges) for sets that grow networks of 280 nodes
with an edge distribution that minimizes the root mean
square difference of the corresponding binned edge dis-
tribution. Note that because a graph's properties are

Figure 12 Percolation phase transition with node fusion. The rela-
tive size of the largest connected component S as a function of the rel-
ative edge to node event probability (with p = 1, q = 1, and r = 0), for 
different node fusion probabilities (as r sets the node duplication prob-
ability, the fusion probability (1-r)PD is simply given by PD). Solid line: PD 

= 0, dash-dotted: PD = 0.1, dashed: PD = 0.25, and dotted: PD = 0.5. Aver-
age of 100 replicates of networks grown to size n = 100.

Figure 11 Percolation phase transition in randomly grown net-
works. Relative size of the giant component S as a function of PE/PN, for 
networks grown with various combinations of PN and PE: Crosses: PN = 
0.1, circles: PN = 0.2, squares: PN = 0.5, dots: PN = 1.0 (with PD = 0 and p = 
q = r = 1). Networks grown to 10,000 edges, average over 100 networks.
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unchanged if the relative ratio of the three event probabil-
ities is maintained (as long as neither of them becomes
too small), we kept the largest of the parameters (here PE)
fixed. We verified that a search with six independent
parameters gives rise to the same set if rescaled to PE = 1.

Within the space of network parameters, the C. elegans
network appears to be fairly rare, so that a straightfor-
ward Monte Carlo search often arrives at inferior fits.
Our best solution is a network with PN = 0.008, p = 0.71,
PE = 1.0, q = 0.06, PD = 0.028, r = 1.0 (PE was fixed at 1.0 in
this search). We show the degree distribution generated
with this set of parameters (averaged over 1,000 realiza-
tions of the network) in Fig. 13A (solid line). A statistical
test comparing these distributions cannot reject the
hypothesis that they were generated from the same
underlying probability distribution (Wilxocon rank sum
test, P = 0.744). This set of probabilities suggests that the
C. elegans network reflects a growth process with a very
small node addition probability, commensurate with our
earlier observation that networks with an Erdös-Rényi-
like degree distributions are obtained using a small PN.
Such a small node addition probability is also consistent
with the constraints imposed on C. elegans evolution by
its invariant cell-lineage. The worm develops via stereo-
typed cleavages so that the patterns of cell division, differ-
entiation, and death are the same from one individual to
another: in the developing worm each cell has a predict-
able future, and each cell a well-defined set of neighbours
[60]. As a consequence, developmental changes giving
rise to new nodes must be heavily constrained, as they
would upset the delicate balance. For the same reason,
node duplications are also virtually absent in the simu-
lated network. The small edge addition probability q =

0.06 implies that edges are only added in 6% of the edge
events, and the network is consequently quite sparse. As
the algorithm does not remove an edge if there is none
between the randomly selected nodes, even such a small
edge addition probability (in fact, it corresponds to a 0.94
edge removal probability) always gives rise to an equilib-
rium edge count (calculated in Models and Methods in
the absence of duplication).

The simulation of the yeast protein-protein interaction
network (interaction data from the highly curated set of
Ref. [59]) leads us to vastly different conclusions concern-
ing the nature of the growth process. Because this net-
work is much less rare, a Monte Carlo search converges
fairly rapidly, and yields a similar set of parameters in all
trials. For yeast, we started with 4 different initial condi-
tions, conducted 5 trials each, and grew 20 replicas for
each parameter set to obtain an average distribution,
which we score by comparing the root mean square dif-
ference of the binned distribution to the binned yeast dis-
tribution. Because of the sparseness of the data at high
degrees, we performed a "threshold-binning" with vari-
able bin size, as described in [61]. We stop growth at
3,306 nodes (the size of the Reguly et al. network) and
obtain a network that is remarkably similar to the yeast
protein-protein interaction network, with PN = 0.7 ± 0.04,
p = 1.0 ± 0.05, PE = 1.0 ± 0, q = 0.91 ± 0.035, PD = 0.75 ±
0.035, r = 1.0 ± 0.03. A statistical test comparing the yeast
degree distribution and that of our simulation for nodes
with less than 120 edges (see Figure 13B) cannot reject
the hypothesis that both distributions were obtained
from the same underlying process (Wilcoxon rank sum
test, P = 0.0837). The eight proteins in the yeast network
with more than 120 nodes appear to be outliers that do

Figure 13 Edge distributions of actual and simulated biological networks. (A) Edge distribution of a network optimized to reproduce the edge 
distribution of the C. elegans neural network (solid line), compared to the observed distribution ("+"). (B) Edge distribution of a network optimized to 
reproduce the edge distribution of the yeast protein-protein interaction network (solid line), compared to the degree distribution reported in Ref. [59] 
("+"). The eight proteins with the highest degrees have been removed for the purpose of this comparison because they do not follow the distribution 
of the remaining proteins.
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not follow the same law as the remaining 3,298 proteins
in the network.

Both the node addition probability PN and the node
duplication probability PD creating our surrogate yeast
network are remarkably high. That the node duplication
probability is this high for the generation of a protein-
protein interaction data set is not surprising in the light of
evidence that much of genomic evolution proceeds via
gene duplication and subsequent diversification [62,63].
However, the analysis also suggests that the yeast network
edge distribution is only very approximately scale-free.

We conclude that particular degree distributions are (at
least for the cases we examined) obtained with unique
parameters sets, thus allowing us to entertain hypotheses
about the processes that generated the networks we are
simulating. Of course, such speculations rest on the
assumption that other processes (such as for example,
whole genome duplication, or horizontal transfer of sets
of genes) do not play a role in shaping the network's edge
distribution. Because we cannot rule out such processes
in many of the standard networks, such a caveat always
has to be issued.

