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Abstract

We investigate the evolutionary dynamics of a finite population of RNA sequences replicating on a neutral network. Despite the lack

of differential fitness between viable sequences, we observe typical properties of adaptive evolution, such as increase of mean fitness over

time and punctuated-equilibrium transitions, after initial mutation–selection balance has been reached. We find that a product of

population size and mutation rate of approximately 30 or larger is sufficient to generate selection pressure for mutational robustness,

even if the population size is orders of magnitude smaller than the neutral network on which the population resides. Our results show

that quasispecies effects and neutral drift can occur concurrently, and that the relative importance of each is determined by the product

of population size and mutation rate.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The quasispecies model of molecular evolution (Eigen,
1971; Eigen and Schuster, 1979) predicts that selection acts
on clouds of mutants, the quasispecies, rather than on
individual sequences, if the mutation rate is sufficiently
high. RNA viruses tend to have fairly high mutation rates
(Drake, 1993; Drake and Holland, 1999), and therefore the
quasispecies model is frequently used to describe the
evolutionary dynamics of RNA virus populations (Dom-
ingo, 1992, 2002; Domingo and Holland, 1997; Domingo
et al., 2001). However, this use has generated criticism
(Holmes and Moya, 2002; Jenkins et al., 2001), because
quasispecies theory, as it was originally developed, assumes
an infinite population size and predicts deterministic
dynamics. Viral populations, on the other hand, are finite
and subject to stochastic dynamics and neutral drift.

However, the hallmark of quasispecies dynamics—the
existence of a mutationally coupled population that is the
target of selection in its entirety—does not presuppose an
e front matter r 2006 Elsevier Ltd. All rights reserved.
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infinite population size or the absence of neutral drift
(Demetrius et al., 1985; Nowak and Schuster, 1989; van
Nimwegen et al., 1999; Wilke, 2004). Rather, infinite
populations were used by Eigen (1971) and Eigen and
Schuster (1979) to simplify the mathematics of the
equations describing the population dynamics. Even
though technically, the quasispecies solution of Eigen and
Schuster, defined as the largest eigenvector of a suitable
matrix of transition probabilities, exists only for infinite
populations after an infinitely long equilibration period, it
would be wrong to conclude that the cooperative popula-
tion structure induced by mutational coupling disappears
when the population is finite. We show here that
quasispecies dynamics are evident in fairly small popula-
tions (effective population size Nep1000), and that these
dynamics cross over to pure neutral drift in a continuous
manner as the population size decreases.
We simulate finite populations of self-replicating RNA

sequences and look for an unequivocal marker for
quasispecies dynamics in this system, the selection of
mutational robustness (van Nimwegen et al., 1999; Born-
berg-Bauer and Chan, 1999; Wilke, 2001a; Wilke and
Adami, 2003). We choose RNA secondary structure
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folding (Hofacker et al., 1994) as a fitness determinant
because it is a well-understood model in which the mapping
from sequence to phenotype is not trivial. The non-
triviality of this mapping is crucial for the formation of a
quasispecies, as we will explain in more detail later.

Since the existing literature on the evolution of RNA
secondary structures is extensive, we will now briefly review
previous works and then describe how our study differs.
We can subdivide the existing literature broadly into three
categories: (i) studies that investigate how secondary
structures are distributed in sequence space; (ii) studies
that investigate how sequences can evolve from one
structure into another; and (iii) studies that investigate
the evolution of sequences that all fold into the same
secondary structure, that is, the evolution of sequences on a
single neutral network.

Studies in the first category have established the
importance of neutral networks for RNA secondary
structure folding (Schuster et al., 1994; Reidys et al.,
1997). All sequences folding into the same secondary
structure form a network in genotype space, that is, a
graph that results from including all these sequences as
vertices, and including an edge between two such vertices if
a single mutation can interconvert the two sequences. The
number of edges connected to a vertex is called the degree
of neutrality of that vertex (i.e. sequence). These neutral
networks span large areas of sequence space, the neutral
networks’ size distribution follows a power law, and for
any two secondary structures of comparable size, there are
areas in sequence space in which sequences folding into
both structures can be found in close proximity (Schuster
et al., 1994; Grüner et al., 1996a, b; Reidys et al., 1997).
Further, the fitness landscapes derived from RNA second-
ary structure folding are similar to basic models of fitness
landscapes, but differ in details (Fontana et al., 1993;
Cowperthwaite et al., 2005), and are highly epistatic (Wilke
and Adami, 2001; Wilke et al., 2003).

