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Glossary

C-value The haploid genome size of an organism, mea-
sured either in picograms (pg) or base pairs (bp).

Degree distribution The probability distribution P(d) to
find a node with d edges in a network.

Entropic profile A graph of the per-site entropy along the
sites of a biomolecular sequence, such as a DNA, RNA,
or protein sequence.

Epistasis Generally, an interaction between genes, where
the fitness effect of the modification of one gene influ-
ences the fitness effect of the modification of another
gene. More specifically, an interaction between muta-
tions that can be either positive (reinforcing or syner-
gistic), or negative (mitigating or antagonistic).

Erdös–Rényi network A random graph with a binomial
degree distribution.

Fitness A numerical measure predicting the long-term
success of a lineage.

Jensen–Shannon divergence In probability and statistics,
a measure for the similarity of probability distribu-
tions, given by the symmetrized relative entropy of the
distributions.

Module In network theory, a group of nodes that is
closely associated in connections or function, but only
weakly associated to other such groups.

Motif In network theory, a subgraph of small size.
Network diameter For networks, the average geodesic

distance between nodes, defined as D D 1/mPn
iD1

Pn
jD1 d(i; j), where m is the number of edes of

the graph, n is the number of nodes, and d(i, j) is the
shortest path distance between nodes i and j.

Phylogenetic depth Ameasure of the genetic distance be-
tween a genome and its ancestor on the same line of
descent, given by the number of genetically different
genomes on the line between the genomes plus one.

Random variable In probability and statistics, a mathe-
matical object with discrete or continuous states that
the object takes on with probabilities drawn from
a probability distribution associated to the random
variable.

Source entropy The entropy of a sequence generated by
a process that generates symbols with a given proba-
bility distribution.

Wright–Fisher process In population genetics, a stochas-
tic process that describes how genes are transmitted
from one generation to the next.

Turing machine In mathematics, an abstract automaton
that manipulates symbols on a tape directed by a finite
set of rules.

Watson-Crick pairing In biochemistry, the pairing be-
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tween nucleotides adenine and thymine (A-T), and
guanine and cytosine (G-C).

Zipf’s law A relationship between the frequency f and the
rank k of words in a text, of the form f (k) � ks , where
s is the exponent of the distribution.

Definition of the Subject

Biological complexity refers to a measure of the intri-
cateness, or complication, of a biological organism that is
directly related to that organism’s ability to successfully
function in a complex environment. Because organismal
complexity is difficult to define, several different measures
of complexity are often used as proxies for biological com-
plexity, such as structural, functional, or sequence com-
plexity. While the complexity of single proteins can be
estimated using tools from information theory, a whole
organism’s biological complexity is reflected in its set of
expressed proteins and its interactions, whereas the com-
plexity of an ecosystem is summarized by the network of
interacting species and their interaction with the environ-
ment.

Introduction

Mankind’s need to classify the world around him is per-
haps nowhere more apparent than in our zeal to attach to
each and every living organism a tag that reveals its re-
lationship to ourselves. The idea that all forms of life (and
even inanimatematter) belong to a “Great Chain of Being”
goes back to medieval times [1] and usually depicts rocks
at the bottom of the chain, with plants next, followed by
fish, birds, mammals, humans, angels, and ultimately god
(see Fig. 1).

In more modern times, biologists and lay people alike
have, sometimes unconsciously, given in to the same need
by classifying organisms according to their perceived com-
plexity. So, for example, viruses are often perceived as the
least complex organisms, followed by bacteria, unicellular
eukaryotes, fungi, plants, invertebrates, vertebrates, mam-
mals, and, ultimately, ourselves. Such a hierarchical view
of biological complexity with Homo sapiens at its top has
repeatedly been decried (see, e. g., [2] and recently [3]).
However, in the absence of a quantitative measure of bi-
ological complexity, neither a position in favor nor against
a hierarchical ordering of species can authoritatively be
maintained. Indeed, even though it has become less and
less accepted to view Homo as the “crown jewel” of evolu-
tion, there is no reason a priori why this cannot in fact be
true.

Many different measures for biological complexity
have been introduced in the past literature, some of them

Biological Complexity and Biochemical Information, Figure 1
A depiction of the Great Chain of Being by Fra Diego de Valdes,
in Rhetorica Christiana, from 1579

with obvious biological roots (such as number of cells,
number of different tissue types, genome length, etc.),
some of them inspired by the physics of dynamical sys-
tems. Neither of these measures has managed to con-
vince a majority that it represents the best proxy for a bi-
ological complexity measure, and most have very obvi-
ous shortcomings. As we learn more about the genome
and proteome of different organisms, it seems as if we
are well on our way to accumulate a sufficient amount of
detailed knowledge concerning the function of organisms
that a universal measure of organism complexity is at last
imaginable. For example, the set of all expressed proteins
and their interactions (including their regulation and post-
translational modification) could conceivably enter into
an equation whose result is a number: the biological (func-
tional) complexity of an organism that allows for compar-
isons across the tree of life.

Such a fantasy, however, is almost surely misguided
unless we can enumerate along with the list of proteins and
their interactions the possible environments within which
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the organism can make a living. After all, the complexity
of an organismmust depend crucially on the environment
within which it functions. Consider as an example a 150
pound rock and an average human, transplanted to the
surface of the moon. Functionally, they are very compa-
rable there. Likewise, a human is much less complex than
even an algal bloom, if forced under water for an extended
period of time. Given that we are unable to characterize
even a single environment for most bacteria (environmen-
tal microbiologists estimate that fewer than 2% of all bac-
teria can be cultured in the laboratory) it is highly unlikely
that the full functional complexity of most organisms can
be ascertained.

Still, for organisms that make a living in comparable
environments, a classification in terms of their biological
complexity given their bioinformatic pedigree is not un-
reasonable, and the concepts and issues discussed below
are steps toward such a goal. In the following section, I
review standard types of complexity measures, how they
compare to each other and how they fail to capture the
essence of biological complexity. I then discuss a type of
sequence complexity that can be shown to reduce to the
information encoded into the biochemistry of DNA and
proteins, and discuss its advantage over other measures, as
well as its practical problems. I discuss complexity mea-
sures for biological and biochemical networks in the fol-
lowing section, and close with some thoughts on future
directions.

Measures of Biological Complexity

The different measures put forward in the literature to
quantify an organism’s complexity can be grouped into
three main categories: structural, functional, and sequence
complexities. A fourth category—network complexity—is
very recent, and I will consider that last.

Structural Complexity

Perhaps the most obvious way to define complexity is with
reference to the structural complication of an organism.
Clearly, structural complexity is not limited to biological
organisms alone, and a good measure of this kind might
allow us to compare biological organisms to human feats
of engineering. Two problems are immediately apparent
for any measure of structural complexity. First, to gen-
erate a scalar (that is, a single number) that will rank all
possible structures appears to be a formidable task. Sec-
ond, there is no guarantee that structural complexity is al-
ways a good predictor for an organism’s success in the bio-
sphere. On the one hand, something that looks like a com-
plicated contraption could, in principle, be an evolution-

ary artifact: a non-adaptive feature that is either a necessity
or a consequence of another feature (called a “spandrel”
by Gould and Lewontin [4]). On the other hand, a compli-
cated device could conceivably be functional only in a very
different environment, perhaps one in which the organism
can no longer survive. In other words, complex structure
is not necessarily predictive of complex function, although
we expect this to be true in the majority of cases.

The second difficulty, however, pales compared to the
first. Commonly, a measure of structural complexity at-
tempts to count the number of parts and their connec-
tion. Several such measures are reviewed by McShea [5].
A typical example for a structural complexity measure is
the number of different cell types within an organism [6],
perhaps normalized by the total number of cells in order
to counter the bias of organism size. Bell and Mooers ana-
lyzed such a measure [7], and found that it robustly classi-
fies animals as more complex than plants, and plants more
complex than algae. However, the measure remains a very
crude estimate of complexity, unable to shed light on finer
gradations of the tree of life.

Hierarchical measures of complexity represent a dif-
ferent type of structural complexity. Generally speaking,
a measure of hierarchical complexity seeks to quantify the
number of levels needed to build a biological system, for
example as the minimum amount of hierarchical structur-
ing needed to build an understanding of the system [8].
The problem with a hierarchical scale of complexity for
biological systems is that there are only four clear hier-
archies: the prokaryote cell, the eukaryotic cell viewed as
a symbiotic assembly of prokaryotic cells, the multicellu-
lar organism, and colonial individuals or integrated soci-
eties [9]. However, it is possible to introduce a higher-reso-
lution scale by decomposing each hierarchy into levels and
sublevels, for example by differentiating a monomorphic
aggregate of elements of the lower hierarchy from a differ-
entiated aggregate, and an aggregate of nested differenti-
ated elements [9]. Even though a hierarchical measure of
complexity necessarily represents a fairly coarse scale, it
is one of only few measures of structural complexity that
shows an unambiguous increase in complexity throughout
the fossil record.

Functional Complexity

Ideally, any measure of biological complexity should be
functional, that is, reflecting how the organism func-
tions in a complex world. Because of the obvious dif-
ficulty in relating either form to function, or sequence
to function, function-based measures are currently even
less well-formed than structural ones. Because function
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is understood to be a product of natural selection, it is
often implicitly assumed that a measure of functional
complexity should increase in evolution. However, argu-
ments advanced earlier clearly destroy this notion: it is cer-
tainly possible that following a drastic change in the en-
vironment the functional complexity of an organism de-
creases, for example because a preferred metabolic sub-
strate is eliminated from the environment, abolishing the
metabolic pathway—and thus the function associated with
it—for the unlucky species. A functional complexity mea-
sure for single molecules that is based on information the-
ory has recently been introduced by Szostak [10]. I will dis-
cuss this measure in more detail in Sect. “Biochemical In-
formation and Functional Complexity”.