Conclusion
We have presented an algorithm that, using only a few
parameters, can generate networks of seemingly arbitrary
degree distribution, modularity, and structure. Using this
model, we were able to study how fundamental proper-
ties such as edge addition or removal, as well as node
addition, removal, duplication, or fusion, affect a net-
work's degree distribution, modularity, and structure. We
found that we could grow networks with degree distribu-
tions anywhere between binomial, exponential, and scale-
free, within a single framework or process. By introduc-
ing an assortativity matrix for the generation of nodes
with different functional tags, we could furthermore grow
networks with different degrees of modularity, by speci-
fying the probability that a node of one "color" will attach
to a node with a different color. Once modules or func-
tional groups have been identified in any real network,
control networks can be grown that mimic the connec-
tion pattern or modularity of that network. One obvious
example is again the C. elegans neuronal network. Its
nodes can be divided into three classes: sensor neurons,
motor neurons, and interneurons [58]. The e-matrix for
this network can be reconstructed from the frequencies
of inter-color edges, and be used to grow networks that
not only have the same degree distribution as the original
network, but mimic the connection pattern between
functional types as well.

We also introduced a modified modularity measure QH
for networks that is based entirely on the functional char-
acterization of a network's nodes, rather than the connec-

tion pattern. This measure is neither better or worse than
any of the existing modularity measures (such as New-
man's QN or the assortativity r), but rather highlights a
different aspect of modularity. For example, while New-
man's modularity QN defines modules as those groups of
nodes that are connected to each other more often than
would be expected from the connection probability in a
random graph of the Erdös-Rényi-type, the measure QH
does not assume such a bias. In fact, because most bio-
logical, social, and technological networks are not of the
Erdös-Rényi-type, it is often erroneous to compare the
connection probability of modules to what would be
expected in a random graph. This is particularly true for
networks with scale-free edge distribution, which sport a
number of hubs with many edges that do not necessarily
connect to other nodes within the same module. The
measure QN will attempt to join such hubs in one and the
same module, even if a measure based on betweenness
centrality will separate them (see Appendix). QH, in con-
trast, does not allow you to detect modules, but rather
quantifies the modularity of a graph based entirely on a
previous group identification. Using such a measure, we
can show that graphs are often less than modular, and can
even become anti-modular. An extreme case of anti-
modularity is given by bi-partite, and by extension, k-par-
tite graphs. In fact, precisely modular and k-partite
graphs appear as "dual opposites" in this framework,
obtained with an e-matrix with only ones on the diagonal
and zeros elsewhere (divided by the number of modules),
or else zeros on the diagonal for the k-partite graphs.

The networks created using the present model recapit-
ulate a large swath of existing literature concerning net-
works, of which we presented a selection here. For
example, we were able to study how to generate networks
with given global properties, such as small mean distance
between nodes, or high clustering coefficient, and by
extension examine the nature of small-world graphs. We
were also able to study the percolation phase transition in
networks, but unlike in the standard literature where the
probability that edges are connected given a fixed set of
nodes (or, as in Ref. [43], the node addition probability is
fixed at PN = 1), we were able to study the size of the "giant
component" as a function of the ratio of the edge to node
addition probability, and found the same phase transition.
In addition, we could study the effect of node duplication
and/or fusion on the nature and location of the transition.

Finally, we used the model to reverse engineer the
growth parameters that might have led to the observed
degree distributions of the C. elegans neuronal connec-
tion graph and the yeast protein-protein interaction net-
work, while keeping in mind the assumptions behind that
extrapolation. A Monte Carlo search process through the
five-dimensional parameter space (not using modules)
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converged to suggest a unique set of parameters for each
of those networks that led to biological conclusions com-
patible with our current knowledge about the forces that
shaped these networks. We expect this model to be most
useful in the generation of null models in the analysis of
biological, technological, and social networks. The pro-
cess easily generates networks with the same size and
degree distribution as any study network, but unlike the
method presented in Ref. [64], the present process relies
explicitly on network growth and can accommodate arbi-
trary node "colorizations" (functional categories).
Another standard control, the edge randomization of any
network, is easily implemented by setting PN = 0, PE = 1, q
= 0.5 (with PD = 0). This setting will remove and place
edges randomly while keeping the total number of edges
and nodes the same, resulting in a randomized graph
after a sufficient number of updates.

We have shown that a broad set of standard results in
network analysis, concerning the edge distribution, mod-
ularity, global network structure, and critical behavior,
can be reproduced in networks grown via a random pro-
cess, with only a few tunable parameters. These net-
works, however, were grown in the absence of any
functional constraint, and their properties are therefore a
consequence of the stochastic nature of the growth pro-
cess only. We can conclude that while such properties
may be useful for real-world networks, they are not nec-
essary consequences of the network's functionality, but
could simply be a consequence of how they emerged.

Appendix
Structural and functional modularity
Newman's modularity measure Eq. (8) can be shown to
be related to his assortativity measure (9) by noting that
the mixing matrix e is related to the adjacency matrix A
via a transform involving a matrix F that relates nodes to
modules:

Introduce

Because , we find that

where the notation ||...|| indicates taking the sum of all
the matrix elements. The mixing matrix e is then just

Noting that TrFFT = S, the modularity matrix defined
above (8), we find that

The same construction also allows us to write QH
[defined in Eq. (11)] in terms of Tr e [Eq. (12)] by noting
that

where 1 is a matrix where each entry is 1.
We can test the limits of the modularity measures (8)

and (11) by calculating the modularity of an extreme
graph as depicted in Fig. 14, which is a graph of two hubs
of degree k connected by a single edge, and assuming that
all of the nodes of one hub belong to the same module. In
the limit of large k, such a graph should be classified as
highly modular. However, Newman's measure applied to
this graph gives

In comparison, the functional modularity measure QH,
making the same assumptions about the modules, tends
to 1 in the limit of high-degree hubs:

Functional modularity and assortativity
Newman's assortativity r [Eq. (9)] and the functional
modularity measure QH [Eq. (11)] are identical for a par-
ticular assortativity model, which we call the "equal
opportunity" model. It is defined by the probability π for a
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color to connect to a node of the same color, but to con-
nect to any other color with equal probability:

The factor 1/Nc, where Nc is the number of colors,
serves to normalize e such that ||e|| = 1. It is easy to see
that the fraction of nodes connected to type-k nodes: ak =
�� ek� = 1/Nc, so that (with Tr e = π)

which agrees with QH defined in Eq. (12).