In the second category of studies, the main result of
investigating the evolution of secondary structures is that
evolution proceeds in a stepwise fashion: a single secondary
structure dominates the population for an extended period
of time (an epoch), but intermittently a new, improved
structure will appear and take over the population
(Huynen et al., 1996; Fontana and Schuster, 1998a, b).
During the epochs when the population is seemingly static,
the population diffuses over the neutral network of the
currently dominant structure. It is primarily because of this
prolonged diffusion that the population has a chance to
discover a new structure with higher fitness (Huynen, 1996;
Huynen et al., 1996; Fontana and Schuster, 1998a, b).
Details of the diffusion process and the transition
probabilities from one structure to another have been
worked out (Forst et al., 1995; Huynen et al., 1996, see also
next paragraph).

We can interpret studies in the third category as
describing the evolutionary dynamics during the epochs
of phenotypic stasis observed in the evolution of secondary
structures. As already mentioned, the sequences diffuse
over the neutral network, and any specific sequence is
rapidly lost from the population (Huynen et al., 1996;
Reidys et al., 2001). However, the sequences do not diffuse
as a single, coherent unit, but instead form separate clusters
that diffuse independently from each other (Forst et al.,
1995; Huynen et al., 1996). It is useful to extend Eigen’s
concept of the error threshold (Eigen, 1971) to distinguish
between the genotypic error threshold, that is, the mutation
rate at which a specific sequence cannot be maintained in
the population, and the phenotypic error threshold, that is,
the mutation rate at which a given secondary structure
cannot be maintained in the population (Forst et al., 1995;
Reidys et al., 2001). For RNA, the genotypic error
threshold occurs usually for an infinitesimally small
positive mutation rate, while the phenotypic error thresh-
old occurs at fairly large mutation rates (Forst et al., 1995;
Reidys et al., 2001). The exact position of the phenotypic
error threshold depends on the size of the neutral network
and the fitness of suboptimal secondary structures (Reidys
et al., 2001).
It is important to distinguish the diffusion over a neutral

network from drift in a completely neutral fitness land-
scape (Derrida and Peliti, 1991; Higgs and Derrida, 1991,
1992). If the product of population size and mutation rate
is sufficiently high, then on a neutral network (where a
fraction of all possible mutations is deleterious) there is a
selective pressure that keeps the population away from the
fringes of the neutral network, and pushes it towards the
more densely connected areas in the center of the neutral
network (van Nimwegen et al., 1999; Bornberg-Bauer and
Chan, 1999; Wilke, 2001a). This selective pressure has been
termed ‘‘selection for mutational robustness’’ (van Nimwe-
gen et al., 1999), and is a tell-tale sign that selection occurs
in the quasispecies mode on clouds of mutants, rather than
on individual sequences. Van Nimwegen et al. and
Bornberg-Bauer and Chan were the first to develop a
formal theory for this effect, but anecdotal evidence for it
had already been observed previously (Huynen and
Hogeweg, 1994; Forst et al., 1995). The theory developed
by van Nimwegen et al. and Bornberg-Bauer and Chan
applies only to infinite populations. Nevertheless, simula-
tions have shown that this effect occurs also in large but
finite populations if the mutation rate is sufficiently large
(van Nimwegen et al., 1999; Wilke, 2004).
According to the quasispecies model, mutational robust-

ness is as important a component of fitness as is replication
speed (Schuster and Swetina, 1988; Wilke et al., 2001;
Wilke, 2001b). This observation suggests that a sudden
transition to increased mean fitness may not only be caused
by the discovery of a sequence with higher replication rate,
but also by the discovery of a more densely connected
region of the neutral network the population is already
residing on, without any obvious change in the sequences’
phenotype (Wilke, 2001a). Here, we study these types of
transitions, which change the population mean fitness while
the secondary structure remains unchanged, and which
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occur after initial mutation–selection balance has been
reached.

In our simulations, we consider all RNA sequences that
fold into a specific target secondary structure as viable. All
viable sequences have the same fitness, arbitrarily set to
one. All RNA sequences that do not fold into the target
secondary structure are non-viable, with fitness 0. There is
no phenotypic error threshold in our simulations, and the
target structure can only be lost from the population
through sampling noise. The latter outcome is extremely
unlikely for all but the smallest population sizes. However,
if it occurs the population dies, because all remaining
sequences have fitness zero. Our choice of fitness landscape
guarantees that all changes that we see in mean fitness must
be caused by changes in the population neutrality. (Here
and in the following, we refer to the average degree of
neutrality among viable members of the population as the
population neutrality or simply the neutrality.)

