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Biological networks have evolved to be highly functional within uncertain environments while remaining extremely
adaptable. One of the main contributors to the robustness and evolvability of biological networks is believed to be
their modularity of function, with modules defined as sets of genes that are strongly interconnected but whose
function is separable from those of other modules. Here, we investigate the in silico evolution of modularity and
robustness in complex artificial metabolic networks that encode an increasing amount of information about their
environment while acquiring ubiquitous features of biological, social, and engineering networks, such as scale-free
edge distribution, small-world property, and fault-tolerance. These networks evolve in environments that differ in their
predictability, and allow us to study modularity from topological, information-theoretic, and gene-epistatic points of
view using new tools that do not depend on any preconceived notion of modularity. We find that for our evolved
complex networks as well as for the yeast protein–protein interaction network, synthetic lethal gene pairs consist
mostly of redundant genes that lie close to each other and therefore within modules, while knockdown suppressor
gene pairs are farther apart and often straddle modules, suggesting that knockdown rescue is mediated by alternative
pathways or modules. The combination of network modularity tools together with genetic interaction data constitutes
a powerful approach to study and dissect the role of modularity in the evolution and function of biological networks.
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Introduction

Biological function is an extremely complicated conse-
quence of the action of a large number of different molecules
that interact in many different ways. Elucidating the
contribution of each molecule to a particular function would
seem hopeless, had evolution not shaped the interaction of
molecules in such a way that they participate in functional
units, or building blocks, of the organism’s function [1–4].
These building blocks can be called modules, whose inter-
actions, interconnections, and fault-tolerance can be inves-
tigated from a higher-level point of view, thus allowing for a
synthetic rather than analytic view of biological systems [5,6].
The recognition of modules as discrete entities whose function is
separable from those of other modules [7] introduces a critical level
of biological organization that enables in silico studies. Here,
we evolve large metabolic networks based on an artificial
chemistry of precursors and metabolites, and examine
topological and information-theoretical modularity measures
in the light of simulated genetic interaction experiments.

Intuitively, modularity must be a consequence of the
evolutionary process, because modularity implies the possi-
bility of change with minimal disruption of function [1], a
feature that is directly selected for [3,8]. Yet, if a module is
essential, its independence from other modules is irrelevant
unless, when disrupted, its function can be restored either by
a redundant gene or by an alternative pathway or module.
Furthermore, modularity must affect the evolutionary mech-
anisms themselves, so that both robustness and evolvability
can be optimized simultaneously [1,9,10]. A thorough analysis
of these concepts requires both an understanding of what
constitutes a module in biological systems and tools to
recognize modules among groups of genes. In particular, a
systems view of biological function requires that we develop a
vocabulary that not only classifies modules according to the

role they play within a network of modules and motifs, but
also how these modules and their interconnections are
changed by evolution, i.e., how they constitute units of evolution
targeted directly by the selection process [4].
The identification of biological modules is usually based

either on functional, evolutionary, or topological criteria. For
example, genes that are co-expressed and/or coregulated can
be classified into modules by identifying their common
transcription factors [11,12], while genes that are highly
connected by edges in a network form clusters that are only
weakly connected to other clusters [13]. From an evolutionary
point of view, genes that are inherited together but not with
others often form modules [14–16]. Yet, the concept of
modularity is not at all well defined. For example, the fraction
of proteins that constitutes the core of a module and that is
inherited together is small [14], implying that modules are
fuzzy but also flexible so that they can be rewired quickly,
allowing an organism to adapt to novel circumstances [17].
Progress in our understanding of the modular nature of
biological networks must come from new functional data that
allow us to study different groups of genes both together and
apart, and compare this data to our topological, information-
theoretic, and evolutionary concepts.
A promising set of data is provided by genetic interactions
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[18], such as synthetic lethal pairs of genes (pairs of mutations
that show no phenotype on their own but that are lethal when
combined), or dosage rescue pairs, in which a knockout or
mutation of a gene (in general, a loss of function) is
suppressed by overexpressing another gene. Such pairs are
interesting because they provide a window on cellular
robustness and modularity brought about by the conditional
expression of genes. Indeed, the interaction between genes—
gene epistasis [19]—has been used to successfully identify
modules in yeast metabolic genes [20]. However, often
interacting pairs of genes lie in alternate pathways rather
than cluster in functional modules, do not interact directly,
and thus are expected to straddle modules more often than
lie within one [21].

In silico evolution is a powerful tool if complex networks
can be generated that share the pervasive characteristics of
biological networks, such as error tolerance, small-world
connectivity, and scale-free degree distribution [22]. If
furthermore each node in the network represents a simulated
chemical or a protein catalyzing reactions involving these
molecules, then it is possible to conduct a detailed functional
analysis of the network by simulating knockdown or over-
expression experiments. This functional datum can then be
combined with evolutionary and topological information to
arrive at a more sharpened concept of modularity that can be
tested in vitro when more genetic data become available.

Previous work on the in silico evolution of metabolic [23],
signaling [24,25], biochemical [26,27], regulatory [28], as well
as Boolean [29], electronic [30], and neural [30–32] networks
has begun to reveal how network properties such as hubness,
scaling, mutational robustness as well as short pathway length
can emerge in a purely Darwinian setting. In particular, in
silico experiments testing the evolution of modularity both in
abstract [33] and in simulated electronic networks [30]
suggest that environmental variation is key to a modular
organization of function. In the experiments we describe
below, we evolve large metabolic networks of many hundreds

of nodes with over a thousand edges for up to 5,000
generations from simple networks with only five genes. These
networks are complex—in the sense of information-rich
[34,35]—are topologically interesting, and function within
simulated environments with different variability that can be
arbitrarily controlled. We analyze these networks using new
tools that allow us to see genetically interacting pairs in the
light of different concepts of modules, and compare our
results to an application of those tools to the yeast protein–
protein interaction network.