Attempts to count the number of different functions
that an organism can perform are (and perhaps will re-
main) hopeless. This problem is directly related to our in-
ability to characterize the necessary, or even sufficient, el-
ements of an organism’s environment. McShea proposed
to catalogue the different behaviors of an organism as
proxy for its different functions [11], as behaviors aremore
amenable to observation than functions. In turn, he sug-
gested that the number of behavioral parts of an organism
could be used as a proxy for the number of behaviors, if it
is true that parts usually play a role only in one function or
behavior. He gives the example of the Swiss Army knife as
a device more complex than a screwdriver, on account of
the different parts that represent different functions. Mc-
Shea’s analysis of functional parts leads him to consider
networks of interacting parts that display varying degrees
of modularity. I will return to such network-based mea-
sures further below.

Sequence Complexity

Given that all forms of life on Earth contain a genetic code
that is responsible for generating their form and function,
we might naively assume that the amount of haploid DNA
(measured either in picograms (pg) as was done before
the advent of whole genome sequencing or in millions of
base pairs (mbp) as is more common today) would re-
flect—even if only roughly—the complexity of the organ-
ism. This hope was quashed relatively early on: Britten
and Davidson showed conclusively [12] that no correla-
tion between genome size and perceived complexity ex-
ists. This disconnect has been termed the “C-value para-
dox” [13] (reviewed in [14]) and is perhaps best exempli-
fied by the giant free living amoeba Amoeba dubia, whose
total DNA content was estimated at 700 pg, which would
correspond to about 675,000mpb if it was all haploid. This
would correspond to about 200 times the C-value of hu-

mans. However, the haploidy of the A. dubia genome is
now in doubt [15]. The variation in genome size and the
absence of a correlation to a complexity scale such as that
given by the classical chain of being is depicted in Fig. 2.

Because sequence length cannot be used, the focus
for measures of sequence complexity instead has been on
mathematical measures. The literature on mathematical
sequence complexity, or more specifically, the complex-
ity of symbolic strings, is far richer than that concern-
ing functional or structural and morphological complex-
ity. Among sequence complexities there are many differ-
ent types, such as Kolmogorov, compositional, or infor-
mation-theoretic ones. I shall give brief expositions of ex-
amples of each of these types here, without attempting to
be even nearly exhaustive. For a good review of sequence
complexities used in physics, see Ref. [16].

The most well-known sequence complexity is that
introduced by the Russian mathematician Andrey Kol-
mogorov. He proposed to assign to each symbolic se-
quence a scalar that represents the regularity of the se-
quence [17]. So, for example, a string consisting of the
repetition of a symbol or pattern is classified as regular,
whereas a string with no discernable pattern would be ir-
regular, and therefore complex. Note however that this
algorithm does not classify a string as complex just be-
cause no pattern is readily identifiable. The Kolmogorov
measure assumes that all possible computer programs
(of a universal Turing machine) are tested so as to find
the shortest one that produces the sequence in question.
Mathematically, the Kolmogorov complexity of a string s
is given by the length of the shortest program p (denoted as
jpj) that produces s when executed on a universal Turing
machine T:

K(s) D min fjpj : s D CT(p)g ; (1)

where CT(p) denotes the result of running program p on
Turing machine T. So, for example, the binary equivalent
of the irrational number� is random prima facie, however
a concise algorithm (a short program p	 ) exists to pro-
duce it, leading to a fairly low complexity for s	 . There is
a vast amount of mathematical and information-theoreti-
cal literature concerning the Kolmogorov complexity (see,
e. g., [18]), but when applied to biological sequences, this
measure has two obvious flaws.

First, the procedure to generate the Kolmogorov com-
plexity is uncomputable because the search for the small-
est program may never end (the computation may not
halt). Second, truly random strings, that is, those that can-
not be generated by any computation, are assigned maxi-
mal complexity. But in physics (and in particular in biol-
ogy!) truly random sequences are meaningless, and there-
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Biological Complexity and Biochemical Information, Figure 2
Ranges in haploid genome sizemeasured in picograms (the C-value) in different organisms [14]

fore should not be assigned a large complexity. In fact, the
Kolmogorov complexity is even logically inconsistent. Re-
member that the procedure to calculate the Kolmogorov
complexity is one where an automaton returns the small-
est program that produces the sequence in question. For
a random sequence, the procedure is to return the se-
quence itself (and thus the complexity estimate of a ran-
dom sequence is the length of that sequence, the largest
possible result). But, logically, a random sequence can
never be the result of a computation, because a compu-
tation is a deterministic process. These flaws can be partly
fixed by focusing on conditional and mutual Kolmogorov
complexities, as I outline further below. In summary, while
the Kolmogorov complexity is a mathematically sound
measure of mathematical sequence regularity, it is not
a measure of the complexity of a sequence that describes
a physical object.

The key concept to account for objects in the physi-
cal—rather than mathematical—world is the conditional
Kolmogorov complexity (first introduced in [17]) of
a string s given another string t, defined as the length of
the smallest program jpj that produces s using that pro-
gram and an external string t:

K(sjt) D min fjpj : s D CT(pjt)g ; (2)

with the notation (pjt) pronounced as “p given t”. Now, t
can be a sequence from the physical world, or describing
an object in the physical world. The program p is small
if the sequence s can be obtained from t using a sim-
ple computation. Using this construction, the conditional
complexity of a random sequence r can be defined rigor-
ously, because the shortest program to produce a random
sequence r involves both the sequence r as input to the
machine, and the vanishingly small (in the limit of infi-
nite strings) program p=“print”. In other words, the con-
ditional Kolmogorov complexity of random strings van-
ishes in the limit of long sequences, rather than beingmax-
imal.

To define a physical complexity of a symbolic string
(physical, because it refers to a physical world, rather than
to abstract mathematics), we can imagine a sequence e
that represents everything that can be measured in that
world. We now ask of our Turing machine to compute
string s given everything that is knowable about the physi-
cal world, that is, given e. In that case, the conditional com-
plexity K(sje) represents everything that cannot be ob-
tained from knowing the physical world. In other words,
it represents the “remaining randomness”: the unmeasur-
able. Naturally, the physical complexity of the string is
then just the length of the sequence minus the remaining
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randomness [19]:

CP(s) D K0(s) � K(sje) ; (3)

where K0(s), the Kolmogorov complexity in the absence of
both a “world” string e and the rules of mathematics, is just
the length of s: K0(s) D jsj. This notation is chosen in an-
ticipation of results from information theory introduced
in the following section. In particular, it allows us to see
that CP(s) is simply amutual Kolmogorov complexity [17],
between string s and the world e. Put in another way, the
physical complexity of a sequence is that part of the se-
quence that can be obtained from the world string e us-
ing a concise (and therefore short in the limit of very long
sequences) computation using program p. Only those se-
quences can be obtained by computation from the world e
that mean something in world e, or refer to something
there. Note that by its construction, the physical complex-
ity represents a special case of the “effective complexity”
measure introduced earlier by Gell-Mann and Lloyd [20].

As an example, consider a world of machines, whose
blueprints are stored in such a way that they can be rep-
resented as sequences of symbols. In this world, e repre-
sents all the blueprints of all the possible machines that ex-
ist there. A sequence s is complex in this world if a part—or
all—of the sequence can be obtained by manipulating, or
translating, the world tape e. (It is conceivable that s con-
tains part of a blueprint from e in encrypted form, in which
case the program p must try to compare e to encrypted
forms of s.) Of course, it would be an accident bordering
on the unreasonable to find that a string that is complex in
e is also complex mathematically. Instead, from a mathe-
matical point of view, such a sequence most likely would
be classified as random, or rather, the search for a shortest
program would not halt. Similarly, it is extremely unlikely
that sequence s would be classified as complex in a world
in which e represents, say, all the literature produced on
Earth (unless there are a few books on the blueprints of
certain machines!). Thus, the complexity of a sequence
s, by this construction, is never absolute (like in mathe-
matics), but always conditional with respect to the world
within which the sequence is to be interpreted.

This is precisely what we need in order to quantify the
complexity of biological sequences, because it is immedi-
ately clear that a biological sequence only means some-
thing in a very specific environment, given very specific
rules of chemistry. So, according to this argument, the se-
quence describing a particular organism is complex only
with respect to the environment within which that organ-
ism “makes its living”, that is, its niche. Take the organism
out of its niche, and it is unlikely to function as well as in
its native niche; some of its structural complexity may turn

into a useless appendage or, worse, a liability. In the fol-
lowing section, we will see under what circumstances this
physical complexity can be understood in terms of infor-
mation theory.