2. Materials and methods

We consider a population of fixed size N composed of
asexual replicators whose probability of reproduction in
each generation is proportional to their fitness (Wright–
Fisher sampling). The members of the population are RNA
sequences of length L ¼ 75, and their fitness w is solely a
function of their secondary structure. Those that fold into a
specific target secondary structure are deemed viable with
fitness w ¼ 1, while those that fold into any other shape are
non-viable ðw ¼ 0Þ. The average fitness hwi of the popula-
tion is therefore the fraction of living members out of the
total population. RNA sequences are folded into the
minimum free energy structure using the Vienna Package
(Hofacker et al., 1994), and dangling ends are given zero
free energy (Walter et al., 1994). For a given simulation, an
initial RNA sequence is selected uniformly at random and
its minimum-energy secondary structure defines the target
structure for this simulation, thereby determining a neutral
network on which the population evolves for a time of
T ¼ 50; 000 generations. Mutations occur during repro-
duction with a fixed probability m per site, corresponding to
an average genomic mutation rate U ¼ mL.

Our simulations spanned a range of genomic mutation
rates and population sizes, and we performed 50 indepen-
dent replicates for each of the pairs ðU ;NÞ, starting each
with a different randomly chosen initial sequence. To study
mutation rate effects, we considered a fixed population size
of N ¼ 1000, across a range of genomic mutation rates,
using U ¼ 0:1, 0.3, 0.5, 1.0, and 3.0. To study effects due to
finite population size, we considered a fixed mutation rate
of U ¼ 1:0, using population sizes of N ¼ 30, 100, 300, and
1000.

The degree of neutrality of a sequence was determined by
calculating the fraction of mutations that did not change
the minimum-energy secondary structure. Thus, if Nn of all
3L one-point mutants of a sequence retain their structure,
the degree of neutrality of that sequence is given by
n ¼ Nn=3L. Because sequences that do not fold into the
target structure have zero fitness, a sequence’s degree of
neutrality is equal to the mean fitness of all possible single
mutants. We recorded the population’s average fitness
every generation, while the population’s average neutrality,
being much more computationally expensive, was calcu-
lated only at the start and end of each replicate. For
illustrative purposes, select replicates of interest were
recreated using the original random seed, and the popula-
tion neutrality was recorded every 100 generations.
To observe the signature of natural selection acting

within our system, we derived a statistical approach to
identify transitions in the population’s average fitness hwi.
If a beneficial mutation appears and is subsequently fixated
in the population, we expect to observe a step increase in
the population’s average fitness. (Throughout this paper,
by beneficial mutations we mean mutations that increase a
sequence’s degree of neutrality, and thus indirectly the
mean fitness of the population. We emphasize again that
such selective sweeps must be due to periodic selection of
quasispecies for increased mutational robustness, since
there are no mutations that increase the fitness of a viable
sequence beyond the value 1 in our system.)
In light of the fluctuations in the population’s average

fitness due to mutations and finite population effects, we
employed statistical methods to estimate the time at which
the increase in average fitness occurred and associated a
p-value with our level of confidence that a transition has
occurred. Our approach can be thought of as a general-
ization of the test for differing means between two
populations (those before and after the mutation), except
that the time of the mutation’s occurrence is unknown a
priori. For a full derivation and discussion of our
approach, see the Appendix. While our algorithm can be
applied recursively to test for and identify multiple
transitions that may occur in a single simulation, unless
otherwise noted, we considered only the single most
significant transition found.

3. Results

Because replicates were initialized with N (possibly
mutated) offspring of the randomly chosen ancestor, the
simulation runs did not start in mutation–selection balance.
Typically, we observed an initial equilibration period of 50
to 200 generations, after which the population’s fitness and
neutrality stabilized, with fluctuations continuing with
magnitude in proportion to the mutation rate. As predicted
by van Nimwegen et al. (1999), during the equilibration
period, we observed in most replicates beneficial mutations
that increased the equilibrium level of both average fitness
and neutrality. These mutations led to the initial formation
of a quasispecies in a central region of the neutral network.
For the remainder of this paper, we are not interested in this
initial equilibration, but in transitions towards even more
densely connected areas of the neutral network once the
initial equilibration has occurred.
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To determine if such a transition has occurred, we need a
method to distinguish significant changes in the popula-
tion’s mean fitness from apparent transitions caused by
statistical fluctuations. We devised a statistical test (see
Appendix for details) that can identify such transitions and
assign a p-value to each event. We found that transitions to
higher average fitness occurred in over 80% of simulations
across all mutation rates studied, if we considered all
transitions with p-values of po0:05. Fig. 1 shows a
particularly striking example of such a transition (p-value
p10�7), where a 5.0% increase in average fitness occurs at
t ¼ 9814. A similar analysis of the average population
neutrality (not usually available, but computed every
generation specifically in this case) finds an increase of
11.2% occurring at t ¼ 9876, with the same level of
confidence. The multiple transitions shown in the Fig. 1
are the results of recursively applying our step-finding
algorithm until no steps are found with po0:05.