Results

Structure of the Model
Artificial chemistry. We evolve the genomes of artificial

cells that produce metabolites within a simple artificial
chemistry of linear molecules constructed from three atoms,
termed 1, 2, and 3. In valid molecules each atom must carry as
many bonds as the numeral representing it, with a maximum
length of twelve atoms. For example, 1-2-2-1 is a valid
molecule, as is 2¼2 or 1-2-3¼3-2-1, but 1-3¼1 is not. In this
chemistry there are thus 608 valid molecules, which can
undergo chemical reactions of the form A þ B ! A9 þ B9

through a form of cleavage that preserves the atomic content.
For example, the valid molecules 1-2-2–1 and 2¼3–3¼2 can
react by cleaving each molecule in the middle (indicated by
the arrow):

1-2-2-1þ 2¼3-3¼2! 1-2-3¼2þ 2¼3-2-1
m m

Of the theoretically possible cleavage reactions (cleaving any
of the bonds of the 608 molecules and recombining them with
all other possible fragments), only 5,020,279 actually lead to
valid molecules.
Organisms. Each organism in an evolving population

consists of a cell containing molecules and proteins that
perform various functions, as well as a genome (on two
circular chromosomes) that codes for those proteins. The
cells float in a 2D chemostat in which the smallest 53 of the
608 possible molecules are produced at a constant rate at
locations from which they diffuse, and all molecules produced
by the cell and exported to the environment are removed
every update. The 53 short molecules play the role of
precursors for the synthesis of the remaining more complex
molecules. The chemostat can carry 1,000 organisms, and at
each update 1 of 16 organisms is removed (see Methods).
For a cell to divide, it must produce a sufficient amount of

some of the remaining 555 molecules (metabolites) within the
cell, by importing any of the 53 precursors using specific
transporter proteins and catalyzing any of the possible
reactions with enzymatic proteins specific to the reaction.
The precursors also leak into the cell at a concentration of a
millionth of their concentration at the cell’s location. In
principle, cells can move around on the two-dimensional
plane if they develop proteins for ciliates and flagella (for
example, to follow the source of the precursor molecules), but
these are turned off for the present experiments, so that the
cells are anchored to the center of the chemostat. A
description of enzyme and transporter affinities to molecules,
as well as details of the calculation of organismal fitness as a
function of the metabolites the cell produces is found in the
Methods.
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Author Summary

The modular organization of cells is not immediately obvious from
the network of interacting genes, proteins, and molecules. A new
window into cellular modularity is opened up by genetic data that
identifies pairs of genes that interact either directly or indirectly to
provide robustness to cellular function. Such pairs can map out the
modular nature of a network if we understand how they relate to
established mathematical clustering methods applied to networks
to identify putative modules. We can test the relationship between
genetically interacting pairs and modules on artificial data: large
networks of interacting proteins and molecules that were evolved
within an artificial chemistry and genetics, and that pass the
standard tests for biological networks. Modularity evolves in these
networks in order to deal with a multitude of functional goals, with a
degree depending on environmental variability. Relationships
between genetically interacting pairs and modules similar to those
displayed by the artificial gene networks are found in the protein–
protein interaction network of baker’s yeast. The evolution of
complex functional biological networks in silico provides an
opportunity to develop and test new methods and tools to
understand the complexity of biological systems at the network
level.
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Proteins are encoded in the genome using the alphabet
[0,1,2,3]. Each gene starts with four consecutive zeros (start
codon), followed by the expression level, the type of protein
(import, export, or catalytic), followed by the specificity to the
reaction and the affinity to the molecule transported or
catalyzed (see Methods). The genomes are evolved with a
standard Genetic Algorithm with fitness-proportional selec-
tion (Wright-Fisher model), a Poisson-random point muta-
tion rate l ¼ 1 per genome (but capping the maximum
number of mutations per genome at six), and the possibility
of gene duplication and deletion (see Methods).

Environments. In order to simulate dynamic and unpre-
dictable environments, we designed three environments that
differ in their precursor availability. In all environments the
sources of the 53 precursor molecules are randomly
distributed, and constantly replenished so that they cannot
be drawn down. In the static environment, the location of the
precursor sources is fixed throughout the experiment, while
in the quasi-static environment the location of a single
random precursor is moved each update. In the dynamic
environment, the source of all precursors is moved every
update, and 25% of the precursors are randomly chosen to be
unavailable. The set of unavailable precursors also changes
periodically. Most experiments were repeated in each of these
environments.

Organism and network evolution. Cells are initialized with
a genome encoding five genes: two proteins catalyzing
molecular reactions that produce metabolites that contribute
to fitness, one that produces a metabolite that does not
contribute to fitness, one import protein and one export
protein (see Methods). Different metabolic pathways evolve
depending on the imported molecules and their abundance,
and can be represented by a network connecting molecules
and proteins. For example, the pathway importing molecule
1-2-1 with protein A, molecule 1-2-2-1 with protein B, and
catalyzing the reaction 1-2-1þ 1-2-2-1! 1–1þ 1-2-2-2-1 with
protein C and subsequent export of 1–1 using protein D
(Figure 1A), can be represented as a graph in at least three
different ways. The functional graph (Figure 1B) uses both
proteins and substrates as nodes, and connects them with
edges. The metabolic graph (also called substrate graph [36],
Figure 1C) removes the proteins and places edges between
substrates connected via an enzyme. In a protein–protein

interaction graph all substrates are stripped, leaving only the
interaction between enzymes and transporters as in Figure
1D. The different renditions of the same pathway as networks
lead to different topological properties.
Phylogenetic depth. In asexually evolving populations,

every organism has a unique line of descent that connects it
to the ancestral genome, via intermediary genomes carrying
heritable genetic differences between mother and daughter
genome that occurred during reproduction. Often these
changes are single substitutions, but can also be duplications
or deletions of genomic sequences of various lengths. Because
the environments present the same niche to every organism,
the lines of descent coalesce quickly to a single dominating
type irrespective of the depth. Since beneficial mutations are
very common, the phylogenetic depth is a good proxy for the
number of generations elapsed in a run up to that depth.