Reviewers' Comments
Reviewer 1: Erik van Nimwegen, University of Basel
This paper introduces an interesting parameterized class
of stochastic network growth models that clearly can pro-
duce networks with a range of different topological prop-
erties, i.e., degree distributions, modularity, mean path
lengths, clustering coefficients, as the parameters of the
stochastic growth process are varied. It is quite conceiv-
able that this parameterized family of growth models
might actually be used to capture the broad topological
properties observed in many 'real world' networks. This is
very nice. However, what is a bit disappointing is that
there are almost no analytical results on precisely what
kind of properties the networks will have as one varies
the parameters. All that is presented is a number of 'anec-
dotal' examples of what one obtains with particular
parameter settings. Moreover, the results are complex
enough that one cannot easily generalize from the exam-
ples presented. That leaves us in the end in a state where
we have a family of growth models that MIGHT produce
networks with desired properties, but it is unclear which
kind of properties can be produced and precisely how to
set the parameters to get them. That is, if I were to say: I
have this real world network and it has this degree distri-
bution, this distribution of distances between nodes, this
distribution of clustering coefficients, and this modular-
ity (according to whatever measure), then I don't think
the authors could tell me whether there model could pro-

duce graphs with the same properties, and how to set
parameters to get such graphs. In fact, the last section of
the manuscript shows that, even to reproduce only the
degree distributions of two biological networks, an
expensive Monte-Carlo search is needed, and in the end
the results clearly suggest that the growth model in fact
cannot reproduce the observed degree distribution
within statistical noise. This to me suggests that the prac-
tical use of this family of growth models is extremely lim-
ited until more general theoretical results about their
behavior can be obtained.

Authors' response: First, we would like to thank you for
the time you have spent reading our article, and assem-
bling a long and detailed set of comments and questions.
Many of your comments have led to important improve-
ments in the presentation of the material. One of your
main criticisms in the passage above, and repeated else-
where in your comments, is a disappointment over the lack
of a mathematical analysis of the graph growth model
that we studied computationally. We have a good amount
of sympathy for this position: it would be great to have a
mathematical model that does all the things that you
mention, and more. The problem with this is, also pointed
out by you, that there are an infinite number of possible
graphs, and there is simply no generative theory that could
account for them all. Now, your suggestions for a mathe-
matical theory sound less ambitious than that: you ask
whether it would be possible to produce analytical results
that will predict the form of the edge distribution, for
example, given the input parameters, in the limit of infi-
nite network size. This is at face value a reasonable propo-
sition: after all, there is literature that predicts just that for
a class of models that is a subset of the model described
here. For example, it is possible to calculate the asymp-
totic properties of graphs produced by a duplication model
[41]. But we wonder whether you are fully aware of how
ambitious this proposition is. After all, deriving just the
asymptotic degree distribution for a pure duplication
model as in [41](which has a single parameter) is a ten-
page publication. We have six main parameters (five of
them independent, we will come to that), and possibly an
infinite number of other parameters that allow us to spec-
ify certain other aspects of the graph (such as the modular-
ity) and even the adjacency matrix if we so desired. It is
not that having a mathematical analysis of the sort that
you wish you had seen would not be worthwhile having, it
is just not the direction we chose to go because this is a tre-
mendous undertaking that would take years of additional
work. We have instead taken a much more practical
approach. We understand that, for real systems, we will
never know for sure what growth parameters have given
rise to that network: even if we reproduced a particular
biological network perfectly in all those properties that we
can measure, we still could not state with certainty that
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these actually were the parameters that gave rise to the
biological or technological graph. As we are forced to give
up this goal, we determined that it was going to be much
more useful to have a model that can generate networks
that are approximately like those that we observe, even if
there is no proof about any of the observed properties. At
the same time, many of the qualities you look for in a
mathematical theory are completely irrelevant if you are
analyzing real-world graphs. For real-world applications,
you are never interested in the infinite graph size limit,
you will never see "pure" power laws (these hold for infinite
systems only), you will never see a "true" geometric phase
transition (again because networks aren't infinite), and
you will also never see a "true" Poissonian degree distribu-
tion either. The practical issues you face when analyzing
real networks are for example: "What is a good control
graph for the hypothesis I'm testing?" and "Why do some
networks have an approximately scale-free degree distri-
bution, and others not?" The purpose of our work is to cre-
ate a model that allows the user to test hypotheses about
network generation. We have introduced language in the
introduction of the manuscript to make this purpose more
obvious.

To become a bit more specific, apart from a general
theory on how the topological properties depend on
parameter settings, what I thought was really missing is a
treatment of how things depend on the final size of the
network and on the initial conditions.

Authors' response: The dependence of networks on the
initial conditions is indeed an interesting question, but in
the light of the response above, also not within the scope of
our ambition. The "envelope" created by the set of all pos-
sible starting conditions for network growth is tremendous.
In almost all of our simulations, we have used a single
node as initial condition. In simulations without modules
and without duplication, it is clear that we do not need to
investigate the case of several nodes and edges as starting
conditions, as they represent possible later stages of the
graph in the growth procedure. We note that this is not
true if we grow modular graphs (that is, when nodes have
colors denoting different functional groups). The probabil-
ity that nodes can be duplicated leads to a strong depen-
dence of the final modularity of the graph on initial
conditions that is difficult to predict mathematically. As a
consequence, we have deferred this analysis to a subse-
quent publication.

Then there are also subtler issues such as whether the
statistics of the networks grown are self-averaging, i.e., do
different instantiations of the same stochastic growth
process always lead to networks with the same features
(degree distribution, modularity, path lengths, et cetera)
or might one have different 'attractors' where sometimes
you will get networks of one kind and sometimes of
another kind? As far as I can see none of these issues are

discussed at all in the manuscript. Apparently the authors
are assuming that the observed features (degree distribu-
tions etc.) do not depend on either the initial condition or
on the final size of the network. However, it is not obvi-
ous to me at all that these statistics are independent of
how long the network has been grown (in fact, I doubt it
is for all possible combinations of parameters). Thus,
either the authors should provide an analysis of how net-
work features depend on final size and initial conditional,
or they should present some general theory showing why
(maybe in the limit of large networks) the features
become independent of size and initial condition.