Depending on the mutation rate, a step size as little as
0.04% in the population’s average fitness could be
statistically resolved in a background of fitness fluctuations
several times this size. For comparison, typical noise levels,
as indicated by the ratio of the standard deviation of
the fitness to its mean, ranged from 0.7% to 6.6% over
the mutation rates studied. Note that fluctuations in the
population’s neutrality level are much smaller, due to the
additional averaging involved. However, because neutrality
is much more expensive computationally, and would also
be difficult to measure in experimental viral populations,
we used mean fitness as an indicator of transitions
throughout this paper.
Fig. 1. Average fitness and neutrality of a population during a single

simulation at a genomic mutation rate of U ¼ 1:0. At t ¼ 9814, a 5%

increase in the population’s average fitness occurs at the po10�7 level,

with a corresponding transition in the population’s average neutrality.

Smaller transitions occur throughout the simulation run. The solid lines

indicate the epochs of constant fitness and neutrality, as determined by our

step-finding algorithm. As explained in the Appendix, the application of

this algorithm to the neutrality data is for illustrative purposes only.

Because of temporal autocorrelations in the neutrality, not all steps that

the algorithm identifies are statistically significant.
Fig. 2 shows the average size of the most significant step
observed as a function of the mutation rate. At low
mutation rates, such as U ¼ 0:1, the smaller observed step
size corresponds to the fact that 90% of the population is
reproducing without error, and hence improvements in
neutrality can only increase the population’s fitness in
the small fraction of cases when a mutation occurs. At
higher mutation rates the step sizes increase, reflecting the
larger beneficial effect of increased neutrality under these
conditions.
In about 10% of all simulations with statistically

significant changes in fitness, the most significant change
in fitness was actually a step down, that is, a fitness loss,
rather than the increase in fitness typically observed.
Negative steps in average fitness occur due to stochastic
fixation of detrimental mutations at small population sizes
(Kimura, 1962). These negative fitness steps, however, are
generally much smaller than the typical positive step size.
The average size of these negative steps was between 0.09
and 0.77%, compared with an average positive step size
between 0.27% and 2.33% (see Fig. 3).
We specifically studied the role of finite population size

and its effects on neutral drift by considering populations
of size N ¼ 30, 100, 300, and 1000 at a constant genomic
mutation rate of U ¼ 1:0. We again performed 50
replicates at each population size, and the distribution of
statistically significant step sizes are shown in Figs. 4
(biggest step only) and 5 (all steps). While the larger
population’s distributions show a clear bias towards
positive steps in fitness, the distributions become increas-
ingly symmetric about zero for smaller population sizes.
A gap around zero fitness change becomes increasingly
pronounced in smaller populations, as the fluctuations in
fitness due to finite population size preclude us from
statistically distinguishing small step sizes from the null
hypothesis that no step has occurred.
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Fig. 2. Average step size as a function of genomic mutation rate

(U ¼ 0:1; 0:3; 0:5; 1:0; 3:0). Step size is measured by percent increase in

the population’s fitness, with only runs significant at the po0:05 level

shown. Error bars are standard error.
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Fig. 3. Average step size jsj of statistically significant drops in fitness

(at the po0:05 level). Step size is measured by relative decrease in

population fitness, and error bars are standard error. The dotted line

indicates 2jsj ¼ 1=Ne, a selective disadvantage consistent with neutral drift

in a finite population. Ne is the average number of living members of the

population (effective population size).

Fig. 4. Distribution of sizes of the most significant step (at po0:05) in
each run, out of 50 runs at four population sizes (U ¼ 1). At small

population sizes, the distribution is almost symmetric about zero since

most mutations are of less benefit than the 1=Ne probability of fixation

due to drift. At large sizes, selection is evident from the positively skewed

distribution.

Fig. 5. Distribution of sizes of all significant steps (at po0:05) in each run,

out of 50 runs at four population sizes (U ¼ 1). While these distributions

are more symmetrical than those of Fig. 4, a substantial skew towards

positive step sizes is still evident for the larger population sizes.