Network Evolution
Networks evolve to be highly complex, increase in size and

develop complex pathways to metabolize the precursors.
Typically, pathways evolve first via duplication and diver-
gence of the existing genes, but later pathways are combined
and new pathways emerge by evolving import proteins for
precursors that leak into cells and for which catalytic proteins
had evolved. Reaction networks are complicated, involving
loops and multiple interconnections.
Genetic information content about environment increases

in evolution. In the example experiment depicted in Figure 2,
genomes evolve to close to their maximum size of 60,000 base
4 coding positions—from hereon referred to as ‘‘base pairs’’
(bps)—from an initial size of 2,000 base pairs (of which only
880 are functional) with an information content of approx-
imately 36 bps or 72 bits (see Methods). In order to study the
evolution of function, we followed the evolution of fitness,
the number of nodes and edges of the network, and the
genome’s information content (as described in Methods),
along the line of descent of the population. The order of a
genome in the line of descent is given by the genome’s
phylogenetic depth from the ancestral genome (see Methods).
We show in Figure 2 the fitness, information content, and

number of nodes and edges for three runs in different
environments, for every 100th organism on the line of
descent, to a depth of 5,000. The information content
increases in lock step with the fitness, indicating that the
information content is a good proxy for the functional
complexity of the cells. We found no evidence that the
amount of information that is acquired ultimately depends
on whether the environment is dynamic or not. However,
networks evolve more slowly in dynamic environments
because the unpredictable environment requires more com-
plex pathways for the organism to function reliably.
Evolved metabolic networks have pervasive properties. The

metabolic networks generated by the evolved genomes can be
analyzed using standard tools, and display some of the usual
properties that distinguish biological networks from random
graphs [22]. Figure 3 shows the average degree distribution
obtained from 80 networks independently evolved to depth
1,000 in a dynamic environment, and binned using a
threshold binning method [37]. The distribution depends on
whether a functional, metabolic, or protein–protein inter-
action graph (as defined in Figure 1) is drawn. Both the
functional and the metabolic network appear approximately

Figure 1. Representations of a Metabolic Pathway

Pathway importing precursors 1-2-1 and 1-2-2-1 using transport proteins
A and B, respectively, producing molecules 1-1 and 1-2-2-2-1 via
enzymatic protein C, and exporting the by-product 1–1 using protein D.
(A) Pathway, (B) functional graph, (C) metabolic graph, and (D) protein–
protein interaction graph.
doi:10.1371/journal.pcbi.0040023.g001
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scale-free, a finding commensurate with an analysis of the
degree distribution of the central metabolic network of E. coli
[36]. The distribution for the protein–protein interaction
graph (Figure 3C) is exponential on the other hand, and
similar to that of a random modular network [38]. On the
contrary, the protein–protein edge distribution found in Ref.
[36] for E. coli is more power-law like than the one we find
here, but this evidence is weak due to a long exponential tail.
Note that the probability to have four edges deviates from the
power law in Figure 3A because all reactions are of the form
Aþ B ! A9þ B9 in this model.

The probability distribution that a substrate participates in
k metabolic reactions is also a power law, with p(k) ; k�k with
k ’ 2.23 (Figure S1). A similar value was found empirically for
this distribution in the E. coli metabolic network [22].

The paths between nodes in the network (the ‘‘average
geodesic distances’’, see Methods) are short (‘‘small-world
networks’’), normally distributed (Figure S2), and they remain
short even as the network size grows during evolution (Figure
S3). This small-world character has been shown to be a
universal feature of metabolic networks in 43 organisms
[22,36], and is hypothesized to be an adaptation geared
towards minimizing the transition time between metabolic
states when reacting to changed external conditions.

Similar to what was observed in yeast protein–protein
interaction networks [21], the path length in our networks
increases dramatically up to a break point when nodes that
are characterized as hubs are removed from the network (see
Figure 4), but increases smoothly until the network almost

collapses if random nodes are removed instead. In Figure 5,
we show a network evolved in a dynamic environment, with
534 genes producing 435 molecules, with nodes representing
molecules and proteins (functional network annotation,
rendered with PAJEK [39]).
Network modularity increases in evolution. We can assign a

network modularity score to every network on the evolu-
tionary line of descent using the information bottleneck
algorithm of Ziv et al. [40] as described in Methods. The
modularity of the networks increases over evolutionary time
in the long run, but can go up or down intermittently as new
pathways are forged. Figure 6 shows an average of the
modularity measured in nine independent runs performed in
dynamic and static environments. While the network
modularity is similar when the networks are small, the
modularity score of networks evolved in dynamic environ-
ments is significantly lower on average for most of the time.
To cope with the unreliable precursor supply in dynamic
environments, networks that evolve in such environments
ensure the presence of precursors by evolving the requisite
production pathways and integrating them into the meta-
bolic pathways. The precursor reactions effectively connect the
main metabolic pathways. Indeed, the fraction of genes
involved in the production of precursor molecules increases
dramatically for networks evolving in dynamic environments,
and only decays due to the increased production of
metabolites later, when the presence of precursors can be
relied upon. In other words, while functional pathways
emerge both in the static and the dynamic networks, these

Figure 2. Evolution of Complex Networks

(A) Log (base 10) of fitness along the line of descent, starting with the ancestor (phylogenetic depth zero) to the 5,000th organism on the line, for a
static (green), quasi-static (blue), and a dynamic (red) environment.
(B) Information content of genes (measured in base pairs) along the linse of descent every 100 generations, colors as in (A).
(C) Evolution of number of nodes (points) and edges (crosses) along the line of descent. Colors as in (A).
doi:10.1371/journal.pcbi.0040023.g002

Figure 3. Degree Distribution for Evolved Networks

Probability distribution P(k) based on functional (A), metabolic (B), and protein–protein (C) representation of interactions. The functional distribution
decays approximately as P(k) : 1/kc with c¼ 2.53 (minimum T¼ 20 points per bin, r 2¼ 0.91, fit not shown). Excluding the point at k¼ 4 yields c¼ 2.52
with r 2¼ 0.97 (blue line, T¼ 20). The metabolic distribution decays with c ’ 2.34 (line, T¼ 20, r 2¼ 0.87). The protein–protein distribution was fitted to
an exponential (binning threshold T¼ 100, r 2 ¼ 0.88). Error bars are standard error.
doi:10.1371/journal.pcbi.0040023.g003
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pathways are connected by precursor reactions (and as a
consequence overlap) for the dynamic environments, where-
as they can remain separate for networks evolved in static
environments.