Authors' response: This is a valid criticism: we did not
discuss the self-averaging properties of the graphs we gen-
erate. We do not have any mathematical results to offer,
nor did we perform an exhaustive analysis of the depen-
dence of the graph properties on the size of the grown net-
work, that is, the length of the growth process. The reason
we did not pursue this is simple: Some properties depend
on the size of the network, some others do not. Edge distri-
butions become stationary fairly quickly as you surmise.
Other properties, such as the critical properties of graphs,
become more pronounced, as is also obvious without doing
a detailed analysis. We did, however, check that the rela-
tive size of the "giant component" that shows the percola-
tion transition in randomly grown graphs (Figure 11)
approaches the limit found in Ref. [43]for graphs ten times
larger than the one shown in that Figure. In fact, the
curves are indistinguishable to the naked eye already at
the size we show. In so far that we have observed that prop-
erties that we discuss to become independent of the length
of the growth process, we now explicitly mention this in the
text. Of course, we understand that this falls short of dis-
playing an extensive analysis or providing a general the-
ory, but we surmise that it would satisfy most readers
without producing an absolutely unwieldy manuscript.

In the remainder of the review I will make more
detailed comments on specific statements in the manu-
script. First about some statements in the abstract:

"...but is created artificially and therefore carries none
of the function...". I do not agree with this. It is well con-
ceivable that part of the function may actually reside in
these features so that any surrogate network that carries
these features would automatically carry some of the
function.

Authors' response: We believe this is a misunderstand-
ing. We do not imply with this statement that the networks
we create would be non-functional if somehow instanti-
ated in a biological setting. We simply mean to say that in
our simulation, the growth process does not underlie any
selective pressures related to a functional constraint.
Therefore, we can test a hypothesis that a particular fea-
ture of a network necessarily requires a particular func-
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tional constraint to be present during growth. We have
changed that sentence to clarify what we meant to say.

"we present an algorithmic model for growing networks
with arbitrary degree distributions... using a small set of
parameters." This claim is made over and over in the
manuscript and it really started getting on my nerves. It
namely suggests that the authors fail to grasp the basic
mathematical fact that one cannot possibly reproduce
ARBITRARY degree distributions (which form an infinite
dimensional space) using a family of processes that has
only a small number of parameters (a 5-dimensional
space). While the model presented by the authors may
reproduce many of the degree distributions of interests
(e.g. exponentials and power-laws), it is certainly false
that it produces 'arbitrary' degree distributions. In fact, all
results in the paper suggests that the space of possible
degree distributions that it produces is in fact fairly lim-
ited. It can produce exponentials and power-laws (not
even that precisely it seems), but over what range of
exponents? Can it generate stretched exponentials? More
general Zipf 's distributions? Gamma-distributed degree
distributions? Lognormal ones?

Authors' response: As you realize later on in your
report, we did not "fail to grasp the mathematical fact that
one cannot reproduce arbitrary degree distributions (...)
using a family of processes that has only a small number of
parameters", because we can indeed prescribe any degree
distribution using the assortativity matrix. We under-
stand this criticism to mean that we do not issue enough of
a forceful caveat that our five independent parameters
alone, without using the generative capacity of the assor-
tativity matrix, cannot reproduce arbitrary degree distri-
butions. This is a point well taken, and we have included
language to this effect in the abstract and the introduction.

"We find that many of the celebrated network proper-
ties may be a consequence of the way in which they grew,
rather than a necessary consequence of how they work or
function." It would be really really nice if this were estab-
lished in this paper but I frankly do not think that this
manuscript actually does anything of the sort. To do this
one really would have to show that 'function' is in a sense
orthogonal to these properties, i.e. that the required func-
tion does not require these properties and that these
properties have no functional implications. But 'function'
is nowhere studied in the manuscript.

Authors' response: I think we disagree here. Our state-
ment is really very modest: We claim that we can show
that a particular network property MAY be a consequence
of how it grew. We are aware that our model can only fal-
sify hypotheses about the necessity of a property (such as:
"scale-free degree distributions can only arise if...."). In
other words, we simply claim that other processes than
functional constraints (such as growth) can be responsible
for a form. Instead, you are reading our statement to fal-

sify the claim that a particular function implies a graph
property (form), which would require us showing that
absence of form implies absence of function. But our state-
ment is really clear about what we mean, so we see no
need to modify it. We fully understand that just because a
graph property arises without a functional constraint, this
does not imply that it could not be useful. That would be
silly.

page 2: "often information external to the purely topo-
logical structure is used to determine modular relation-
ships, such as co-regulation or evolutionary
conservation." What I find confusing in this statement is
that different researchers use different features to con-
nect 'nodes' by edges, so some researchers may well draw
a network based on co-expression of genes or on their
evolutionary conservation. Therefore, whether this kind
of information is 'external' or not to the topology is a mat-
ter of definition.

Authors' response: Of course, any information that
implies a relationship between nodes can be used to draw
edges between nodes. But measures of modularity usually
assume two kinds of connection matrices: the connection
matrix of what node connects to another, defined for
example by protein-protein interactions, and an assorta-
tivity matrix that determines which nodes belong to which
functional cluster or group. When we talk about informa-
tion external to the topological structure, we talk about
information that enters the construction of the assortativ-
ity matrix, not the topology matrix.

"in the limit of a large number of nodes, approximately
Poisson." Formally another requirement is that the
expected number of edges per node does not grow with
the total number of nodes in the graph, i.e., the probabil-
ity for an edge to exist scales as r=n with n the number of
nodes in the graph.

Authors' response: In this sentence, we discussed what
other authors found when studying random networks in
the limit of a large number of nodes, not what their
requirement was to call a particular distribution a Pois-
son distribution.