Fig. 6. Change in the consensus sequence over time, from the same

simulation run as presented in Fig. 1. Dots in the alignment indicate that

the base at this position is unchanged from the previous line. The bottom

row shows the target secondary structure in parentheses notation for

reference.
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We also kept track of the consensus sequence in our
simulations, to determine whether the population under-
went drift while under selection for mutational robustness.
In the runs with N ¼ 1000, the consensus sequence
accumulated on average one substitution every 2–3
generations. As such rapid change might be caused by
sampling effects, we also studied the speed at which the
consensus sequence changed over larger time windows.
Using this method with window lengths of 50 and 100
generations, we found that the consensus sequence
accumulated one substitution every 10–20 generations
(window size 50 generations) or 15–30 generations (window
size 100 generations). Thus, we find that the populations
continue to drift rapidly throughout the simulation runs,
and never settle down to a stable consensus sequence.
Fig. 6 shows the evolution of the consensus sequence over
time for the same simulation run as shown in Fig. 1.
Finally, to confirm that our finite population was not

sampling the entire neutral network during our simula-
tions, we estimated the size of typical neutral networks
in our simulation. Previous works have shown that the
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distribution of network sizes follows a power law (Zip’s
law) (Schuster et al., 1994; Grüner et al., 1996a). However,
these studies are not directly applicable to our situation,
because they looked at sequences of different lengths and/
or coarse-grained secondary structures. Therefore, we
generated a sample of 107 randomly chosen RNA
sequences of length L ¼ 75, determined the secondary
structure of each sequence, and counted how often each
distinct secondary structure appeared in the sample. We
found that 0.00886% of all sequences had a minimum-
energy conformation that was completely unfolded (con-
tained not a single base pair). Among all other secondary
structures, we found a power law decay of the frequency of
the neutral networks with size (Fig. 7), which suggests a
frequency distribution of sizes s given by F ðsÞ�s�4. On the
basis of this power law, we can estimate the size of a typical
neutral network found by random sampling. Assume that
F ðsÞ ¼ Cð1þ s=bÞ�4, where C is a normalization constant
and b determines the network size at which the distribution
levels off (we discuss the limit b! 0 below). We can
calculate C from

1 ¼

Z 1
0

F ðsÞds ¼
Cb

3
, (1)

and find C ¼ 3=b. Likewise, we can calculate the average
network size hsi, and find

hsi ¼

Z 1
0

sF ðsÞds ¼
b

2
. (2)

Now, we calculate the probability that a randomly chosen
network is a factor x larger or smaller than hsi. The
probability that a randomly chosen sequence will belong to
a network of size s is proportional to sF ðsÞ. Thus, we
calculate the probability to obtain a network at least a
011
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Fig. 7. Relative frequency of neutral networks generated by RNA

sequences of length L ¼ 75, in a sample of 107 randomly generated

sequences. The relative network size ŝ corresponds to the number of times

a given structure occurred in our sample. The tail is well approximated by

a power law decay of the form ŝ�4 (solid line). Not shown is a single

network of size 886, corresponding to a minimum-energy state that is

completely unfolded. The deviation of the point corresponding to ŝ ¼ 1

from the power law behavior is expected because of the discreteness of the

sample; this point subsumes the contributions from all networks too small

to have their relative size accurately measured by our sample.
factor x smaller than hsi as

Pðsphsi=xÞ ¼

Z hsi=x

0

s

hsi
F ðsÞds ¼

6xþ 1

ð2xþ 1Þ3
. (3)

This probability decays as x�2, which means we are
extremely unlikely to randomly choose a network that is
two or more orders of magnitude smaller than an average-
size network. Similarly, we calculate the probability to
obtain a network at least a factor x larger than hsi as

PðsXxhsiÞ ¼

Z 1
xhsi

s

hsi
F ðsÞds ¼

12xþ 8

ðxþ 2Þ3
. (4)

This probability also decays as x�2, which means we are
also extremely unlikely to randomly chose a network that is
two or more orders of magnitude larger than an average-
size network. Thus, our analysis shows that the networks
we typically encounter by folding randomly choosen RNA
sequences are approximately of the size of the mean neutral
network.
In the limit of b! 0, we have a pure power law

distribution, F ðsÞ ¼ C0s�4. In this case a similar calculation
shows that there must be a minimum network size smin, and
this network size is given by smin ¼