Our finding that networks evolved in dynamic environ-
ments are less modular than those evolved in static environ-
ments appears to run opposite to the conclusion reached by
Kashtan and Alon [30], who noted that dynamic environ-
ments are necessary for the evolution of modularity.
However, metabolic networks are very different from the
type of logical networks evolved there, as is the nature of
environmental changes. Our dynamic environments change
randomly, whereas Kashtan and Alon’s environment changes
in a modular fashion, rewarding one or the other function in

turn. We further comment on this observation in the
Discussion.
Mutational and environmental robustness decrease. Bio-

logical networks have evolved to be robust to mutations,
knockouts, and environmental noise, as compared to random
networks [3]. This robustness is believed to be due to genetic
redundancy [41] as well as to the interaction between
unrelated genes that can compensate for loss of function
[42]. We have measured the robustness of our evolved
networks to node removal as well as to environmental noise,
by measuring the fitness of cells as more and more nodes are
removed, and as more and more of precursor molecule
concentrations are set to zero. The scaled fitness of cells
decreases approximately exponentially with the number of
nodes or precursors removed (see Figure S4A and S4B), with a
fitness decay parameter that reflects the fitness effect of
accumulating mutations (see Methods). The larger this
parameter the more fragile the organism; consequently we
define robustness as one minus fragility. We show the
robustness parameter qKO and qENV along the line of descent
in Figure 7. Node removal robustness (qKO) barely decreases
as the networks become more fit (even though the fitness
effect is scaled to the wild-type fitness), independently of the
type of environment. Environmental robustness (qENV)
decreases for the static and quasi-static environments, but
remains nearly constant for the dynamic environment.
Genetic interactions and modularity. To understand how

modules interact, we studied whether genetic interactions
occur predominantly between genes within modules or
between modules, for the networks evolved in dynamic vs.
static environments. We used two different methods to
determine clusters: a topological one (betweenness-centrality
clustering), and an information-theoretic one (network bot-

Figure 5. Evolved Metabolic Network

The functional network of a cell with phylogenetic depth 5,000, with 969 nodes and 1,698 edges.
doi:10.1371/journal.pcbi.0040023.g005

Figure 4. Average Diameter (Path Length) under Node Removal

Average network diameter at depth 5,000 under node removal, for the
functional network. Light colored dots, path length with removal of
hubs; dark colored dots, path length with removal of random nodes;
green, static environment; blue, quasi-static; and red, dynamic environ-
ment. The breakdown under hub removal comes at about 200 hubs
removed.
doi:10.1371/journal.pcbi.0040023.g004
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tleneck method, see Methods). For both of these methods, the
clustering method returns a ranked list of nodes, but the
orders are different, and they reflect different properties of
the nodes. Modules are often thought to communicate with
each other via nodes with high betweenness centrality (BC) [43].
Such nodes are distinguished not by their connectivity, but by
being major signal thoroughfares: the shortest path of many
pairs of nodes runs through them ([44,45], see Methods). To
test the modular structure of our networks, we remove nodes
with high BC one by one in the order of their (reiterated) BC
rank, and study the rate at which pairs of nodes with a given
character are separated, i.e., the path between them is severed.

We obtained a list of synthetic lethal pairs by finding all
those pairs of genes whose knockout does not affect fitness on
their own, but cause a loss of fitness when knocked out
together. Such pairs (for the network shown in Figure 5 we
found 44 of them) tend to stay together (red line in Figure 8A),
suggesting that synthetic lethals tend to cluster together
within modules, and are only weakly affected by the removal
of nodes with high BC. This is reflected in the distance
distribution: synthetic lethals tend to be very close to each
other. We also studied genes that interact via knockdown
suppression or rescue. A gene rescues the knockdown
(technically, downregulation by a factor 10) of another gene
if the overexpression (upregulation by a factor of two) of that
gene restores—even partially—the loss of metabolites suffered
by the cell upon knockdown of the other gene. We ranked the
pairs of genes by the absolute amount of recovered loss, that is,
pairs where a knockdown only led to a small loss of
metabolites are ranked lower, even if all of that loss was
recovered by overexpression of the partner gene. For the
analysis in Figure 8A, we used the top 95% of all knockdown
suppression pairs (7,290 pairs). Using different thresholds (see
Figure S5) does not change the picture appreciably.

The rate at which pairs of genes are separated is explained

in part by their distance distribution (Figure 8B): the closer
two genes are in a network, the lower the probability they are
broken up by removing nodes with high BC. Note that we
have omitted odd distances in Figure 8B because in the
functional network these are represented by molecules,
whereas the pairs studied here are proteins. Thus, the
distance between any two proteins is even. As a baseline for
comparison, we use the rate at which random pairs of genes
are separated (black line in Figure 8A).
When removing nodes with high BC, knockdown suppres-

sor pairs (green) are separated quickly, in fact much more
quickly than is suggested by their distance distribution, which
peaks in between that of the random pairs and the synthetic
lethal pairs (Figure 8B). A neutral assumption would be that
distant pairs have a higher chance to be disrupted by a node
removal. Instead, random pairs (whose average distance is the
largest) stay connected much longer than knockdown
suppressor (or more generally, compensatory) gene pairs.
This is possible if compensatory gene pairs are preferentially
connected by nodes with high BC, or are themselves nodes
with high BC. Since nodes with high BC are thought to
connect modules, we can deduce that compensatory gene
pairs preferentially straddle modules.
We also studied how the decay of genetically interacting

pairs compares to global topological properties, and com-
pared their behavior to similar experiments performed in
random networks. The size of the largest connected compo-
nent in the functional network (grey line in Figure 8A) decays
somewhat more slowly than random pairs because disrupting
such pairs does not necessarily change the connected
component. We can also ask whether the peculiar scale-free
degree distribution is dictating the behavior of the random
pairs under node removal. The fraction of random pairs of
nodes from a randomized network with the same number of
nodes, edges and degree distribution as our evolved network
(black dotted line in Figure 8A) is decreasing much more
slowly, however, indicating that they are not separated by
nodes with high betweenness centrality. In other words,
random networks—even when constructed to have precisely
the same degree distribution as our functional networks—are
not modular in a topological sense. Very similar conclusions
can be drawn from networks evolved in static or quasi-static
environments (see Figures S6 and S7).
We can compare the behavior of these genetically

interacting pairs in evolved metabolic networks to equivalent
pairs in the highly curated yeast protein–protein interaction
network of Reguly et al. [18] of 1,038 nodes with the genetic
interactions removed. For this network, both synthetic lethal