"While random networks can be found in social...." This
is a detail but I find the use of the term 'random' confus-
ing here. What the authors are presumably referring to is
graphs with particular degree distributions, i.e. Poisson.
Graphs with other degree distributions can also results
from random processes. In fact, that's precisely the topic
of this paper. There are other places where the authors
use 'random graphs' where 'Erdosz-Renyi graphs' would
be less ambiguous.

Authors' response: We agree that we need to be careful
not to use the same word when discussing graphs created
by a random process, as opposed to random graphs
defined by a Poissonian degree distribution. We have
made sure that no such ambiguity remains in the text.
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"The emergence of this scale-free distribution can be
understood in many different ways..." Maybe I can be for-
given for mentioning that, to the best of my knowledge,
the first publication showing a scale-free distribution of
degrees of a biological network (edges representing sig-
nificant sequence similarity between genes in a genome)
was by Martijn Huynen and myself [65]. A simple multi-
plicative noise model was also presented to explain the
observed power-law distribution.

Authors' response: Scale-free distributions are ubiqui-
tous in nature because of the simplicity of the process that
gives rise to them. In fact, any branching process where the
rate of producing "similar" is much higher than the rate of
producing "new" will lead to a power law. This has been
known since 1924, when Yule applied such a model to
understand the size distribution of taxon abundances
[66]. A simple model that shows how violations of the
scale-free distribution allow you to estimate the ratio
between the parameters of the branching process is pre-
sented in [61], which also, incidentally, throws some light
on the results in your MBE paper.

"...are fundamentally different from those produced
probabilistically". Again, this is a confusing use of the
word 'probabilistic' because the growth models studied
here are also definitely probabilistic (i.e., where and when
an edge or node is added/removed is not deterministic).

Authors' response: We agree that this language is
imprecise. We have changed this sentence to say: "are fun-
damentally different from those where edges are placed
between nodes probabilistically".

"...can produce networks with any degree distribution
and any modularity..." As already mentioned, this is sim-
ply false. In fact, I think the authors would do readers a
great service if they could show precisely what family of
degree distributions can be obtained using their model.
For example, on page 3 the authors claim that regular
graphs and lattices can be generated using the model. At
first I was confused by this but it is explained on page 5.
However, what happens in this case is that one essentially
encodes the entire graph in the assortativity matrix. In
this limit one doesn't have a growth model at all anymore,
one is really just specifying the entire adjacency matrix.
Obviously, if I allow myself to specify an adjacency matrix
I can get anything I want!

Authors' response: As discussed earlier in this reply, it
is true that the adjacency matrix is necessary in order to
create truly arbitrary degree distributions, so technically
our statement is not "simply false". However, we agree that
some readers might be misled into thinking that arbitrary
degree distributions could be obtained with five parame-
ters only, and we therefore inserted language that makes
this caveat clear. However, it is also not correct to say that
if you specify an adjacency matrix using the assortativity
matrix that no growth takes place. Rather, the network

can still grow towards that degree distribution as nodes
are added, or, if we start with a network fully-formed, the
network can be shrunk by removing nodes and edges.

The description of the model on page 3 is rather short
and cryptic. It seems more natural to me to put the Mod-
els section simply before 'growing scale-free and other
networks'.

Authors' response: We just now discovered that this is
indeed an option in the "Biology Direct" format (but not in
other formats), and we have followed this suggestion.
Thank you.

I am also somewhat confused about the parametriza-
tion of the models. I initially assumed that PN + PE + PD =
1 but later I realized that these three probabilities are
independent and this seems redundant to me. That is, if I
start with a given setting of (PN, PE, PD) then I can divide
all these probabilities by X (with X ≥ 1) to get a parameter
setting (PN/X,PE/X,PD/X) and it seems to me that this
parameter setting would produce exactly the same net-
works.

Authors' response: This is indeed correct. Because this
X can be determined by any of the other probabilities,
there are in fact only 5 independent parameters in this
model (not counting those that go into the assortativity
matrix). We were aware of this relation, but did not make
it clear everywhere. We now added text that makes this
relationship clear everywhere.

This is in principle a small point but I noticed that in
Figure 9 the authors show S as a function of PE/PN (PD = 0)
for PN = 0.1, PN = 0.2, PN = 0.5, and PN = 1.0. Given that PE/
PN is fixed, isn't it necessary that the different settings of
PN just rescale time?

Authors' response: The different settings of PN create
the different ratios PE/PN, which dial the ratio between
edges and nodes. We could just as well have left PN con-
stant and varied PE (doing this creates the same exact S, as
we have verified). So, no, PE/PN is not fixed.

It seems to me a more logical parametrization is to
think of 1 event happening at a time, and that this event
can either be a node addition, edge addition, or duplica-
tion event, which occur with probabilities PN, PE, and (1 -
PE - PN).

Authors' response: We defined an update so that three
events could take place in the same time step. Of course,
the algorithm handles all events sequentially, so there is
conceptually no difference. And because all the probabili-
ties can be scaled by a common factor as you remarked,
"time" is an arbitrary parameter anyway.

What is extra confusing about this is that, toward the
end of the paper, the authors do seem to acknowledge
that there are only 5 independent parameters (whereas
previously they claimed there are 6).



Hintze and Adami Biology Direct 2010, 5:32
http://www.biology-direct.com/content/5/1/32

Page 20 of 25
Authors' response: We have now made the interdepen-
dence clear throughout the manuscript.

page 3: "older nodes have a higher probability of obtain-
ing edges, and also have a higher probability of already
sporting more edges." This is confusing. Whenever a sin-
gle edge is added an older node is equally likely to be cho-
sen as a younger node. In fact, if the older node has more
edges already (and typically of course they will) then
there is actually a bigger chance that the edge addition
will be UNSUCCESSFUL (because an edge is picked that
already exists), so that effectively older nodes have a
SMALLER probability of obtaining another edge. What is
correct is that older nodes have had more opportunities
to grow edges and will thus in general sport more edges
than young nodes.

Authors' response: Thank you for this clarification. We
changed the wording according to this comment.

"the scale-free distribution is unavoidable." This
nowhere demonstrated. In fact none of the distributions
shown in figure 1 are true power-laws. Also, as already
mentioned, it is unclear what the limiting degree distri-
bution is for large network size (and whether there is such
a limit). It is also unclear if one can truly get power-law
degree distributions for any parameter setting. Some the-
ory would be required for this.