2
3hsi. Again, networks

both significantly smaller or larger than hsi are rare, and
the typical network size is given by the average network
size.
We now derive a lower bound on the average network

size. We represent each RNA secondary structure in dot-
and-parenthesis notation, where matched parentheses
indicate a bond between the bases at those points in the
sequence and dots represent unpaired bases. The number
of valid strings of length L can be counted using Catalan
numbers CatðnÞ ¼ 2n

n

� �
=ðnþ 1Þ, which give the number of

ways to open and close n pairs of parentheses (van Lint and
Wilson, 2001). Since there are 4L possible RNA sequences,
we obtain for the average network

hsi ¼ 4L
X½L=2�
i¼0

,
CatðiÞ

L

L� 2i

� �
� 1:1� 1012 (5)

for L ¼ 75. The above expression is a lower bound on the
true average network size because the denominator
includes some unphysical structures such as hairpins with
fewer than three bases. Schuster et al. (1994) have shown
that there are asymptotically SðLÞ ¼ 1:4848L�3=2ð1:8488ÞL

planar RNA secondary structures of length L, where
certain physically unlikely structures such as hairpins
smaller than three bases and isolated base pairs are
excluded (but note that not all of these excluded structures
are necessarily impossible in our simulations). Using the
expression SðLÞ in place of the denominator in Eq. (5) gives
an alternative estimate for the average network size of
6:0� 1027, suggesting that real networks may be much
larger on average than the lower bound we derive. In
comparison, the number of possible distinct genotypes that
can appear in each simulation is maximally NT ¼ 5� 107,
many orders of magnitude below the typical network size.
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4. Discussion

In the study of varying mutation rates, the observed
increases in the population’s fitness in almost all replicates
demonstrate the action of natural selection. Since all viable
sequences are neutral and hence enjoy no reproductive
fitness advantage, this selection acts on increasing the
population’s robustness to mutations through increases in
its average neutrality (as seen in Fig. 1). Thus, these results
show evidence that a quasispecies is present in almost all
cases, even though the difference between a randomly
drifting swarm and a population structured as a quasis-
pecies decreases as the population size and mutation rate
decrease. Our results also show evidence of drift leading to
the fixation of detrimental mutations in some populations.
The negative steps observed (Fig. 3) were comparable in
size to 1=Ne, the probability of a neutral mutation drifting
to fixation.

In the study of varying population sizes, the distribution
of mutational effects on fitness showed an increasing bias
towards beneficial rather than detrimental mutations as the
population’s size increased (Figs. 4 and 5). At population
sizes 100, 300, and 1000, the clear positive bias of
mutational effects illustrates the presence of a quasispecies,
where natural selection is able to act to improve the
population’s neutrality and hence its robustness to muta-
tions. As the fluctuations in fitness due to small population
size become more significant, selection for neutrality
becomes less relevant when the 1=Ne sampling noise
exceeds the typical step size of 1%. At the smallest
population size of 30, there still seems to be a bias towards
beneficial mutations, but the evidence is less clear and more
replicates are probably necessary to observe a clear signal
of quasispecies dynamics.

Our analysis of the size of neutral networks typically
encountered by random sampling showed that the typical
randomly chosen network has a size of the order of the
average network size. Since the average network size (as
given by the lower bound Eq. (5)) is many orders of
magnitude larger than the number of sequences produced
during a simulation run, we know that the system is non-
ergodic and the population cannot possibly have explored
the whole neutral network.

In our simulations, one of the hallmarks of quasispecies
evolution—the periodic selection of more mutationally
robust quasispecies on a neutral network—occurs at
population sizes very significantly smaller than the size of
the neutral network they inhabit. Despite small population
sizes, if the mutation rate is sufficiently high (in the simula-
tions reported here, it appears that NU\30 is sufficient),
stable frequency distributions significantly different from
random develop on the partially occupied network in
response to mutational pressure. Most importantly, we
have shown that genetic drift can occur simultaneously
with quasispecies selection, and becomes dominant as
NU decreases. Thus, we find that both quasispecies
dynamics and neutral drift occur at all finite population
sizes and mutation rates, but that their relative importance
changes.
The existence of a stable consensus sequence in the

presence of high sequence heterogeneity has long been used
as an indicator of quasispecies dynamics (Domingo et al.,
1978; Steinhauer et al., 1989; Eigen, 1996; Jenkins et al.,
2001; Domingo, 2002). In contrast, the genotypic error
threshold for evolution of RNA sequences typically
occurs at any small positive mutation rate (Forst et al.,
1995; Huynen et al., 1996; Reidys et al., 2001). Here we
have shown that quasispecies dynamics can be present
while the consensus sequence changes over time. In our
simulations, the consensus sequence drifts randomly, in a
manner uncorrelated with the transitions in average
fitness that we detect. Thus, quasispecies dynamics does
not require individual mutants to be stably represented in
the population, nor does it require a stable consensus
sequence.
The population structure on the neutral network is