Biochemical Information

The inception of information theory [21] created the
widely accepted expectation that biology would ultimately
become a subdiscipline of cybernetics, information the-
ory, and control theory [22]. That this expectation has
not come to pass lies partly in a gross underestimate of
the complexity of molecular and cellular biology by engi-
neers and physicists, and partly in a fundamentally mis-
guided application of information theory to genomes and
molecular sequences in general. Most of the early appli-
cations of information theory to biomolecular sequences
focused on an estimation of the entropy of sequences [23],
rather than the information content. For example, a sig-
nificant amount of work was expended on estimating the
compressibility of DNA and protein sequences by study-
ing long range correlations [24,25,26], all the while mis-
taking the average per-site entropy for information con-
tent [27]. These studies concluded, for the most part, that
coding DNA sequences and proteins are essentially ran-
dom, or uncompressible (non-coding DNA was found to
be less random, due to repeats). From the point of view of
coding theory, such a finding should not have been sur-
prising, as Shannon’s coding theorem [28] implies that
the length of a message conveyed by a symbolic sequence
is limited by the per-site (source) entropy [29]. In other
words, we expect evolution to try to maximize the source
entropy. However, source entropy does not equal informa-
tion content. Let us briefly review the basics of information
theory as applied to molecular sequences [30].

Entropy

For a random variable X that can take on states x1; :::; xD
with probabilities p(xi ), the entropy of X is given by

H(X) D �
DX

i

p(xi) log p(xi ) ; (4)

where the logarithm is taken to a convenient base, and de-
termines the units of the entropy. If the base is chosen to
be 2, for example, the entropy is given in bits. Often, it is
convenient to take the number of possible states D as the
basis. In that case, the entropy is bounded from above by 1,
and a sequence of N such random variables (a polymer)
has a maximal entropy of N.
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Suppose we are given a DNA sequence

AGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGA

TCCCGCATAGCTCCACCA

(5)

We can either take the stance that this is one of 456 possible
DNA sequences of length N D 56, or we can imagine that
this is the record of 56 consecutive independent trials of
a single DNA random variable that can take on the states
x D A,T,G,C only. If we take the latter view, then we can
try to estimate the source entropy by using the results of the
56 measurements to calculate the plug-in probabilities:

pA �
10
56
� 0:18 ; pT �

11
56
� 0:20 ;

pG �
16
56
� 0:29 ; pC �

19
56
� 0:34 :

(6)

These probabilities are quite uncertain due to the lack of
statistics, and only give us limited knowledge about the na-
ture of the gene. The deviation of the calculated probabili-
ties from the unbiased prediction pi D 1/4 (an indepen-
dent identically distributed, or i.i.d, random variable) is
not significant. Indeed, using the four probabilities above,
we obtain as an estimate of the source entropy

H(X) D �
X

iDA,C,G,T

p(xi ) log4 p(xi ) � 0:978 ; (7)

which is almostmaximal and confirms that, whatevermes-
sage is encoded in the sequence, it is encoded in a nearly
maximally compressed manner. For longer sequences, an
analysis of the usage probabilities can reveal important in-
formation such as a bias in nucleotide usage, which will
reduce the source entropy.

A typical application of sequence entropy is the cal-
culation of “n-gram” entropies for blocks of sequences of
length n:

Hn D �

4nX

i

P(n)i log P(n)i ; (8)

where P(n)i represents the probability to find the ith of the
4n blocks of length n in the sequence. Hn then measures
the average uncertainty within an average n-gram.We can
write down the difference [31]

hn D HnC1 � Hn ; (9)

which is sometimes called the amount of information
necessary to predict the next symbol on a sequence

given the n previous symbols. For example, for the se-
quence Eq. (5), H2 D 1:877 (based on 55 2-grams) so that
h1 D H2 � H1 D 0:899, using the per-site entropy Eq. (7)
forH1. Note, however, that the difference Eq. (9) is, strictly
speaking, not a measure of information but rather the con-
ditional entropy (see below) to find a symbol A given the
sequence Sn of length n: hn D H(AjSn).

Using the entropy per letter h D limn!1 hn , we can
calculate Grassberger’s effective measure complexity [31]

EMC D
1X

nD0

(hn � h) : (10)

This measure sums up the “memory” effects within the
string, that is, it sums up the correlations at all scales. This
measure vanishes if all sites are independent (because then
Hn D nh and hn D h) and is maximal if there are strong
long-range correlations within a sequence. The utility of
this measure to capture the complexity of a gene is much
in doubt, however, because the ability to predict the next
symbol on a sequence, as discussed before, is unlikely to
shed light on the function and utility of the gene if the in-
formation contained in the sequence is encoded.

The compositional complexity is another usage of n-
gram entropies to capture sequence complexity, but this
measure attempts to find the optimal segmentation of the
sequence into m partitions based on a significance crite-
rion. The more heterogeneous a sequence is, the higher
the compositional complexity Ccomp of a sequence s with
length L [32]

Ccomp D max
	

J(sm) ; (11)

which is the maximum over all possible partitions � of the
Jensen–Shannon divergence

J(sm) D H(s) �
mX

iD1

li
L
H(si) ; (12)

where H(s) is again the source entropy, and H(si) is the
entropy of the ith segment of length li. As with most of
the sequence measures discussed up to now, this measure
addresses coding-style more than function, and is unlikely
to capture the essence of functional information.

Conditional Entropy

Before we can talk about information, we have to intro-
duce the concept of conditional probabilities, that is, the
probability p(xi jy j) that a random variableX takes on one
of its states xi given that another variable Y is in one of its
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states yj. Then, the conditional entropy of X given that Y
is in state yj can be written as

H(XjY D y j) D �
DX

i

p(xi jy j) log p(xi jy j) : (13)

This concept allows us to discover the relative state of two
different random variables, or in this case two different
nucleotide positions. Suppose we are given 32 more se-
quences like the one in Eq. (5), and suppose we are told
that these sequences represent the same information, that
is, same gene, but from different samples. After aligning
these 33 sequences, the result looks like Table 1.

The extra symbols ‘-’ and ‘.’ in this alignment need
further explanation. The symbol ‘-’ denotes a “missing”
symbol, that is, a deletion in that sequence with respect to
the other sequences. The symbol ‘.’ , on the other hand,
signals that the identity of the nucleotide at that position
is not known. Here, we will treat each of these symbols as
if there was no data for the random variable at that po-
sition, reducing the statistics at that site. Clearly, we now
are viewing the set of sequences in Table 1 as representing
independent samples of a joint random variable

Z D X1X2 � � � X56 (14)

Using the conditional entropy, we can now study correla-
tions between nucleotide positions. For example, we can
study position 8, or more precisely, the random variable
X8. We can gather a probability estimate for this position
by gathering statistics vertically, rather than horizontally
as before. Here, we find

pA(8) D 5/33 ; pC(8) D 17/33 ;
pG(8) D 5/33 ; pT(8) D 6/33 :

(15)

which, even though 33 sequences does not represent
a large sample, are significantly different from the ran-
dom assumption pi D 1/4. Even more important devia-
tions from the i.i.d case can be found for X33 and X36: only
one particular nucleotide can be found at these positions,
all others are absent. The reasons for this abnormal dis-
tribution is immediately clear when we reveal the origin
of these sequences: they are the last 56 nucleotides of the
tRNA gene of the E. coli bacterium [33], and the function
of this molecule requires positions 33 and 36 to have that
particular nucleotide. A mutation leading to an alternative
nucleotide at these positions implies the death of the or-
ganism carrying the mutant, which explains why we do
not find it in a sample of living organisms. We can now

Biological Complexity and Biochemical Information, Figure 3
Per-site entropy of the last 56 positions of E. coli tRNA from the
alignment in Table 1

check how uneven the probabilities per-site are, by plot-
ting the per-site entropy (normalized to lie between zero
and one by choosing base D D 4 for the logarithm) against
site-number in Fig. 3.

We notice that there are sites that are almost ran-
dom, and some sites that are absolutely conserved. While
this pattern, conserved by evolution over billions of years,
clearly reflects the function of the organism, it does not tell
us whether the states of any two sites are correlated.

The relative state of two random variables will tell us
whether knowing the state of one variable will reveal to us
information about another variable. For example, we can
ask whether knowing, say, X8, allows us to say something
about other sites that we would not already know in the
absence of that knowledge. Let us see whether the prob-
abilities characterizing X21, say, depend on knowing X8.
Collecting frequencies for X21 gives approximately

p21(A) D 0:24 ; p21(C) D 0:46 ;
p21(G) D 0:21 ; p21(T) D 0:09 ;

(16)

while p(X21jX8) D

0

BB
@

p(A|A) p(A|C) p(A|G) p(A|T)
p(C|A) p(C|C) p(C|G) p(C|T)
p(G|A) p(G|C) p(G|G) p(G|T)
p(T|A) p(T|C) p(T|G) p(T|T)

1

CC
A

D

0

BB
@

0:2 0:235 0 0:5
0 0:706 0:2 0:333
0:8 0 0:4 0:167
0 0:059 0:4 0

1

CC
A : (17)
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Biological Complexity and Biochemical Information, Table 1
Alignment of the last 56 nucleotides of sequences of tRNA genes of E. coli

AGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA
AGAGCGCTTGCATGGCATGCAAGAGGTCAGCGGTTCGATCCCGCTTAGCTCCACCA
TATGTAGCGGATTGCAAATCCGTCTA-GTCCGGTTCGACTCCGGAACGCGCCTCCA
AGAATACCTGCCTGTCACGCAGGGGGTCGCGGGTTCGAGTCCCGTCCGTTCCGCCA
AGGACACCGCCCTTTCACGGCGGTAA-CAGGGGTTCGAATCCCCTAGGGGACGCCA
AGAGCAGGGGATTGAAAATCCCCGTGTCCTTGGTTCGATTCCGAGTCCGGGCACCA
ATTACCTCAGCCTTCCAAGCTGATGA-TGCGGGTTCGATTCCCGCTGCCCGCTCCA
AGAGCACGACCTTGCCAAGGTCGGGGTCGCGAGTTCGAGTCTCGTTTCCCGCTCCA
AGAACGAGAGCTTCCCAAGCTCTATA-CGAGGGTTCGATTCCCTTCGCCCGCTCCA
AGAGCCCTGGATTGTGATTCCAGTTGTCGTGGGTTCGAATCCCATTAGCCACCCCA
AGAGCGCACCCCTGATAAGGGTGAGGTCGGTGGTTCAAGTCCACTCAGGCCTACCA
AGAGCAGGCGACTCATAATCGCTTGGTCGCTGGTTCAAGTCCAGCAGGGGCCACCA
AGAGCAGTTGACTTTTAATCAATTGGTCGCAGGTTCGAATCCTGCACGACCCACCA
AGAGCACATCACTCATAATGATGGGGTCACAGGTTCGAATCCCGTCGTAGCCACCA
AGAACGGCGGACTGTTAATCCGTATGTCACTGGTTCGAGTCCAGTCAGAGGAGCCA
AGCGCAACTGGTTTGGGACCAGTGGGTCGGAGGTTCGAATCCTCTCTCGCCGACCA
AGCGCACTTCGTTCGGGACGAAGGGGTCGGAGGTTCGAATCCTCTATCACCGACCA
AGCGCACCGTCATGGGGTGTCGGGGGTCGGAGGTTCAAATCCTCTCGTGCCGACCA
AAGGCACCGGTTTTTGATACCGGCATTCCCTGGTTCGAATCCAGGTACCCCAGCCA
AAGGCACCGGATTCTGATTCCGGCATTCCGAGGTTCGAATCCTCGTACCCCAGCCA
AGAGCGCTGCCCTCCGGAGGCAGAGGTCTCAGGTTCGAATCCTGTCGGGCGCGCCA
AGAGCAACGACCTTCTAAGTCGTGGGCCGCAGGTTCGAATCCTGCAGGGCGCGCCA
AGAGCAACGACCTTCTAAGTCGTGGGCCGCAGGTTCGAATCCTGCAGGGCGCGCCA
AGAGTACTCGGCTACGAACCGAGCGGTCGGAGGTTCGAATCCTCCCGGATGCACCA
ATAACGAGCCCCTCCTAAGGGCTAAT-TGCAGGTTCGATTCCTGCAGGGGACACCA
AGAGCGCACCCTTGGTAGGGGTGGGGTCCCCAGTTCGACTCTGGGTATCAGCACCA
AGAGCGCACCCTTGGTAAGGGTGAGGTCGGCAGTTCGAATCTGCCTATCAGCACCA
AGAGCAACTGACTTGTAATCAGTAGGTCACCAGTTCGATTCCGGTA.TCGGCACCA
AGAGCAGCGCATTCGTAATGCGAAGGTCGTAGGTTCGACTCCTATTATCGGCACCA
AGAGCGCACCCTTGGTAAGGGTGAGGTCCCCAGTTCGACTCTGGGTATCAGCACCA
AGAGCACCGGTCTCCAAAACCGGGTGTTGGGAGTTCGAGTCTCTCCGCCCCTGCCA
AGCTCGTCGGGCTCATAACCCGAAGATCGTCGGTTCAAATCCGGCCCCCGCAACCA
AGCTCGTCGGGCTCATAACCCGAAGGTCGTCGGTTCAAATCCGGCCCCCGCAACCA

Knowing X8 would help us in predicting the state of
X21 if any of the numbers in any of the columns of Eq. (17)
is significantly larger than 0.25, which is the probability to
guess X21 right by random chance. In fact, however, only
a very few of the probabilities are even above 0.5. Clearly,
the knowledge of position 8 does not help much in pre-
dicting position 21. Given X8 D G, for example, the prob-
abilities to correctly predict A,C,G or T at position 21
are given by the third column of Eq. (17), and none of
those probabilities exceed 0.5. The only case where know-
ing X8 helps us significantly in predicting X21 is if X8 D A,
since then X21 D Gwith probability 0.8. But let us look in-
stead at another pair of sites, this time X8 and X22. We
can obtain the unconditional probabilities for X22 from
the alignment (as before, we are rounding the probabili-
ties)

p22(A) D 0:18 ; p22(C) D 0:15 ;
p22(G) D 0:52 ; p22(T) D 0:15 ;

(18)

but the conditional probability matrix is very different

from Eq. (17):

p(X22jX8) D

0

BB
@

A C G T
A 0 0 0 1
C 0 0 1 0
G 0 1 0 0
T 1 0 0 0

1

CC
A : (19)

This matrix immediately tells us that, based on the
alignment in Table 1, if we see a T at position 8, then we
can be certain (p D 1) to find A at position 22, while if we
see a G at position 8, we are sure to encounter C at 22, and
so forth. Obviously, these are the associations implied by
Watson-Crick pairing, so this conditional probability ma-
trix suggests to us that position 8 and 22 are in fact paired
within the molecule: this is how biochemistry stores infor-
mation in molecules.

Calculating the conditional entropy H(X22jX8 D T)
makes the correlation apparent in another way. As the en-
tropy of a random variable measures the amount of un-
certainty that we have about it, we immediately see that
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knowing X8 tells us everything about the state of X22 that
there is to know: for every one of X8’s possible states,
H(X22jX8 D A,C,G,T) D 0. We can now introduce the
average conditional entropy:

H(XjY) D
DX

jD1

p(y j)H(XjY D y j) ; (20)

which gives us the average value of the entropy of X given
any of the states of Y . For the pair (X22; X8) this gives of
courseH(X22jX8) D 0, while for the pair (X21; X8) we find

H(X21jX8) D 0:58 : (21)

We saw earlier that knowing site 8 does not significantly
affect our probability to predict site 21, but still the con-
ditional entropy Eq. (21) is significantly smaller than the
unconditional one, H(X21) D 0:9.

Information

From the example we just discussed, the definition of bio-
chemical information is clear: it is just the reduction in en-
tropy (or uncertainty) of one variable using the knowledge
of the state of another. So, if Y is again a variable whose en-
tropy we seek to decrease using our knowledge of X, then
the information X conveys about Y is just

I(X : Y) D H(Y) � H(Y jX) : (22)

This definition of information (also sometimes called
“shared” or “mutual” entropy) is symmetric: I(X : Y) D
I(Y : X), and we can therefore equivalently write

I(X : Y) D H(X)� H(XjY) : (23)

Thus, “what X knows about Y , Y also knows about X”.
This is particularly clear for the example of biochemical
information throughWatson-Crick pairing that we looked
at above. We can calculate the information position 8 has
about position 22 as

I(X22 : X8) D H(X22) � H(X22jX8) D H(X22) (24)

because H(X22jX8) D 0 as we found above. At the same
time,

I(X8 : X22) D H(X8)� H(X8jX22) D H(X8) (25)

because H(X8jX22) also vanishes. Then, H(X8) and
H(X22) have to be equal. We can repeat this analysis for
the other pair we looked at:

I(X8 : X21) D H(X21)�H(X21jX8) D 0:9�0:58 D 0:42 :
(26)

Biological Complexity and Biochemical Information, Figure 4
Venn diagram of entropies between sites 8 and 21 of the se-
quence alignment (1)

A simple diagram (Fig. 4) helps to see how entropies are
distributed among shared and conditional entropies.

As we discussed earlier, if two sites share most of their
entropy, we can conclude that they bind to each other in
a Watson-Crick pair. Because this binding is responsible
for the structure of the molecule, information theory can
help us to determine the molecule’s secondary structure,
that is, how the molecule is arranged as a chain in two di-
mensions [34].

Molecular Complexity

While it is important to understand how biochemistry en-
codes information in chemical bonds, calculating infor-
mation-theoretical correlations between nucleotides (or
between residues in proteins [35,36,37,38]) does not re-
veal how much information a molecule stores about the
environment within which it functions. We can achieve
this by imagining that the physical and chemical world has
a description in terms of a symbolic sequence. Then, given
this particular sequence (and thus, given the identity of the
world within which we study the entropy of biomolecu-
lar sequences), the set of information-rich sequences can
be determined, and the information content calculated.
The mathematical form of the measure of a molecule’s
information content will be shown to be closely related
to the physical complexity measure discussed earlier in
Eq. (3).

We start by considering a molecule that is guaran-
teed not to encode information about its environment:
a random molecule. Let us imagine a polypeptide P of
L residues, written as a joint random variable P D

P1P2 � � � PL . If P is truly random, then each of its 20L states
are equally likely, and the entropy of P is

H(P) D log 20L : (27)
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If we choose to take 20 as the base of the logarithm, we see
that the entropy of the random L-mer is H(P) D L, that is,
one unit of entropy for each randommonomer. Of course,
functional proteins are nowhere near random. Instead, the
probabilities to find a particular residue x at position n,
pn(x), are strongly constrained by evolution. The opposite
extreme of a protein would be the case where one and only
one particular residue is allowed at each position in a pro-
tein that has a specific function. Then, only one state of the
polymer is consistent with that function, andH(P) D 0. In
general, the entropy of P is given by

H(P) D �
20LX

i

pi log pi ; (28)

where pi is the probability to find any of the possible 20L

states of P in an infinitely large ensemble of polymers of
length L. In practice, however, ensembles large enough to
estimate these pi cannot exist (note that 20100 is approx-
imately 10130), so we need to find approximations to cal-
culate H(P) if we would like to measure a polymer’s en-
tropy. A common approximation is to neglect interactions
between the different sites n, so that the entropy of P can
be written in terms of a sum over the entropies of each
monomer:

H(P) �
LX

nD1

H(Pn) : (29)

In practice this is not a bad approximation [39], but we
should keep in mind that interactions between residues,
known as epistasis, are extremely important in evolution
and are often studied in detail [40,41,42]. Typically, while
many pairs of residues interact epistatically, some do so
positively and some negatively, so that on average the ap-
proximation Eq. (29) often holds.