Authors' response: First, true power laws do not exist
for finite networks. It is, however, correct that we do not
know the limiting degree distribution for infinite networks.
On the other hand, because we are interested in under-
standing what processes could have given rise to realistic
networks and given that realistic networks are never infi-
nite, we are less interested in the limiting case. Besides, no
real-world network is a "true power law". Finally, in the
sentence you quote, we state that we "confirm that the
scale-free distribution is unavoidable". We are referring
here to previous work that showed that duplications give
rise to scale-free distributions. We should have put a cita-
tion there, and we have done so now.

"...the most "pure" scale-free networks actually emerge
if nodes are added more often than edges". This is a very
vague statement. How is the 'purity' of a scale-free distri-
bution measured and how much more often does one
need to add nodes than edges to get distributions of a cer-
tain 'purity'?

Authors' response: We agree, this sentence could have
been clearer. We now do not refer to the "purity" of a scale-
free edge distribution any more: this term clearly is collo-
quial. Instead, we now write that "Networks that are scale-
free over more decades actually emerge if nodes are added
more often than edges". You are right, one could conceiv-
ably quantify this effect: we have left this for other users to
test.

"choosing a low PN, on the other hand, leads to the
growth of networks with a Poissonian degree distribu-

tion". I don't see at all why the authors think that Figure
2B shows a Poissonian degree distribution. In fact, intui-
tively I would guess that to get a real Poisson distribution
one probably needs a limit PE/PN T ∞.

Authors' response: We agree, this distribution is not
exactly a Poisson distribution. As we mentioned earlier,
very few natural processes lead to exact Poisson distribu-
tions. For example, the degree distribution of the C. ele-
gans neuronal network is often referred to as "Poissonian",
but in fact cannot be fit by a Poisson distribution. It is per-
haps an abuse of language, but we often refer to a "Pois-
son-like" distribution as "Poissonian". Nevertheless, we
have changed that sentence by replacing "Poissonian" with
"Poisson-like".

"We conclude that the edge distribution can be con-
trolled entirely...". It is of course clear that, as PN,PE, and
PD are changed, one can get different degree distribu-
tions. But WHICH degree distributions one can get is
really not clear. It is not clear to me if one can get true
Poissonian or true power-law distributions in any limit.
Clearly figure 3 suggests that the distributions one
obtains might actually be quite complex mathematically
(containing a minimum at some value of n that probabil-
ity depends on the size to which the network is grown).
What would really be helpful is some DERIVATION of
what kind of networks are obtained for what kind of
parameters in the limit of large network size.

Authors' response: As mentioned earlier, our goal is
not to derive a mathematical theory about the kind of edge
distributions that can be generated using certain processes
in the limit of infinite networks or ratios of probabilities
that approach zero or infinity, but to provide a tool that
allows users to test hypotheses about processes, and a
means to create distributions that are qualitatively simi-
lar to what we can see in nature.

The section on modularity I had no problems with
although again the authors don't present a general theory
for how modularity depends on all parameters, but rather
just present a few illustrations in which one parameter is
varied.

Authors' response: Just like you, we would also very
much appreciate a general theory that predicts how mod-
ularity depends on all parameters. But we understand
that understanding how a single parameter determines the
modularity using first principles is already a difficult
undertaking. For example, we previously had a section in
the manuscript that investigates the dependence of modu-
larity on the gene duplication probability, but found that
the interaction with the other probabilities painted a very
complex picture that could not be covered by a subsection,
and we instead relegated that discussion to a subsequent
manuscript. In that manuscript, we will also present a
mathematical analysis of the modularity as a function of
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a few parameters, but even that manuscript will fall short
of your call for a theory that predicts the modularity of a
network as a function of all parameters.

page 9: "...the "small world" effect: the observation that
many biological and technological networks have a short
mean path between nodes (as compared to an equivalent
randomized network)" I am not an expert but when I
heard Duncan Watts speak about this about a decade ago
the definition of the term 'small world' seemed to be that
the mean path between nodes grows only LOGARITH-
MICALLY with the number of nodes in the network. This
means that Erdosz-Renyi graphs are in the small-world
class. The authors here seem to define small world as:
even smaller mean path length than in an Erdosz-Renyi
graph. This is a totally different concept.

Authors' response: While the concept we use may not
be exactly that advocated by Watts and Strogatz a decade
ago, it is the most modern measure of "small-worldness" to
date, and quantitative to boot. It is described in detail Ref.
[53].

Regarding equation (7), what happens when the num-
ber of edges is such that it is below the percolation
threshold in the Erdosz-Renyi graph, i.e., so that the
graph will fall into many small ones? How is the mean
path length then defined and how is the ratio in equation
(7) determined?

Authors' response: We thank the referee for pointing
out this missing piece of information. When calculating
the mean shortest path for networks that fall into uncon-
nected subnetworks, we calculate the mean of shortest
paths in the subnetworks (weighted by the size of the net-
work) as is usual. For the parameter regime that we inves-
tigated, you can convince yourself that we are far from the
percolation threshold, so that most nodes are in the largest
connected component anyway.

"..which can be different from the clustering coefficient
obtained by averaging the number of edges of the adja-
cent nodes." I didn't understand this remark. What pre-
cisely is being averaged?

Authors' response: This should have read: "(...) averag-
ing the number of edges between adjacent nodes". Thanks
for pointing this out.

page 10: "the ratio of these quantities can be used to
measure small-world-ness". Again this seems confused to
me. Small-world-ness in my understanding refers to the
logarithmic scaling of mean distance with network size.

Authors' response: Humphries and Guerney (Ref. [53])
have provided a more quantitative measure, which is the
one we are using.