strongly influenced by the mutational coupling of the
genotypes that constitute the quasispecies. This coupling
arises because mutations are not independent in the
landscape we studied. Rather, as in most complex fitness
landscapes, single mutations at one locus can affect the
fitness effect of mutations at another (a sign of epistasis,
Wolf et al. (2000)). In the fitness landscape investigated
here, mutations at neutral or non-neutral (i.e. lethal) sites
can influence the degree of neutrality of the sequence. The
absence of epistatic interactions between the neutral
mutations in the fitness landscape studied by Jenkins
et al. (2001) explains the absence of quasispecies dynamics
in these simulations. Theoretical arguments show that a
non-interacting neutral region in a genome does not alter
the eigenvectors of the matrix of transition probabilities,
and therefore cannot affect quasispecies dynamics.
Using fitness transitions on neutral networks as a tool to

diagnose the presence of a quasispecies has a number of
interesting consequences from a methodological point of
view. Clearly, because selection for robustness is a
sufficient criterion for quasispecies dynamics but not a
necessary one, the absence of a transition does not imply
the absence of a quasispecies. At the same time, as the
population size decreases, fluctuations in fitness become
more pronounced, rendering the detection of a transition
more and more difficult. Theoretical and numerical
arguments suggest that small populations at high mutation
rate cannot maintain a quasispecies (van Nimwegen et al.,
1999), so the disappearance of the mutational robustness
signal at small population sizes is consistent with the
disappearance of the quasispecies. However, the type of
analysis carried out in this work does not lend itself to
detecting quasispecies in real evolving RNA populations,
because the fitness landscape there cannot be expected to
be strictly neutral. Instead, transitions from one peak to
another of different height (Burch and Chao, 2000;
Novella, 2004) are likely to dominate. Quasispecies
selection transitions such as the one depicted in Fig. 1
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can, in principle, be distinguished from peak-shift transi-
tions in that every sequence before and after the transition
should have the same fitness. Unfortunately, pure neu-
trality transitions are likely to be rare among the
adaptations that viruses undergo, and the data necessary
to unambiguously identify them would be tedious if not
impossible to obtain.

Our simulations provide evidence of selection for
mutational robustness occurring through increasing the
degree of neutrality of RNA sequences at population sizes
far below the size of the neutral network that the sequences
inhabit. Such increases in the degree of neutrality was
recently found in a study that compared evolved RNA
sequences to those deposited in an aptamer database
(Meyers et al., 2004). For example, the comparison showed
that human tRNA sequences were significantly more
neutral, and hence more robust to mutations, than
comparable random sequences that had not undergone
evolutionary selection. However, we must caution that
while in our simulations, selection for mutational robust-
ness is the only force that can cause the sequences to
become more mutationally robust, in real organisms other
forces, for example selection for increased thermodynamic
stability (Bloom et al., 2005), could have similar effects.

An experimental system that is quite similar to our
simulations, probably more so than typical RNA viruses, is
that of viroids—unencapsidated RNA sequences of only
around 300 bases—capable of infecting plant hosts. Viroid
evolution appears to be limited by the need to maintain
certain secondary structural aspects (Keese and Symons,
1985), which is consistent with our fitness assumptions.
Furthermore, in Potato spindle tuber viroid (PSTVd), a
wide range of single and double mutants are observed to
appear after a single passage (Owens and Thompson,
2005), suggesting that a quasispecies rapidly forms under
natural conditions. Viroids may have agricultural applica-
tions as they are capable of inducing (desirable) dwarfism
in certain plant species (Hutton et al., 2000), and as such, a
better understanding of their evolutionary processes may
help to direct future research efforts.

Making the case for or against quasispecies dynamics in
realistic, evolving populations of RNA viruses, or even just
self-replicating RNA molecules, is not going to be easy. As
the persistence of a consensus sequence has been ruled
out as a diagnostic, we have to look for markers that are
both unambiguous and easy to obtain. Selection for
robustness may eventually be observed in natural popula-
tions of adapting RNA viruses or viroids, but up to now,
no such signals have been reported. While our results
show quasispecies effects and the selection for muta-
tional robustness occur regularly in small simulated popu-
lations, experimental evidence for these effects remain
elusive in real RNA systems. We hope that our demon-
stration of the frequency and importance of these effects
together with the diagnostic markers used to detect them in
simulation will help guide future experimental research in
this area.
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Appendix A