If we can consider each residue separately, we can now
focus on the probabilities pn(x) introduced above. Typi-
cally, we expect those sites that are very important for the
function of the protein to be strongly conserved (all the
pn(x) are either one or zero at position n), leading to a van-
ishing entropy at that site, while those that are less im-
portant are less constrained, leading to a larger entropy at
those sites. We can now define the amount of information
a sequence P stores about its environment as the mutual
entropy (information) between the random variable de-
scribing protein P and a random variable E describing all
possible environments (we imagine, as before, that all pos-
sible environments can be described in terms of sequences,
and listed)

I(P : E) D H(P) � H(PjE) ; (30)

which is the same formula as Eq. (46). The first term on
the right hand side of Eq. (30) is the unconditional entropy
of the polymer P. An entropy that is not conditional on
any environment is an entropy that is unspecified. This
is the same as the entropy of a random protein, and thus
H(P) D Hmax(P) D L. The second term in that equation
is the average conditional entropy of the protein, averaged
over all the possible environments described by the ran-
dom variable E. Our world, of course, is just one particular
such environment E D e, and therefore the amount of in-
formation stored in a polymer P about environment E D e
is given by

I(P : e) D L � H(Pje) ; (31)

where

H(Pje) D
LX

iD1

H(Pi je) D �
LX

nD1

20X

xD1

pn(x) log20 pn(x) ;

(32)

and the sum over x goes over the possible 20 amino acids
at each site.

The probabilities pn(x) can be obtained by a sequence
alignment of structurally identical proteins of different
species, such as those listed in the Pfam database [43]. As
an example, we can align the sequences of the homeobox
proteins of the rodent family Rodentia. Aligning 703 of
the sequences of 57 residues in the database (as of July
2006) allows us to estimate the pn(x) necessary for cal-
culating the rodent homeodomain information content.
Note that for this analysis to be significant, we have to
ensure that the sequences of all the aligned proteins code
for a protein with the same functionality. Indeed, any time
two different residues are allowed at a particular position,
we must be able to imply that these are neutral substitu-
tions in the protein. Adaptive changes that influence pro-
tein function should not appear in the alignment. The av-
erage sequence identity of the set of 703 proteins is about
39%, which gives confidence that the set is composed of
sequences coding for proteins that are at least structurally
identical. (Sequences with more than 30% identity have
more than a 90% chance of coding for structurally iden-
tical proteins [44].)

When estimating entropies from finite ensembles, care
must be taken to correct the estimates for a bias that arises
when the ensemble is small. The method for correcting
this bias is well-known [45,46], and applied to all data
shown here. We start by calculating the per-site entropy
of all 57 aligned sites, giving the entropy profile of the se-
quence shown in Fig. 5. This view reveals a curious alterna-
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Biological Complexity and Biochemical Information, Figure 5
Entropic profile of the 57 amino acid rodent homeodomain, ob-
tained from 703 sequences in Pfam (St. Louis mirror, accessed
July 20, 2006). Per-site entropy between zero and one by taking
logs to base 20

tion between high and low entropy sites in the homeobox
protein.

The information content is obtained by summing up
the per-site entropies and subtracting this value from the
length of the sequence, as implied by Eq. (31). If we call
the unit of information obtained by using logarithms to
the base of the size of the alphabet the “mer” (such that
an L-mer has a maximum information content of Lmers)
then the information content of rodent homeobox pro-
teins is

I(Prodents) D 26:83˙ 0:13mers ; (33)

where the quoted error reflects the statistical nature of the
probability estimate, quantified in [45,46]. Note that for
amino acids, 1 mer equals about 4.32 bits, while for nucleic
acids 1 mer equals 2 bits.

From the point of view of evolution, we may ask
whether this information content has changed as species
evolved. For example, we might ask whether animals that,
according to our intuitive understanding of the “great
chain”, are considered “higher” than rodents show a dif-
ferent information content for this protein. The home-
obox protein sequences of many other families of organ-
isms are available in Pfam to examine this. As an example,
the alignment of 504 sequences of primate homeobox pro-
teins results in an entropic profile remarkably similar to
that of Fig. 5. The information content for these proteins
can be calculated to be

I(Pprimates) D 26:71˙ 0:14mers ; (34)

in other words, identical to that of the rodents within sta-
tistical error. But just because the total information con-
tent is the same does not imply that information is coded

Biological Complexity and Biochemical Information, Figure 6
Difference between entropic profile of the homeobox protein
of rodents and primates (the latter from 504 sequences in Pfam
St. Louis, accessed July 20, 2006)

in a similar manner. We can study this by subtracting one
entropic profile form the other, to see if the entropy of
some sites has increased, and some others decreased in the
evolution from rodents to primates. We can see this dif-
ference plot in Fig. 6, which suggest that some recoding
did indeed take place, in particular in the first helix of the
protein, but the significance of this result is not strong.

Thus, information theory can track some aspects of
evolutionary changes between proteins, even if the total
amount of information is unchanged.

Biochemical Information and Functional Complexity

It is tempting to speculate that the information content of
a biomolecule is related to the functional complexity of an
organism. After all, possessing information about an en-
semble enables the prediction of the possible states of an
ensemble with accuracy better than random, something
that is highly valuable for a biological organism whose en-
semble is an uncertain environment. Let us recall the mea-
sure of sequence complexity (“physical complexity”) in-
troduced in the previous section:

CP (s) D K0(s) � K(sje) ; (35)

for any sequence s, given an environment sequence e. If we
take the average of this quantity over an infinite ensemble
of sequences si drawn from an ensemble S, we obtain

hCP(s)iS D
X

s i

p(si ) (K0(si) � K(si je)) ; si 2 S : (36)

It is easy to prove the following inequality between average
Kolmogorov complexities and the Shannon entropy [47]:

X

s i

p(si )K(si ) �
X

s i

p(si ) log
1

p(si )
D H(S) : (37)
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The inequality in Eq. (37) reflects the possibility that the
complexities K(si), which can be viewed as compressed en-
codings of the sequences si, do not necessarily form a per-
fect code that saturates the Kraft inequality [48]. However,
because the K(si) do represent the smallest program en-
coding si, it is reasonable to assume that the average Kol-
mogorov complexity is given by the Shannon entropy of
the ensemble up to an additive constant, which represents
the length of a program that tells one computer how to
simulate another (see, e. g., [48]):

hK(si)iS � H(S)C c : (38)

In that case (and assuming that the overall constant can-
cels from the difference), the average physical complexity
becomes

hCP(s)iS � H(S) � H(Sje) ; (39)

where H(S) is the unconditional Shannon entropy of the
ensemble of sequences, and H(Sje) is the conditional en-
tropy. If the ensemble S consists of sequences of fixed
length L, then the unconditional entropy is H(S) D L,
and H(Sje) is the conditional entropy of the sequences as
in Eq. (31). (Note that, technically, the Kolmogorov com-
plexity for fixed length sequences K(sjL) is related to the
arbitrary length complexity K(s) via K(s) � K(sjL) C
2 log LC c, where c is again the “simulation constant”.) To
summarize, the average physical complexity is (assuming
perfect coding) equal to the Shannon information that the
ensemble has about the environment, that is, a sequence’s
information content.

This interpretation of complexity is particularly satis-
fying from an evolutionary point of view. The value of in-
formation lies in the ability of the observer who is in pos-
session of it to make predictions about the system that the
information is about. Organisms, armed with the func-
tionality bestowed upon them by their genetic code, do
precisely that to survive. An organism’s metabolism is
a chemical machine making predictions about the avail-
ability and concentrations of the surrounding chemicals.
A cell’s surface proteins make predictions about the type of
cells it might interact with, and so on. Viewed in this way,
informational complexity should be a near perfect proxy
for functional complexity, because information must be
used for function: if it is not so used, a sequence represents
entropy, not information. An investigation of the infor-
mational complexity of evolving computer programs (an
instance of “digital life” [49,50]) has shown that the com-
plexity increases in evolution [51] and correlates well with
the functional complexity of the programs [52]. A good

example for how the equivalence of function and informa-
tion is achieved in biochemistry is the evolution of func-
tionality in ribozymes by in-vitro evolution, achieved by
Jack Szostak’s group at Massachussets General Hospital.

This group evolved short GTP-binding RNAs (ap-
tamers) in vitro, and found eleven distinct structures with
different binding affinities [53]. By measuring the infor-
mation content as outlined here (within each pool of se-
quences that evolved for each structure, there were suf-
ficient mutants that could be aligned in order to deter-
mine the substitution probabilities pn(x)), it was possible
to show that increased functional activity went hand-in-
hand with increased information content, so much so that
the group was able to derive a simple law that predicts,
within this GTP-binding set of ribozymes, that a ten-fold
higher binding affinity is achieved by about 10 bits of extra
information. In other words, the informational complexity
is linearly proportional to the functional complexity. Even
more, the structural complexity, as measured by the num-
ber of different stems (ladders) within the secondary struc-
ture of the enzyme, also seemed to increase with functional
activity.