Figure 7. Evolution of Robustness

(A) Node removal (qKO) and (B) environmental (qENV) robustness along
the line of descent for a static (green), quasi-static (blue), and a dynamic
(red dots) environment as a function of phylogenetic depth.
doi:10.1371/journal.pcbi.0040023.g007

Figure 6. Network Modularity as a Function of Evolutionary Depth

Network modularity score for networks evolving in a dynamic (red line)
compared to a static environment (green line). Each line represents the
average over nine independent runs. Errors are standard error. Because
the modularity score can only be calculated for networks of sufficient
size, we show the modularity starting at a depth of 650.
doi:10.1371/journal.pcbi.0040023.g006
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and compensatory pairs are separated later than random pairs
(see Figure 9, list of synthetic lethal and dosage rescue pairs
from Reguly et al. [18]). However, synthetic lethals are still
separated later than compensatory pairs of genes, suggesting
that synthetic lethals are preferentially found within, rather
than between, modules. Interestingly, pairs of nodes from a
randomized yeast network (retaining number of nodes, edges,
and edge distribution) decay more slowly than compensatory
genes, just as in our metabolic networks. We discuss the
difference between our evolved metabolic networks and the
yeast protein–protein interaction network as revealed by this
analysis further below.

We can also study the relationship of genetically interact-
ing pairs with clusters determined by an information-
theoretic method [40]. Clusters determined by this method
are chosen so that they simplify the original network while
the relevant character of the network (the fidelity) is
determined by network diffusion (see Methods). This algo-
rithm results in a list of nodes that reflects the order in which
nodes are merged to generate the optimal clustered network.
We can use this list to study the fraction of genetically
interacting pairs that remain separate under the node
merging procedure (shown in Figure 10) in a manner similar
to the procedure used to obtain Figure 8. However, the order
of the nodes in the information-clustering list is fundamen-
tally different from that reflecting betweenness centrality: the
nodes that are merged first into modules are by definition
those that are information-theoretically redundant and are
close to each other under graph diffusion. Thus, we expect
the pairs that are close to each other in graph diffusion
distance to be merged first. Figure 10A shows the rate at
which synthetic lethal and knockdown suppressor pairs
remain separate for the largest connected component of
the same network as analyzed in Figure 8A. The same analysis
applied to the largest connected component of the yeast
protein–protein interaction is shown in Figure 10B, where
dosage rescue pairs are used as a surrogate for knockdown
suppressor pairs. In both cases, random pairs remain separate
the longest while genetically interacting pairs are merged
much earlier. In yeast, synthetic lethals are merged earlier
than dosage rescue pairs, suggesting again that synthetic
lethals are preferentially found within modules. The situation
is less clear for our artificial metabolic networks. There,

synthetic lethals and compensatory (suppressor) pairs are
separated at different rates, depending on the coarse-
graining of the network. Still, genetically interacting pairs
are markedly different from random pairs of genes under this
procedure, highlighting their importance for the study of
modularity.

Discussion

Evolution shapes our artificial metabolic networks into
complex tightly connected pathways that are modular in
nature, and that share many of the well-known properties of
biological networks, such as scale-free edge distribution,
small-world connectivity, and hubness. We can use these
networks to study how established concepts of modularity—
such as betweenness centrality clustering and information-
theoretic modularity—compare to the rate at which genet-
ically interacting pairs are disrupted by either removing
nodes with high BC, or merging nodes that have been
assigned to the same information-theoretical cluster. By
evolving networks in different environments that are ex-
pected to yield different modularities, we can dissect the
impact of genetically interacting pairs on modularity notions.
When we compare the behavior of genetically interacting
pairs in our evolved networks to those in the yeast protein–
protein interaction network, we find commonalities and
some discrepancies.
One of our main findings is that synthetic lethal pairs

usually lie within modules, no matter how modules are
defined, and that compensatory (suppressor) pairs preferen-
tially straddle modules. We also find that in our metabolic
networks, many nodes that are assigned the same module in
fact have high betweenness centrality themselves, a property

Figure 9. Modularity Analysis for the Yeast Protein–Protein Interaction

Network with Topological Clustering

Fraction of pairs of genes that remain connected upon removal of nodes
with the highest betweenness centrality, for the highly curated yeast
protein–protein interaction network and synthetic lethal and dosage
rescue pairs of Reguly et al. [18]. Red line, synthetic lethal pairs; green,
dosage rescue pairs; black solid line, random pairs; grey line, random
pairs of the randomized network.
doi:10.1371/journal.pcbi.0040023.g009

Figure 8. Modularity Analysis and Distance Distribution for Topological

Clustering

(A) Fraction of pairs of genes that remain connected upon removal of
nodes with the highest betweenness centrality, for the evolved network
depicted in Figure 5. Red line, synthetic lethal pairs; green, knockdown
rescue pairs; black solid line, random pairs; black dotted line, random
pairs of a random network; grey line, relative size of largest connected
component.
(B) Distance distribution of pairs of genes. Colors as in (A).
doi:10.1371/journal.pcbi.0040023.g008
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that does not appear to be shared with the yeast protein–
protein interaction graph, where random pairs separate
faster than compensatory pairs. A number of differences
between the networks can explain these findings. First, the
functional graphs (Figure 1B) we use to determine nodes of a
network have a different connectivity pattern than protein–
protein interaction networks as shown in Figure 3, and are
sparser. Second, the multi-copy suppressor pairs we use to
mark genetic compensation in our metabolic networks are
different in nature from the dosage rescue pairs listed in
Reguly et al. [18]. Also, synthetic lethality for metabolic
networks refers almost exclusively to functional redundancy,
whereas synthetic lethality in yeast can involve complex and
indirect interactions. While in principle we could have
restricted the comparison of our evolved networks to only
the metabolic component of the yeast interaction network,
the number of genetically interacting pairs of genes affecting
metabolic genes in Reguly et al. is not sufficient to establish
significance. Experimental work in progress by several groups
to obtain a large number of multi-copy suppressor pairs in
yeast will change this situation dramatically.