Watts/Strogatz introduced a class of networks that
combined the high clustering coefficient observed in
many real world networks (and in lattices) with the loga-
rithmically growing mean distance also observed in some
real world networks (and in Erdosz-Renyi graphs). The

point was that, starting from a lattice, you only need a
small number of edges between randomly picked pairs of
nodes, to change the scaling of mean distance from
power-law (N1/dimension) to logarithmic in N. So a 'small
world network' in the Watts/Strogatz sense is one that
has high clustering AND logarithmically growing dis-
tance. It thus by definition requires 2 things to hold and
cannot be quantified be easily quantified by a single num-
ber.

Authors' response: The ratio that Humphries and
Guerney define does both things, and manages to quantify
small-worldness by a single number. They incidentally
show this by applying their ratio to the network analyzed
by Watts and Strogatz.

The illustration on page 10 again shows just 1 particular
example from which it is very hard to infer any general
rules. For example, take this statement: "Lg/Lrandom actu-
ally increases for decreasing q as long as PN/PE < 2." How
are we to understand this? Would this hold for different
values of q and PD or for different size networks?

Authors' response: Figure 9shows an average over
1,000 nodes, for a ratio of node to edge addition probabili-
ties between 0.05 and 2, thus covering most of the interest-
ing region, for two values of q that were representative (we
have checked the whole range of q, but such a graph is not
more instructive than the one we are presenting). It is true
that different gene duplication probabilities will affect the
graph. But the investigation of gene duplication on small-
worldness and graph modularity is the subject of a differ-
ent manuscript. The observation that Lg/Lrandom increases
for decreasing q is noteworthy because smaller q results in
edge randomization of the network, which at first glance
would imply that the ratio should decrease. The reason it
increases in the region mentioned is because edge random-
ization can also connect disconnected parts of the graphs,
thus increasing Lg.

page 11: "We observe that the percolation phase transi-
tion only depends on the ratio PE/PN ". As I explained
above, the way the model is defined it seems the graph
structure per definition should only depend on the ratio
PE/PN when p = q = 1 and PD = 0.

Authors' response: We agree, this sentence could be
clearer. Indeed the transition depends on PD, as we show in
Fig. 12. What we meant to say is that, given PD, the transi-
tion depends only on the ratio. We have made this clearer
in the text.

"allowing for node duplication does not affect.... but do
not affect its emergence." This is not so obvious to me.
Clearly duplications do not connect different compo-
nents of the graph, i.e. it only grows them, but it seems to
me that duplications do affect the distribution of sizes of
the components and so I would expect S to depend on PD.
On a related note, again it seems that the dependence on
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the final size of the network is not studied. This is kind of
crucial here since one only really has a transition in the
limit of infinite network size. Whether S is independent
of p is also not clear to me.

Authors' response: For the purpose of understanding
the size of the largest component, node duplications act
just like a node addition with concomitant edge addition.
Thus, node duplication cannot affect the critical point,
which is all we are saying. Also, there is no final size of the
network, so we cannot study this (nor can anyone else).

Figure 10. Why on earth are networks only grown to
size 100 in this figure? Surely one needs much bigger net-
works to talk about a transition. That is, one needs to
show that the curves become independent of network
size for large enough networks.

Authors' response: We learned from experience that
networks grown to 100 nodes are not qualitatively differ-
ent from those grown to 100,000 or even tens of millions of
nodes when it comes to determining the relative size of the
largest connected component. At PE/PN = 1, the size of the
largest component is very close to 0.6 for networks of 100
nodes, which is almost indistinguishable from the relative
size measured by Callaway et al. [43]for a 17 million node
network grown with the same parameters.

'Biological relevance' section. I have a few comments
here also. First, I don't see why there is any need to bin the
edge distribution.

Authors' response: It turns out that conventional
curve-fit routines are terrible in fitting the long tail of a
power law, because the counting errors there are so large.
Often, counts are included with a single observation at
that size, and no observations for any of the adjacent sizes.
Binning the data into bins that contain at least a fixed
number of observations is an effective method to remove
this problem. In Ref. [61]one of us shows that the curve
that is fit through data binned using this method is for all
intents and purposes identical to that which is generated
by statistics so good that binning is not necessary. In other
words, this binning method produces a distribution that is
indistinguishable from the theoretical distribution creat-
ing the sample. In order to calculate a "goodness score" for
our simulated network, we need to compare it to the data,
which doesn't have any entries in many of the edge num-
bers. Binning allows you to compare meaningfully.

Given enough simulations it should be easy to calculate
the likelihood to obtain the observed degree distribution
using the model at a given parameter setting. Alterna-
tively, one could calculate something like a Kolmogorov-
Smirnov statistic to assess how close the degree distribu-
tions of the grown networks are to the observed one. This
brings me to my second point. Even for the 'best' grown
networks I bet that a Kolmogorov-Smirnov test would
reject the hypothesis that the degree distributions are the
same. That is, although the authors' model allows one to

grow 'similar' degree distributions, it seems pretty clear
to me that the model does actually NOT allow one to
reproduce the observed degree distribution within statis-
tical noise.

Authors' response: Based on your suggestion, we have
performed a statistical test to assess the closeness of the
degree distributions. The appropriate test here is to deter-
mine whether two independent samples both are drawn
from the same underlying probability distribution (as the
biological datum is technically not a probability distribu-
tion, we should not be using the Kolmogorov-Smirnov test).
We used a non-parametric test (the Wilcoxon rank-sum
test), and show that we cannot reject the hypothesis that
the biological datum and the simulation are samples
taken from the same underlying probability distribution
(see new text). In other words, this is a bet that you would
have lost. In fairness, we note that we decided to remove
data from the yeast edge distribution for which the num-
ber of edges exceeds 120 (removing exactly eight proteins
out of 3,306 from the data set). We removed those because
it makes no sense to fit data this sparse, which also does
not appear to follow the degree distribution of the remain-
ing 3,298 proteins. We note this removal in the manu-
script.

Second, why is only the degree distribution looked at?
What about the clustering coefficients and distribution of
distances between nodes? Wouldn't one want to see if the
grown networks also reasonably approximate these statis-
tics of the real world networks?