Based on this type of observation, Szostak has pro-
posed a newmeasure of functional complexity [10,54] that
is based both on function and on information. For a partic-
ular function x, let Ex represent the degree of that function
achieved by a system. Then the functional information is
defined as [54]

I(Ex ) D � log(F(Ex )) ; (40)

where F(Ex) is the fraction of all possible configurations of
the system that possess a degree larger or equal to Ex. For
sequences, the function could represent a binding affin-
ity, or the number of ATPs produced by a pathway within
which the enzyme is the bottleneck factor, or any other
real-valued attribute that characterizes the performance
of the sequence. This measure introduces a clear link be-
tween information and function, but fundamentally turns
out to be a coarse-grained version of the information con-
tent Eq. (31), as can be seen as follows.

Suppose we are interested in measuring the informa-
tion content of a sequence s that performs function x to
the degree Ex .We can obtain the functional information of
s by creating all possible mutants of s, and measuring the
fraction F(Ex) of sequences that have the same function
as s, given by �(s)/N , where �(s) is the number of neutral
mutants of swithin S, andN is the total number of possible
sequences. Thus,

I(Ex ) D logN � log �(s) : (41)
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The conditional probability to find a sequence si given en-
vironment e in an evolving populations of sequences of the
type s is given by p(si je). If e specifies the function x at level
Ex for si, then p(si je) D 1 if si performs the function at the
required level, and zero otherwise (coarse-graining of the
entropy). There are �(s) such sequences in the ensemble,
and thus

H(Sje) D �
X

i

p(si je) log p(si je)

D �
X

�(s)

1
�(s)

log
1
�(s)
D log �(s) : (42)

As logN D logDL D L, Eq. (41) recovers Eq. (31), that is,
functional information is a coarse-grained version of the
Shannon information content of a sequence.

Network Complexity

If we are given the informational complexity of every sin-
gle protein in an organism, is the sumof these complexities
equal to the complexity of the cell, or the organism? Cer-
tainly not, becausemuch of the complexity of an organism
lies in how the proteins interact, and in particular in the
complicated temporal sequence of events dictated by the
regulation of the expression of proteins as a function of
environmental influences.

It is well-known that functional biological networks
have properties that distinguish them from a randomly
connected set of nodes (a random graph, or Erdös–Rényi
network). In fact, many biological networks have degree
distributions that are approximately scale-free (Fig. 7a), in
stark contrast to the binomial distribution of the random
graph (Fig. 7b). Also, the diameter of biological networks,
defined as the average of all internode distances d(i, j), is
small (“small-world-network”, see [55]) and depends only
weakly on the number of nodes in the network, again un-
like what we find for random graphs.

Assessing the complexity of a network usually entails
measuring the structural complexity of the network, as
compared to a random graph. Often, the modularity of
a network is used as a proxy for the structural or the
functional complexity, even though the concept of a mod-
ule for networks is not universally defined [56,57]. Usu-
ally, a module is defined as a discrete entity whose func-
tion is separable from those of other modules, but in bi-
ology modules can have significant overlap. Within pro-
tein-protein interaction networks, putative modules can
be obtained by clustering, so that modules are sets of pro-
teins that are strongly interconnected, but only weakly
connected to other such sets. In this section I discuss

Biological Complexity and Biochemical Information, Figure 7
a Degree distribution P(k) to find a node with k edges in a scale
free network (squares) with degree distribution P(k) � 1/k2

(dashed line), b degree distribution for a random graph with
1,000 nodes and a connectivity p D 0:015 (squares) and a Pois-
son distribution withmean hki D 15 (line)

several ways to understand network complexity, starting
with an estimate of the information content of a func-
tional network by assessing the information content of
the genome that gave rise to it, using the methods dis-
cussed in Sect. “Molecular Complexity”. I then review an
information-theoretic approach to network modularity,
followed by an exposition of a method to assess network
structure and information bymeasuring subnetwork (sub-
graph) abundances.

Evolution of Information in Networks

The difficulty in assessing network complexity from net-
work topology is clear to anyone who has studied the mul-
titudes of networks arising in engineering and biology. Bi-
ological networks usually have thousands of nodes and
several thousand edges, and often appear to be unstruc-
tured. For example, the network summarizing the connec-
tivity of neurons in the brain of the nematode C. elegans
shows very little modularity or structure at first sight, but
is markedly different from a random network [58] (see
Fig. 8).

Because the functionality of a network is not necessar-
ily reflected in its topological structure, the best hope for
assessing the complexity of a network is to measure the
complexity of the set of rules used to construct it. In biol-
ogy, this set of rules is encoded in the genome, so a first-
order estimate of the complexity of a network should be
given by the complexity of the genome that produced it.
Of course, this is difficult for all the reasons given in the
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Biological Complexity and Biochemical Information, Figure 8
Adjacency matrix of 179 of the 302-neuron neural network of a C. elegans brain (left), and a random network of the same size and
connectivity (right)

previous section, but even more difficult in this case be-
cause a network of proteins, for example, is specified not
just by the open reading frames coding for the proteins,
but also all the untranslated regulatory regions as well as
the transcription factors affecting them.

We can test the evolution of network complexity in
computational models where a genome represents the
functionality of a cellular network, as was done recently in
Ref. [59]. In this work, an artificial chemistry and genet-
ics was encoded in a simple linear (circular) code based
on the monomers 0,1,2,3, where enzymatic proteins
with variable specificity act on 53 precursor molecules to
form up to 555 metabolites. The metabolic reactions in-
volving transport and enzymatic proteins are obtained by
a translation of the genetic code into reactions, and im-
plementing chemostat physics and reaction kinetics. Evo-
lution proceeded from a simple ancestral genome with
only 3 genes to large and complex metabolic networks of
thousands of nodes and several thousand edges, in a com-
pletely asexual Wright–Fisher process acting on two chro-
mosomes.

In order to be considered fit, an artificial cell has to
import precursor molecules that are available outside the
cell walls and convert them into metabolites. The fitness
of an organism was determined by calculating the pro-
duced biomass of metabolites (see [59]). Evolution was
carried out in three different environments that differ in
their predictability. In the simplest environment, the loca-
tion of precursor sources and their abundance is constant
during evolution (the “static” environment), while in the
quasistatic environment one randomly selected precursor
source location is changed per update. In the dynamic en-
vironment, the source location of all precursors is changed

randomly, and 25% of all precursors are made unavailable,
giving rise to a highly unpredictable environment.

The information content of the genomes was mea-
sured as outlined above, that is

I D L � H(s) ; (43)

where L is the total length of the sequence and H(s) is the
sum of per-site entropies

H(s) D
LX

xD1

H(x) (44)

and the per-site entropy H(x) is obtained by summing
over the substitution probabilities pi at that site:

H(x) D �
3X

iD0

pi log4 pi : (45)

Because we only have 4 possible symbols per site, taking
the logarithm to base 4 again ensures that the per-site en-
tropy lies between 0 and 1.

As the evolutionary mechanism allows for insertions
and deletion of entire genes or genetic regions along with
point mutations, genomes can change length during evo-
lution. As a consequence, an alignment of genomes in
a population to ascertain substitution probabilities is prob-
lematic. Instead, an approach can be used that determines
the substitution probabilities pi from the fitness effect of
the substitution on organism fitness, along with an appli-
cation of population genetics theory. If a substitution of
allele i has fitness effect wi, then the probability to find this
allele in an equilibrated population evolving at mutation
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Biological Complexity and Biochemical Information, Figure 9
Evolved metabolic network with 969 nodes and 1,698 edges, rendered with PAJEK [60]

rate � is given by [61]

pi D
piwi

w̄
(1 � �)C

�

4

3X

jD0

p jwj

w̄
; (46)

where w̄ D
P3

iD0 piwi is themean fitness of the 4 possible
alleles at that position.

Figure 10 shows the evolution of network fitness, size
and complexity (measured in units of monomer entropy
or “mer”, where one mer equals 2 bits) for the three dif-
ferent environments discussed above), as a function of
the phylogenetic depth of the organism. The phylogenetic
depth of an organism is its position on the line of descent
of the particular evolutionary run: The organism with the
highest fitness at the end of the run is used to recon-
struct the line of descent by following its direct ancestry
and increasing the depth counter whenever an organism’s
genome differs from that of its direct parent. When ar-
riving at the initial organism, this counter is set to zero,
so that the phylogenetic depth counter increases up until
the last organism on the line. Because on average we find
about one new organism on the line of descent per gener-
ation in these runs, the phylogenetic depth is a good proxy
for evolutionary time, even though in principle many gen-
erations could pass without an advance on the line of de-
scent.