We find no evidence that dynamic environments are
required for the evolution of functional modules [30,33].
Rather, it appears that genes segregate into functional
modules as long as there are a large number of different
ways to achieve functionality. Indeed, on the contrary,
metabolic networks evolved in dynamic environments appear
to be less modular. We can understand this finding by noting
that our dynamic environments change randomly by omitting
the availability of a random fraction of precursors, as
opposed to the modular changes implemented in Ref. [30].
To deal with the unpredictability of the environment, our
metabolic networks first evolve reactions that produce
precursors from other precursors and metabolites (see Figure
S8) such that several different genes produce the same
precursor from different precursors and metabolites at any
point in time. In that way, the evolved redundancy ensures
the presence of any particular precursor. Because this
redundancy creates connections between pathways, the
modularity score of such networks is lower. We also find that
networks evolve more slowly in dynamic environments, but
they are more robust to environmental fluctuations in return.

Thus, at least for metabolic networks, robustness and
modularity do not necessarily go hand-in-hand.
The in silico evolution of functional networks based on

artificial genetics and chemistry presents an opportunity to
study how complex networks, their structure and organiza-
tion, evolve over time to cope with environments with varying
degrees of predictability. We believe that such networks can
provide a formidable benchmark for experiments with
biochemical networks, and allow predictions with hitherto
unavailable accuracy. The type of functional interaction
experiments that we performed on our large evolved
networks anticipates high-throughput efforts currently under
way using temperature-sensitive yeast deletion mutants and
their multi-copy suppressors, and suggests that dosage rescue
(or multi-copy suppressor) pairs of genes represent an
appropriate and sensitive tool to study modularity in
biological networks.

Methods

Genome code and organization. Molecular interactions occur
through proteins that catalyze the reactions between the molecules
of our artificial chemistry and transport them in and out of cells.
These proteins are encoded by an artificial genetics using the four
‘‘nucleotides’’ 0, 1, 2, and 3 and determine the rate at which the
reactions proceed. An open reading frame on a chromosome starts
with four zeros (see Table S1), followed by a code indicating the
expression level, followed by a tag designating the protein type,
followed by the specificity and the affinity. The specificity is a 12
nucleotide stretch that determines the target molecule or reaction
(e.g., if the tag is ‘‘import’’, 123321000000 specifies that molecule 1-2-
3¼2-1 is transported into the cell). Reactions are specified by mapping
the 5,020,279 legal reactions to the 412 ¼ 16,777,216 possible 12-mer
specificities, in such a manner that any mutation in the specificity
region is guaranteed to catalyze a legal reaction.

A protein’s affinity is determined by an ‘‘active site’’ that has four
domains; one each for the four molecules involved in the reaction Aþ
B ! A9 þ B9. The binding affinity of a transport protein to the
specified target is obtained by averaging the affinity of all four
domains. Each domain has twelve entries that are matched to
particular molecules (of maximally twelve atoms) in the following
manner. First, a molecule is translated into its binary equivalent, for
example, 1-2-3¼3-2-1 is 01-10-11-11-10-01-00-00-00-00-00-00 (zeros
are used to pad molecules smaller than 12 atoms). The 24 bit domain
of the protein P is compared with the binary equivalent of the target
molecule M, resulting in an affinity score D(M,P) that is highest if the
protein domain is precisely complementary to the molecule. So, for
example the perfect domain for molecule 1-2-3¼3-2-1 is 10-01-00-00-
01-10-11-11-11-11-11-11. Numerically, D(M,P) is obtained as 1 �
S(M,P), where S(M,P) is a similarity score

SðM;PÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

108

X12
i¼1

f 2ðmi � piÞ

vuut

where f ðmi � piÞ is the base-10 translation of the logical bitwise
EQUAL of the molecule’s and protein’s ith site. The base-10
translation of the equivalent of a perfect match (‘11’) is 3, so that
the maximal

P12
i¼1 f 2ðmi � piÞis 12 3 32 ¼ 108, ensuring that 0 �

A(M,P) � 1. The complementarity scheme is chosen to minimize the
occurrence of domains of the type 00-00-00–00, as they would be
decoded as start codons. The maximal genome size in this model
is 120,000 bits, or 60,000 nucleotides, on 2 circular chromosomes.
Genes are allowed to overlap. Note that because of the absence of
recombination, one of the two chromosomes consistently degener-
ates during evolution so that all of the complexity ends up contained
in a single circular genome.

Chemostat physics and reaction kinetics. Cells live in a two-
dimensional space where precursor molecules are produced at
defined locations and diffuse out, so that the concentration of
molecule M at distance d from the source, [M](d), depends on the
concentration at the source via

Figure 10. Modularity Analysis Using Information-Theoretic Clustering

Fraction of pairs remaining separate as nodes are merged according to
the information bottleneck clustering.
(A) Largest connected component of a metabolic network evolved in a
dynamic environment. Red line, synthetic lethal pairs; green line,
knockdown suppressor pairs; black, random pairs.
(B) Largest connected component of the yeast protein–protein
interaction network. Colors as in (A), but compensatory pairs are dosage
rescue pairs.
doi:10.1371/journal.pcbi.0040023.g010
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½M�ðdÞ ¼ ½M�ð0Þ 1ffiffiffiffiffiffi
2p
p e�d

2=2; ð1Þ

which is the solution of the diffusion equation with a diffusion
coefficient D¼ 1/2, at time t ¼ 1.