A.1. The distribution of the population’s average fitness as a

random variable

In equilibrium, the distribution of the population’s
average fitness follows from Wright–Fisher sampling.
Define p as the probability that a sequence’s offspring will
be viable. Without resorting to an explicit form for p,
equilibrium and a uniform mutation rate imply that all
sequences reproduce successfully with the same probability
p (which is in general a function of the mutation rate and
the mean neutrality of the population). Denote further the
expected value of a random variable x as E½x� and its
variance as V ½x�. If we take fitness wi of the ith offspring in
our population as a random variable, the neutral-network
fitness landscape implies that wi takes only values 0 or 1,
where wi ¼ 1 occurs with probability p. The distribution of
wi is therefore a Bernoulli distribution with probability of
success p, and we have E½wi� ¼ p and V ½wi� ¼ pð1� pÞ.
We now consider the average fitness of the population in

equilibrium, hwi, defined as hwi ¼ ð1=NÞ
PN

i¼1 wi. By the

central limit theorem, the distribution of hwi will approach

a normal distribution N½m;s2� as N !1, and this limit
will be reached well before N ¼ 1000 (typically Np;Nð1�
pÞ45 is sufficient (Rice, 1994), and this condition is easily
satisfied under all conditions studied). Thus, hwi follows a
normal distribution with mean m ¼ E½w� ¼ p and variance

s2 ¼ V ½w� ¼ pð1� pÞ=N.
To confirm these assumptions hold, we computed the

fitness autocorrelation function within a period of equili-
brium. Fig. 8 shows the autocorrelation function for the
first equilibrium period shown in Fig. 1 (t ¼ 200–9814).
The autocorrelation drops almost immediately to a mean
of nearly zero, and has a noise level s � 1% to 2%,
consistent with the variation of w over the time period in
question. Similar results hold for each period of fitness
equilibrium shown in Fig. 1. In contrast, the population’s
average neutrality showed significant autocorrelations.
While we included the neutrality transitions in Fig. 1 for
illustrative purposes, this lack of independence suggests
that not all the neutrality steps identified are statistically
significant.
A.2. Identifying jumps in average fitness

Motivated by our observations, we seek to characterize
the rapid transitions of the population from lower to higher
neutrality states. We derive a statistical test for identifying
such transitions a priori in time series data, and associating
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a p-value to measure the confidence level of such a
transition occurring by chance.

Consider a time series wðtÞ�N½m;s2� measured at T

sequential points in time. To test the hypothesis of equal
means between two specified time periods ½1; n� and
½nþ 1;T � is straightforward, and we will assume equal
variances for simplicity. We consider the average value of w

over the two periods separately, and consider the sample
means Y i over the two different time periods, defined by
Y 1 ¼ ð1=nÞ

Pn
t¼1 wðtÞ and Y 2 ¼ ð1=ðT � nÞÞ

PT
t¼nþ1 wðtÞ.

These sample means will be normally distributed,
Y 1�N½m; s2=n� and Y 2�N½m;s2=ðT � nÞ�. Our null hypoth-
esis is that the means will be equal between the two periods.
To test this null hypothesis, we consider the difference
between the sample means D ¼ Y 2 � Y 1, and ask whether
the observed difference can be explained merely by chance,
that is, whether the distribution of D is consistent with
D�N½0; s2D�. Here, s2D is the sum of the variances of Y 1 and
Y 2, that is, s2D ¼ s2T=½nðT � nÞ�.

Thus, under the null hypothesis, the difference of
observed means D is normal with zero mean and known
variance, and the associated p-value can be obtained by
looking up the probability of Z ¼ D=sD exceeding its
observed value in a cumulative distribution table.

We now consider the case of finding the most significant
breakpoint in the time series ½1;T � when the division into
two periods is unspecified. Letting n parameterize the
number of data points in the first interval, we can consider
the above analysis as a function of n. The highest
significance is attained by choosing the maximum value
of DðnÞ=sDðnÞ, where the difference of means and its
variance must be calculated for all n in ½1;T � 1�. Let pn

represent the p-value associated with this maximum n.
We wish to know the probability that this maximum level
of significance will occur merely by chance due to the
fluctuations in wðtÞ. Given T � 1 independent trials
with probability pn of exceeding our maximum level of
significance, we see that the probability of all of these trials
resulting in a smaller significance than that of pn is

Pr½all T � 1 of the pi satisfy piopn�

¼ ð1� pnÞ
T�1

� 1� ðT � 1Þpn for pn51. ðA:1Þ

From this probability, we calculate the p-value associated
with any pi exceeding our pn by chance alone, using the
above probability:

p ¼ Pr½at least one pi has pi4pn�

¼ 1� Pr½all T � 1 of the pi satisfy piopn�

¼ 1� ð1� pnÞ
T�1
� ðT � 1Þpn. ðA:2Þ

Note that the T � 1 other choices of breakpoints are by no
means independent of each other, as they all refer to the
same underlying fitness data, wðtÞ. These correlations
reduce the number of effective degrees of freedom, and
hence the T � 1 factor will be a conservative overestimate
of the actual p-value. If multiple transitions are expected,
this algorithm can be repeated on each subinterval to
determine whether further breakpoints are consistent with
the given level of statistical confidence.
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