Authors' response: It was not the object of this compar-
ison to show that the simulated networks are identical to
biological ones. Surely we can test whether other statistics
are also well-approximated, and if they don't then we can
refine our parameter search in such a manner that we per-
haps satisfy any additional constraint. The point is that
nothing would be sufficient to prove that the parameters
we find are actually those that drove the biological pro-
cess, so pushing the similarity of the networks further is a
somewhat futile undertaking. The title of the manuscript
emphasizes degree distributions, so we focused on that
character.

page 15: "Another standard control... while keeping the
total number of edges and nodes the same." Really? Won't
this in general change the number of edges and in fact
lead to a graph in which half of all possible edges exist on
average?

Authors' response: For the parameter setting that we
discuss there, the number of edges does not change on
average, as an edge is removed as often as one is added.
The process instantiates a random walk in "edge number
space" where the mean stays constant.

As a general remark about the conclusions, the claims
that the authors make about what they have done are
much more grandiose than what has really been done in
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my opinion. As already pointed out, nowhere is a general
theoretical analysis presented of what kind of combina-
tions of topological features can and cannot be produced
within this growth model. To give just one example: to
what extent can degree distributions, clustering coeffi-
cients, and distances be tuned independently? Over what
range?

Authors' response: We suppose that the size of claims is
in the eye of the beholder, but several times in this reply we
have emphasized that our claims are really very modest,
and that instead you have several times imputed claims to
us that we either do not make, or do not intend to make.
Furthermore, we have repeatedly pointed out that some of
your expectations of what it is that we should be present-
ing in this manuscript are either unrealistic or downright
impossible to realize. We readily agree that a reader
should not walk away from this manuscript believing that
we can grow any desired network with just a few parame-
ters, and we have included language in the introduction
that makes that caveat, while toning down any passage
that could be misunderstood as claiming that the model is
"universal".

"These networks, however, are entirely devoid of any
function". How can one know this? It all depends on the
function. There are some circumstances where a network
that is perfectly optimized for a given function can be
automatically generated using just the kind of stochastic
growth process that the authors are using.

Authors' response: We responded to this misunder-
standing earlier: all we state is that we show that a partic-
ular feature ("form") can emerge without selection for
function, so that we can reject the hypothesis that function
is necessary for the evolution of form. It would be silly to
claim that the resulting form can never be useful for any
function (and we do not make this claim).

Reviewer 2: Teresa Przytycka, NIH/NLM/NCBI (nominated 
by Claus Wilke)
Hintze and Adami propose a general model to grow net-
works with diverse degree distributions. Their model
uses a small number of intuitive parameters - conditional
probability of node/edge addition/deletion and node
duplication. The authors propose that by appropriately
adjusting these parameters it is possible to construct a
network with an arbitrary degree distribution. Indeed,
they demonstrated that the method provides means for
iterative generation of a large number of different types of
networks. The authors also demonstrated (experimen-
tally) that modifying in a continuous way leads to a
"phase transition" in the properties of generated network.
Another interesting property of their network growing
algorithm is that it facilities growing modular networks
(utilizing the functional modularity measure introduced
by the authors). These are indeed interesting observa-

tions. Missing from the presentation is some kind of
graphical presentation of the parameters landscape-
which parameters lead to which type of distribution.
Admittedly, not everything can be summarized in one
figure, and not all combination of parameters tested, but
some kind of summary figure or table would be very help-
ful.

Authors' response: This is a very helpful suggestion. We
have followed your advice and introduced a new Figure
(Fig. 5) that summarizes how some key parameters affect
the degree distribution. It is only a qualitative figure, but
certainly paints a much more intuitive picture.

To be precise, the authors didn't prove that their
method allows for growing networks with arbitrary
degree distribution. Rather they showed that networks
with some degree distributions can be generated. Even
for the network types discussed in the paper, the argu-
ment is mostly informal-based on visual inspection of the
degree distribution of generated graph. It would be more
correct to state, that they postulate that this method
allows for growing networks with broad range of degree
distributions and provide computational simulations to
support this postulate. I doubt that truly arbitrary degree
distribution can be achieved by this approach.

Authors' response: We are grateful for your remarks.
We are now aware that the structure of the paper does not
adequately reflect our intentions. While it is true that we
can generate arbitrary degree distribution if we engage the
help of the adjacency matrix, it is also true that arbitrary
degree distributions cannot be obtained using the five
main independent parameters. We have modified the
abstract and included a new paragraph in the introduc-
tion that makes these restrictions clear.

The concept of anti-modularity is very unintuitive.
How does it differ from simply not being modular and
what are examples of anti-modular network, if any? Can
the authors provide an example of a network that is not
modular and is not anti-modular?

Authors' response: Anti-modular networks are net-
works where nodes of the same kind preferentially do not
attach to each other. Typical examples are bi-partite net-
works, for example dating networks where the majority of
edges are between nodes classified as opposite gender. But
there are also such examples in biology, e.g., gene regula-
tory networks where some nodes are transcription factors
and others are DNA binding sites.

The authors also demonstrated that that they are able
to adjust the parameters of the model to generate net-
works approximating degree distribution of selected bio-
logical network. While this is interesting, it immediately
raises the question whether the networks (simulated and
real) are similar in a more broad sense. Clearly, vertex
degree distribution is just one measure of a network
property. If the proposed network growing algorithm
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truly mimics evolutionary scenario, similarities of other
properties of the network, such as diameter, distribution
of small sub-networks (such as the graphlets proposed by
Przulj), connectivity, etc. should be also be observed. It
would be important to check if this is indeed the case.

Authors' response: This comment echoes the one made
above by Erik, and we sympathize with the feeling inas-
much as if a whole manuscript were devoted to the issue,
then we certainly would want to follow exactly the path
proposed by you and Erik. In fact, we have another manu-
script where we are investigating the distribution of motifs
in real and simulated C. elegans neuronal connection
graphs. But such an analysis would explode the boundar-
ies of this manuscript: in the section "Biological relevance"
we simply set out to test whether the degree distribution of
some well-known networks can be approximated, as this is
after all a claim that we are making. We have changed the
wording in that paragraph to make sure that our ambition
is not misunderstood.

Reviewer 3: Leonid Mirny (Massachussetts Institute of 
Technology)
This reviewer provided no comments for publication.
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