Because the fitness of an organism is multiplicative in
the biomass (discovering how to produce a new metabo-
lite multiplies the previous fitness by a number greater
than one), the log of the fitness grows about linearly for all
three environments (Fig. 10a). The fitness grows fastest for
the static environment that is the easiest to predict (dot-
ted line), while it takes longer for complexity to emerge
in the dynamic environment (solid line). The same trend
is reflected in the growth of the number of nodes and
edges in these environments (Fig. 10b). Finally, the infor-
mation content as calculated by Eq. (43) using the substi-
tution probabilities Eq. (46) follows the same trend: the
informational complexity grows the fastest for the static
and quasi-static environments, and lags behind for evolu-
tion in a dynamic environment. The reason for the slower
growth of complexity for networks evolving in dynamic
environments is clear: because the availability of precur-
sors necessary for the production of complex metabolites
cannot be relied upon in such environments, the cells end
up manufacturing the precursor molecules within the cells
(rather than importing them from the outside). This ma-
chinery is complex in itself, but takes time to evolve. Ulti-
mately, we expect networks evolving in dynamic environ-
ments to bemore complex than those evolving in static en-
vironments because of the added flexibility of producing
precursor molecules within the cells. However, such net-
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Biological Complexity and Biochemical Information, Figure 10
Evolution of complexity in artificial metabolic networks. a log fitness for networks evolving in a static (dotted line), quasistatic (dash-
dotted), and dynamic environment (solid line). b Evolution of the number of nodes (number of edges follows a similar trend). c Evo-
lution of informational complexity, lines as in a

works lag behind slightly during the time this complexity
is generated.

Note that the informational complexity of the net-
works used to seed these evolutionary experiments is
rather low: the network with three genes (two for import-
ing precursors and one for metabolizing those) is spec-
ified with a genome of informational complexity of just
36mers (72 bits), even though the starting genome has
1,000 “nucleotide” positions in each of the two chromo-
somes. The non-coding part of these initial genomes thus
does not contribute to the informational complexity, be-
cause changing any of these positions to any other allele
cannot change the fitness of the organism (we do not take
beneficial mutations into account in the fitness tests). For
these non-coding nucleotides, the pi calculated by Eq. (46)
all are exactly equal (pi D 1/4), guaranteeing that they do
not contribute to I, as is easily checked. However, the in-
formational complexity grows rather quickly once more
and more metabolic reactions are discovered and opti-
mized, at a pace of about 0.5mers (1 bit) per depth step
(roughly one bit per generation).

Modules from Information Theory

The path towards an understanding of the functional or-
ganization of a network in the absence of genomic in-
formation usually involves the decomplexification of the
network, either by clustering nodes that are related in
function [62], removing those nodes that are immaterial
to (or redundant in) function, or analyzing the subgraph
decomposition [63] as discussed further below. A par-

ticularly insightful method to decompose networks into
modules—both overlapping and non-overlapping—uses
information theory to estimate how much information
about the original network is present in the abstract—that
is, decomplexified— version, while maximizing a vari-
able that measures the relevance of the abstraction. This
method, sometimes called the “information-bottleneck”
approach [64] was applied to biological and engineering
networks by Ziv et al. [65].

The Network Information Bottleneck (NIB) approach
attempts to replace a complex network by a simpler one
while still retaining the essential aspects of the network.
For example, a highly connected star topology could be re-
placed by a single node that represents the modular func-
tion of the star, as in Fig. 11.

The main idea of the method is that while there are
many different ways in which one can collapse a topology,
the optimal mapping is one where the new topology re-
tains as much information as possible about the original

Biological Complexity and Biochemical Information, Figure 11
Collapse of a topology described by the nodes X to a more suc-
cinct one described by Z in which clusters are replaced by a clus-
ter assignment variable Z
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one, while maintaining as much relevance of the descrip-
tion as possible. Say, for example, that a random variableX
stands for nodes x 2 X in a network that occur with prob-
ability p(x), and total number of states jXj D N , where N
is the size of the network. Amodel of this network can then
be made by a random variable Z with fewer states jZj < N,
and where a cluster assignment is given by a set of proba-
bilities p(zjx): the probability that z is assigned to a partic-
ular cluster given the input node x. Ideally, we would like
to maximize the mutual entropy (information) between
the random variables X and Z, but we shall do this with
a constraint given by a relevance variable mentioned ear-
lier. This relevance variable will distinguish different ways
in which clusters are assigned. In this application of the
NIB to networks, the relevance variable involves diffusion
on the network: those nodes that are close to each other
are preferentially visited by a diffusion algorithm, and are
more likely to be clustered together. In this algorithm, the
relevance is represented by a random variable Y that is de-
fined such that a diffusive process determines the probabil-
ity to arrive at node y. The relation to the network variable
X is given by the joint probability p(x; y) D p(yjx)p(x),
the probability to arrive at node y via a diffusive process
given the process started at node x, times the probability
that we started at node x. The latter probability is always
assumed to be uniform, that is, p(x) D 1/N.

The NIB algorithm allows optimal solutions where
several different nodes z could be assigned to any given
input node x. This flexibility allows for the possibility of
overlapping clusters or modules (soft clustering), but in the
following we will follow only the algorithm for hard clus-
tering, so that for any choice of x and z, p(zjx) is either one
or zero.

One version of the algorithm (agglomerative cluster-
ing) begins with a random variable Z that has exactly
one fewer nodes than X, and attempts to find the opti-
mal pair of x nodes to join to produce a model of the
network with one fewer nodes. For each possible clus-
ter assignment p(zjx) we can execute a diffusion process
to determine the matrix p(yjz), that is, the probability
to arrive at node y given a node z as starting point. We
choose to merge those nodes that maximize I(Y : Z), and
the algorithm repeats with a set Z smaller by one node
until all nodes have been merged. At each step, we can
calculate the normalized variables 0 < I(Z : X)/H(X) < 1
and 0 < I(Z : Y)/I(X : Y) < 1 and plot them against each
other, giving rise to the information curve [65], as in
Fig. 12.

A completely random network gives rise to the diag-
onal in Fig. 12, and represents the least modular network.
We can define a modularity score, the network modularity,

Biological Complexity and Biochemical Information, Figure 12
The information curve for a modular network (solid line), ob-
tained by startingwith amodel network Z of the the same size as
X (maximal information I(Z : X)/H(X) D 1 and I(Z : Y)/I(X : Y) D
1, upper right corner), and merging nodes while maximizing
I(Z : Y). This process generates the information curve from the
upper right corner all thewaydown to the lower left corner,where
jZj D 1 and themutual entropy vanishes. The dashed line repre-
sents the information curve for a randomnetwork. Themodular-
ity score is given by the area under the information curve

as the area under the information curve. Perfectly mod-
ular networks then have a maximal modularity score of
1, whereas random networks have a score of 1/2. Several
different networks have been analyzed using this modu-
larity measure in Ref. [65], such as the network of co-
authors for papers presented at a meeting of the American
Physical Society. This network has 5,604 nodes and 19,761
edges, and yielded a modularity core of 0.9775. The regu-
latory network of the bacterium E. coli (328 nodes and 456
edges), also analyzed by these authors, yielded a score of
0.9709. Thus, both of these networks are highly modular
according to this measure.

Interestingly, the network of connections of the C. el-
egans brain (see Fig. 8) has a network modularity score
0.9027, whereas a randomized version retaining the same
number of nodes and edges scores 0.4984 on average, as
predicted for a random network. The evolved metabolic
networks discussed in Sect. “Evolution of Information in
Networks” also score high on this scale. For the largest
connected component of a 453 node network, we find
a modularity score of 0.8486 for the 5,000th organism on
the line of descent (about one organism per generation).
While a score for small networks is fairly meaningless, the
score increases slightly as the networks becomemore com-
plex.
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Information in Motifs

We have seen that networks that are functional are built
from modules, or at least can be understood in terms
of strongly connected sets of nodes that are only weakly
connected to other such clusters. This clustering—carried
out using information theory in the previous section—can
also be performed on the basis of topology alone. For
example, every network can be analyzed in terms of its
subgraph composition [63], that is, the frequency with
which particular subgraphs or motifs appear within the
entire network. The degree with which certain motifs are
overutilized—and some others underutilized—compared
to a uniform distribution or one obtained from a random
network, reflects the local structure of the network and can
be used to classify networks from very different realms into
similar categories [66].

Subgraph abundances can also be used to study the
modular composition of networks, in analogy to the mod-
ular composition of sentences in written language. Mean-
ing can be conveyed in text only because the utilization
frequency of letters in words, and words in sentences, is
different from uniform. For example, the letters e,t,a,i,o,
and n appear in decreasing frequency in an average text
written in English, while the rank-abundance distribu-
tion of the words follows a scale-free distribution (Zipf’s
Law [67,68]). If we assume that a random sequence of let-
ters contains no information, then the deviation from the
uniform distribution could be used to distinguish and per-
haps classify functional (that is, meaningful) text from gib-
berish. In the same vein, it is possible that functional net-
works differ significantly from random networks in the
subgraph utilization, and we can study this difference by
estimating the subgraph information content as follows.

Suppose we compute the probability to find any of the
two possible motifs that can be made of three nodes (see
Fig. 13). For simplicity, we are considering here only undi-
rected graphs, and do not allow self-interactions, that is,
nodes that link to themselves. We can then compare these
empirical probabilities to the probabilities with which
these subgraphs appear in a random network.