Molecule concentrations [Mi] are updated according to a dis-
cretized version of the standard metabolic rate equations [46]

D½Mi� ¼
Xr
j¼1

cijvj ; ð2Þ

for molecules i¼0. . .607, where the sum runs over reactions j¼1 to r,
and the matrix cij is the connectivity matrix of the network defined as

cij ¼
�1
þ1
0

if molecule i enters reaction j
if molecule i exits reaction j

otherwise

8<
:

9=
;

and vj is the metabolic flux

vj ¼
X
l;m

½Ml�
koutl

RðjÞlm
½Mm�
koutm

AðjÞ½Pj �: ð3Þ

In Equation 3, koutl is the number of edges leaving molecule l, and
we defined the reaction matrix for reaction j

RðjÞlm ¼
1 if reaction j takes molecules l and m as input
0 otherwise

� �
;

as well as the affinity A( j ) by

AðjÞ ¼ 1
4

X4
p¼1

DðMp;PpÞ; ð4Þ

where D(Mp,Pp) are the affinities of protein domain Pp to the
molecules Mp as defined above.

Organism fitness. The fitness of an organism is determined by the
amount and complexity of the molecules it can metabolize from the
precursors. The 608 possible molecules of the artificial chemistry are
numbered according to their complexity (length and type of atoms):

M0 : 1� 1
M1 : 2 ¼ 2
M2 : 3[ 3
M3 : 1� 2� 1
M4 : 1� 3 ¼ 2
M5 : 2 ¼ 3� 1

..

.

M607 : 2 ¼ 3� 3 ¼ 3� 3 ¼ 3� 3 ¼ 3� 3 ¼ 3� 3 ¼ 2

and the first 53 molecules are arbitrarily termed precursors. The
remaining 555 molecules are metabolites of increasing complexity
(the most complex one being M607). Each different molecule
metabolized by the cell contributes to the total fitness. If D(Mi) is
the total amount of molecule i synthesized by the cell, the total fitness
is calculated using the fitness value of each the molecules Mi, which
depends on its index i via

/ðMiÞ ¼
0 ði, 53Þ
i2

6082
ði � 53Þ

8<
:

9=
;; ð5Þ

as

w ¼
Y

iproduced

ð1:1þ /ðMiÞDðMiÞÞ: ð6Þ

In Equation 6, the product extends only across metabolites that
have achieved non-vanishing abundance during a cell’s lifetime.

Because of the explicit dependence of a cell’s fitness on the
concentration of precursors in the cell’s vicinity, fitness is context
dependent, and in principle depends on the frequency of other cells
in a population. Due to the multiplicative nature of the fitness
function, the discovery of new pathways is always beneficial with the
same percentage, and the fitness increases exponentially during
evolution. We usually plot the logarithm of the fitness, which is
additive.

Evolution. A Genetic Algorithm [47] is used to evolve circular
genomes encoding genes using the nucleotide alphabet [0,1,2,3].
Mutations are Poisson-random with a mean of one mutation per
genome (and a maximum of six mutations per genome). With a
probability of 1/16 per genome, a stretch of 4–512 base pairs is

duplicated and inserted directly adjacent to the duplicated stretch.
With the same probability, a stretch of the same size is deleted from
the genome. No recombination takes place between genomes. The
probability for a genome to be replicated is proportional to the
fitness calculated in Equation 6 (Wright-Fisher selection). Organisms
must be at least 8 updates old before they can replicate, and they are
protected from death during those first 8 updates.

Ancestral genome. We designed the ancestral genome to have 3
genes on the first 1,000 bp chromosome, with the 2nd chromosome of
1,000 bps filled with poly-‘39s in order to be as distant as possible to
start codons. However, it turned out that the third gene has a start
codon (0000) within its specificity domain as well as in the sequence
specifying the expression level, both of which give rise to two
additional proteins in overlapping reading frames (see Figure 11).
Those proteins, because they are useless to the organism, quickly
disappear within the first tens of generations. The spaces between the
first three genes are filled with random sequence, and the 880 bp
genome is padded with 120 poly-‘39s, to make up the 1,000 bp of the
ancestral genome as sketched in Figure 11.

Information content. The complexity of an organism can be
estimated by the amount of information its genome encodes about
the environment within which it thrives [34,35,48]. We can estimate
the information content I of a sequence s of length L encoding the
bases 0,1,2,3 by I¼L�H(s), where the entropy of the sequence H(s) is
approximated by the sum of the per-site entropies HðsÞ’

PL
x¼1 HðxÞ,

with a per-site entropy

HðxÞ ¼ �
X3
i¼0

pilog4pi: ð7Þ

In Equation 7, the pi are the probabilities to find base i at position
x, which can be obtained from an alignment of genomes in mutation-
selection balance. For small populations and long genomes, this
balance is not achieved, and the substitution probabilities pi must be
estimated using the fitness effect of each substitution wi according to
the implicit equation [49]

pi ¼
piwi

�w
ð1� lÞ þ l

4

X3
j¼0

pjwj

�w
; ð8Þ

where �w ¼
P3

i¼0 piwiis the mean fitness of the possible alleles at that
position and l is the mutation rate per site. We obtain the fitness wi
of each allele at each position by constructing the genotype and
evaluating the fitness of the cell it gives rise to in the appropriate
environment. (Mutations that appear to be beneficial are counted as
wild-type fitness.) Using the four values wi, the probabilities pi can be
obtained by iterating Equation 8 10,000 times or until the variance of
all pi drops below 10�12.

Information-theoretic clustering. To assign a modularity score to
our networks, we use the information bottleneck method [50], as
applied to biological networks by Ziv et al. [40]. Briefly, the method
assigns clusters to the nodes of a network described by a random
variable X using an assignment random variable Z and a relevance
variable Y (the bottleneck) by maximizing both the simplicity of the
description (maximizing themutual entropy between the graph and its
description I(X : Z)) and its relevance or fidelity (maximizing I(Y : Z)).
This is achieved via a hard clustering method that starts with a
description Z with one fewer nodes than X, then calculates the
conditional probability p(z j y) from a diffusion process and selects
those nodes of X to merge in the description Z that result in the highest
I(Y : Z). This process iterates until all the nodes have been joined and the
size of Z is one. This procedure results in a list of nodes (from highest
cluster probability to lowest) that can be used to study how synthetic
lethal and knockdown suppressor pairs are merged as an alternative to
the topological clustering via betweenness centrality. A modularity
score for each network is obtained as the area under the information
curve obtained by plotting the normalized quantities I(Z : X)/H(X) and
I(Z : Y)/I(X:Y) against each other [40]. Because random graphs give rise
to an information curve with area 0.5, any modularity score above 0.5
signals a modular organization of the network. To obtain the
modularity score in Figure 6, we averaged the modularity score of
the largest, second largest, etc. connected components of the network
li weighted by their relative size. Thus, if the ith largest connected
component of the network of size N is ni, then the average modularity
score is (note that ni � 5 is required as the modularity of smaller
networks cannot be obtained)

hli ¼
X
i

ni
N

li: ð9Þ
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Average geodesic distance. The average distance D of each node to
any other defines the average geodesic distance of a graph

D ¼ 1
m

Xn
i¼1

Xn
j¼1

dði; jÞ; ð10Þ

where n is the total number of nodes, d(i, j) is the shortest path
distance between i and j, and m is the total number of edges.