A priori, we might think that any of the two motifs of
size n D 3 should appear with equal probability in a ran-
dom network, giving rise to a motif entropy that is maxi-
mal:

H3( 12 ;
1
2 ) D �

1
2 log2

1
2 �

1
2 log

1
2 D 1 : (47)

Here, we defined the size-nmotif entropy

Hn(p1; : : : ; pm) D �
mX

iD1

pi logm pi ; (48)

Biological Complexity and Biochemical Information, Figure 13
Undirected motifs of size n D 3 and n D 4, without self-interac-
tion

where m is the number of possible connected motifs of
size n, and the pi are the probabilities to find the ith mo-
tif in the network. (Because the base of the logarithm is
also m, this entropy is normalized to lie between zero and
one.) The information stored within n D 3-motifs would
then be (the superscript (u) refers to the uniform baseline
distribution)

I(u)3 D H3( 12 ;
1
2 ) � H3(p1; p2) D 1 � H3(p1; p2) ; (49)

while the information stored in n-motifs is naturally

I(u)n D Hn

�
1
m
; : : : ;

1
m

�
� Hn(p1; : : : ; pm)

D 1 � Hn(p1; : : : ; pm ) :
(50)

However, even random networks do not have a uniform
distribution of motifs, and we can instead consider the in-
formation stored inmotifs compared to a random network
as baseline, as (for n D 3)

I(r)3 D H3(p
(r)
1 ; p

(r)
2 ) � H3(p1; p2) : (51)

where the p(r)i refer to the probability of finding motif i in
a random network.
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Biological Complexity and Biochemical Information, Figure 14
Motif information In for motifs of size n for evolved networks
with a uniformdistribution as a baseline (solid line, filled squares),
an Erdös–Rényi network of the same size and number of edges
and connectivity p � 0:005 (dashed line, open squares), and
a randomized network of the same size with a scale-free edge
distribution (dotted line, open circles). The motif information us-
ing theprobability distribution of a randomnetwork as thebase-
line Eq. (I(r)n ) is the difference between the solid and dashed lines
(dash-dotted line, filled diamonds)

In Fig. 14, we see the information I(u)n stored in mo-
tifs of size n for n D 3 � 7 (filled squares, solid line), for
a single, evolved, functional, simulated metabolic network
discussed in Sect. “Evolution of Information in Networks”,
of 598 nodes. The network information increases as more
complex motifs (larger n) are used for encoding, but ap-
pears to stabilize. This behavior mirrors the statistics of
n-gram entropies in English text, as noted early on by
Shannon [68]. Note that because the shortest path between
any two nodes is on average of the order of 4-5 in these net-
works [59], motifs of size 7 or larger are not well-sampled.

We can study whether the network information is dic-
tated by functionality, edge distribution, or both, by con-
structing analogous networks that have the functional-
ity removed by randomizing connections but keeping the
scale-free edge distribution, and by randomizing the net-
work but destroying also the edge distribution. If, for ex-
ample, we randomize the connections in our functional
evolved network while keeping the scale-free edge dis-
tribution, we find that the network information is only
slightly lowered (open circles and dotted line in Fig. 14).
On the other hand, if we randomize the network in such
a way that the degree distribution is that of a random graph
(but still keeping the same number of nodes and edges),
the dependence of the network information as a function
of the subgraph size is markedly different (open squares,
dashed line in Fig. 14). This suggests that the network in-

formation is significantly dictated by the biological scale-
free distribution of edges per nodes, and only weakly by
the actual function of the network.

Because random graphs do not utilize subgraphs with
equal probability (as witnessed by the non-zero network
information in Erdös–Rényi networks), it is more appro-
priate to use the random network probabilities as the base-
line to calculate the network information. In this case,
we see the network information I(r)n increase from small
values at n D 3 up to n D 6 (dash-dotted line, filled dia-
monds in Fig. 14). The decrease noted for n D 7 is due to
incomplete sampling of size n D 7 networks for this small
graph (598 nodes), and is not significant.

In summary, network information as measured by
subgraph “n-gram” entropies behaves similar to the de-
pendence of n-gram entropies in written language, and
can be used to distinguish functional networks from ran-
dom ones. However, the network information appears to
be controlled mostly by the form of the edge distribution.
Insight into the modular structure of networks will likely
depend on understanding how the subgraphs of networks
are assembled into modules, in analogy to how letters are
assembled into words in written text.

Future Directions

Several billions of years of evolution have shaped our bio-
sphere to become the complicated, interdependent, hierar-
chical complex system we witness today. Among the parts
andmembers of this system, there are certainly differences
in complexity—some obvious to any observer—some less
so. Structural complexity, the most intuitive of all mea-
sures, is notoriously difficult to define because there is no
universal system to rank all possible physical structures.
We have seen that automata theory and information the-
ory allow us to quantify the complexity of a sequence in
terms of its information content about the environment
within which it has evolved, and that this information is
a good proxy for the functional complexity of the organ-
ism precisely because the information is used by the or-
ganism to function in a complex environment.

But the measure is limited because so far it is only
practical for short stretches of DNA or single proteins.
Thus, a quantitative measure for the complexity of a whole
genome using information theory will only be possible
when a large number of complete genomes of closely re-
lated species is available. Another shortcoming of the in-
formational complexity is that it refers to a particular niche
only, and furthermore cannot quantify the complexity of
genes that are adapted to varying environments. So, for
example, so far we cannot use the informational complex-



Biological Complexity and Biochemical Information B 509

ity to estimate the complexity of an ecosystem, nor of an
organism that spends part of its lifecycle in one environ-
ment, and another part in a completely different one (sim-
ple forms of life such as arboviruses are notorious for such
a cycle). However, a natural extension of the informational
complexity exists that may cover multiple environments
both in time and space. Recall that the informational com-
plexity of an ensemble of sequences S refers to a single en-
vironment description E D e:

I(S : e) D L � H(Sje) ; (52)

where H(Sje) is the ensemble entropy of the sequences.
We can generalize this expression by promoting the en-
vironment to a true random variable E that can take on
states ei with probability p(ei). This formalism can de-
scribe environments that are composed of different (spa-
tially separated or overlapping) niches ei, as well as envi-
ronments that take on the different states ei periodically
or even randomly, in time. The informational complexity
then becomes

I(S : e)!
X

e
p(e)I(S : e)

D I(S : E) D L � H(SjE) : (53)

Here, H(SjE) is the average conditional entropy of the se-
quence ensemble S given the environment E. Whether this
construction will turn out to be useful for characterizing
the complexity of ecosystems or variable environments re-
mains to be seen, as the practical obstacles are only ampli-
fied by having to measure the informational complexity in
multiple environments. But at the very least this construc-
tion addresses one of the fundamental problems in assess-
ing functional complexity that we encountered in the in-
troduction, namely that for organisms that have adapted
to be functional in a variety of environments, we can find
genes that appear to show no phenotype upon knockout in
the laboratory. Such genes, however, may very well show
a phenotype in a particular environment that the organ-
ism encounters in the wild, and this functional capacity
of an organism needs to be taken into account when as-
sessing functional complexity. If the random variable E
accounts for the multitude of environments with the cor-
rect probabilities p(e), then the full functional complexity
of the organism may be characterized using Eq. (53). But
to apply this measure, more efforts need to be expended
towards understanding the modes in which an organism
functions in its native environment(s) (as opposed to the
unnatural laboratory conditions that are the norm today).
If such an effort is made, then as we can expect an expo-
nential increase in sequence data in the coming years, the

prospects for a general understanding of biological com-
plexity in terms of sequence complexity are good.
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Glossary

Constraint-based analysis A modeling framework based
on excluding infeasible network states via environ-
mental, physicochemical, and regulatory constraints to
improve predictions of achievable cellular states and
behavior.

Data space Multidimensional space containing all possi-
ble states of a system; this space can be reduced using
defined constraints.

Interaction network A graph where the nodes represent
biomolecules (e. g. genes) and the edges represent de-
fined interactions between the nodes, whether they be

direct physical interactions (e. g. protein–protein bind-
ing, protein–DNA binding) or functional relationships
(e. g. synthetic lethality).

Biochemical reaction network Collection of metabolic,
signaling, or regulatory chemical reactions described
in stoichiometric detail.

Statistical inferrence network A network model de-
signed from statistical inference from large-scale bi-
ological data sets to be quantitatively predictive for
novel perturbations and/or environmental conditions.

Genome The complete DNA nucleotide sequence in all
chromosomes of an organism.

Transcriptome The complete set of RNA transcripts pro-
duced from an organism’s genome under a particular
set of conditions.

Proteome The complete set of expressed proteins pro-
duced by the genome.

Metabolome The complete set of small molecules which
are the intermediates and products of an organism’s
metabolism.

Boolean network A set of N discrete-valued variables,
�1; �2; : : : ; �N where �n 2 f0; 1g. To each node a set
of kn nodes, �n1 ; �n2 ; : : : ; �nkn is assigned, which con-
trols the value of �n through the equation �n(tC 1) D
fn(�n1 (t); : : : ; �nkn (t)). In the case of Boolean net-
works, the functions fn can be chosen from the ensem-
ble of all possible Boolean functions.

Definition of the Subject

Data integration and model building have become es-
sential activities in biological research as technologi-
cal advancements continue to empower the measure-
ment of biological data of increasing diversity and scale.
High-throughput technologies provide a wealth of global
data sets (e. g. genomics, transcriptomics, proteomics,
metabolomics), and the challenge becomes how to inte-
grate this data to maximize the amount of useful biologi-
cal information that can be extracted. Integrating biologi-
cal data is important and challenging because of the nature
of biology. Biological systems have evolved over the course
of billions of years, and in that time biological mechanisms
have become very diverse, with molecular machines of in-
tricate detail. Thus, while there are certainly great general
scientific principles to be distilled – such as the founda-
tional evolutionary theory – much of biology is found in
the details of these evolved systems. This emphasis on the
details of systems and the history by which they came into
being (i. e. evolution) are distinct features of biology as
a science, and influence the need for large-scale data in-
tegration. Also, biological systems are responsive to vary-