Network and environmental robustness. We measure the robust-
ness of evolved networks with respect to node deletions and to
changes in the precursor concentrations. Even though these
perturbations are unrelated prima facie, there is evidence that
mutational robustness and robustness to noise are correlated [28]. We
measure mutational robustness by removing n random nodes and
determining the (scaled) fitness of the remaining graph �wðnÞ

wð0Þ, where
�wðnÞ is the mean of 1,000 independent fitness measurements of a
network where n random nodes have been removed. The fitness
decreases exponentially as long as less than 30% of the nodes are
removed, suggesting a (‘‘knock-out’’) robustness parameter qKO
defined via

�wðnÞ
wð0Þ ¼ expð�nð1� qKOÞÞ: ð11Þ

Environmental robustness is determined by evaluating the fitness
of an organism as more and more of the 53 precursor molecules are
removed. Fitness declines exponentially with the number of deleted
nodes or chemicals removed, and robustness can be quantified by
the slope of the decrease of log fitness, defining qENV in a similar
manner.

Betweenness centrality. The betweenness centrality of a node in a
network topology measures how many shortest paths go through that
node. If bi is the ratio of the number of shortest paths between a pair
of nodes in the network that pass through node i and the total
number of shortest paths between those two nodes, then the unscaled

betweenness of node i is B9i ¼
P

all pairs bi, and the (scaled) between-
ness centrality is [45]

Bi ¼
2B9i

ðn� 1Þðn� 2Þ ; ð12Þ

where n is the number of nodes in the network. The betweenness
centrality is positive and always less than or equal to 1 for any network.

Software availability. The software to implement the artificial
chemistry and genetics, as well as the evolution experiments
described in this manuscript, is available at http://public.kgi.edu/
;ahintze.

Supporting Information

Figure S1. Distribution of Molecules in Reactions

Probability distribution p(k) that a molecule participates in k
reactions, compiled from 80 runs to depth 1,000 in a dynamic
environment. The distribution is fit to a power law, with k ’ 2.23 (r2¼
0.88). Error bars are standard error. Variable bin sizes are determined
by the threshold binning method [37], with a minimum of T ¼ 100
points per bin.

Found at doi:10.1371/journal.pcbi.0040023.sg001 (135 KB PDF).

Figure S2. Evolution of Path Length Distribution

Evolution of the distribution p(d), the probability to find two nodes in
the network that are a distance d apart, for every 1,000th network on
the line of descent, for a network evolved in a dynamic environment.

Found at doi:10.1371/journal.pcbi.0040023.sg002 (409 KB PDF).

Figure S3. Average Path Length D on the Line of Descent

Mean path length D (see Methods) for a network with (A) metabolic,

Figure 11. Structure of the 1,000 bp Ancestral Genome Used To Start All Evolutionary Runs

Each gene begins with a start codon (green), followed by type, expression level, and specificity determining regions (red, yellow, pink, respectively),
followed by domains encoding protein affinity. The last two reading frames (at 800 bp and 808 bp) are overlapping genes.
doi:10.1371/journal.pcbi.0040023.g011
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and (B) protein–protein annotation, in three different environments,
for the network evolution shown in Figure 2. Green, static; blue,
quasi-static; and red, dynamic environment.

Found at doi:10.1371/journal.pcbi.0040023.sg003 (347 KB PDF).

Figure S4. Robustness of Fitness under Precursor and Gene Removal

Decrease of normalized log fitness with increasing precursor removal
(A), node removal (B), as a function of the position on the line of
descent (colors in inset of (A)). Depth 0: ancestor.

Found at doi:10.1371/journal.pcbi.0040023.sg004 (409 KB PDF).

Figure S5. Robustness of Decay of Knockdown Suppressor Pairs

Fraction of knockdown suppressor pairs separated upon removing
nodes with high BC using all (100%, weakest criterion) or fewer (only
the top 10%–80%) of suppressor pairs. The top 95% of pairs were
used for Figures 8A and S6. See legend for colors and thresholds.

Found at doi:10.1371/journal.pcbi.0040023.sg005 (409 KB PDF).

Figure S6. Modularity Analysis for Static and Quasi-static Environ-
ments

Analysis of the separation of pairs of genes from networks evolved in
a static (A) and quasi-static (B) environment, as in Figure 8A. Red line,
synthetic lethal pairs; green, dosage rescue pairs; black, random pairs;
and grey, relative size of largest connected component.

Found at doi:10.1371/journal.pcbi.0040023.sg006 (73 KB PDF).

Figure S7. Distance Distribution of Pairs of Genes

Distance distribution of pairs on a network evolved in static (A) and

quasi-static (B) environment. Red, synthetic lethal pairs; green,
knockdown suppressor pairs; black, random pairs.

Found at doi:10.1371/journal.pcbi.0040023.sg007 (409 KB PDF).

Figure S8. Fraction of Genes Producing Precursors

Fraction of genes involved in the production of one of the 53
precursor molecules for the network evolved in a dynamic environ-
ment (red) versus a static environment (green line).

Found at doi:10.1371/journal.pcbi.0040023.sg008 (409 KB PDF).

Table S1. Organization of a 72 bp Gene

Found at doi:10.1371/journal.pcbi.0040023.st001 (409 KB PDF).
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