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Genetic algorithm
A computational method that 
uses Darwinian methods to 
search for a rare solution 
(encoded into a symbolic string) 
within a large search space. 
Typically, the best strings in a 
population are mutated and 
recombined to form the next 
generation, whereas inferior 
strings are removed.

Experiments can be designed for digital organisms 
that are either impossible or impractical when using 
‘biochemicals’, and can uncover new principles that 
might open up new avenues of research. For experimen-
tal evolutionary biologists, digital organisms represent 
the realization of a dream they have pursued ardently 
and imaginatively: to be able to carry out repeatable, 
statistically powerful experiments under fully control-
lable conditions, with a perfect fossil record. Although 
digital genetics excels in these attributes, it has important 
limitations (BOX 2), and many questions concerning the 
causes and consequences of evolution still require con-
ventional evolutionary genetics. However, some exciting 
and fundamental problems in evolutionary biology can 
be addressed using digital organisms, and the scope of 
digital genetics is likely to expand.

Here I give an overview of digital life systems in general 
and the Avida platform (the most widely used system for 
digital genetics) in particular. I then examine some key 
areas of evolutionary genetics in which digital organisms 
have already begun to provide important insights.

Digital life
Digital life stems from the realization that self-mutating 
computer viruses could be studied within simulated, 
rather than real, computers. Because any computer can 
be simulated within any other sufficiently complicated 
one, it is possible to create, within a specifically prepared 
part of a standard computer, an artificial Petri dish where 
computer programs can self-replicate and compete for 
survival. Because the space in this simulated world is 
limited and the replication process can be made to be 
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Abstract | Digital genetics, or the genetics of digital organisms, is a new field of research 
that has become possible as a result of the remarkable power of evolution experiments that 
use computers. Self-replicating strands of computer code that inhabit specially prepared 
computers can mutate, evolve and adapt to their environment. Digital organisms make it 
easy to conduct repeatable, controlled experiments, which have a perfect genetic ‘fossil 
record’. This allows researchers to address fundamental questions about the genetic basis 
of the evolution of complexity, genome organization, robustness and evolvability, and to 
test the consequences of mutations, including their interaction and recombination, on the 
fate of populations and lineages.

Although evolutionary biology has been making steady 
progress since Darwin’s time, we are still far from reach-
ing a satisfactory understanding of the genetic bases 
of evolutionary change and adaptation. The recent 
emergence of quantitative evolution experiments using 
microorganisms1 has moved the field closer to the reci-
procity between experiment and theory that underlies 
such successful disciplines as physics and chemistry. 
However, a significant gap remains, because long-term 
evolution experiments in complex environments require 
unreasonable investments of time and resources.

More recently, digital organisms have been increas-
ingly used to address some of the fundamental problems 
in evolutionary biology2,3 (BOX 1). After all, Darwin’s prin-
ciples of evolutionary change are universal: they do not 
refer directly to the particular carriers of information, or to 
any particular genetic mechanism4,5. Rather, they apply 
to any system in which information is stored, inherited 
with variation, and determines the differential survival 
of the carrier. Therefore, Darwinian systems should 
also be realizable within a computational chemistry. 
In a computational environment, information can be 
copied (for inheritance) with different degrees of variation 
(through errors), and the information carried by com-
puter programs can be expressed through the execution 
of the program. Importantly, such an implementation of 
Darwinian mechanisms is inherently different from 
a simulation (such as a genetic algorithm), because the 
fitness of a program is not determined a priori by 
the user. Instead, as for biochemical life, those line-
ages that survive the competition for space, time and 
resources are the most fit — in hindsight.
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Sympatry
The condition in which the 
distributions of two species 
overlap and hybridization 
between taxa would be 
possible if they were not 
reproductively isolated by 
factors other than spatial 
separation.

Robustness
The ability of an organism’s 
genome to withstand point 
mutations (substitutions) 
without losing fitness. 
Numerically, this is expressed 
as the fraction of all possible 
single substitutions that do not 
change the organism’s fitness. 
At high mutation rates, an 
increase in mutational 
robustness is selected for.

Central processing unit
(CPU). The ‘brain’ of a 
computer, where the 
information is processed. In 
Avida, a simulated CPU 
translates the genetic 
information into actions that 
represent the phenotype of the 
information.

Carrying capacity
In ecology, the maximum 
number of organisms of a 
particular species an ecosystem 
can support. In the single-niche 
or multi-niche digital system 
Avida, this is simply the total 
number of organisms, which 
can be set by the user.

inaccurate, the three basic ingredients of Darwinian 
evolution are present — inheritance, variation and selec-
tion. The adaptive complexity that arose from the first 
such implementation, Tierra6, confirmed the enormous 
potential of digital life.

Here I describe the basic mechanics, genetics and 
metabolism of ‘avidians’7–9 because they are the most 
frequently used digital organisms in evolutionary 
research, and because their main design features 
are common to most forms of digital life. Avidians are 
computer programs that have been written in a special-
purpose language that can only be interpreted within 
the simulated computer that is created with the Avida 
software. These programs encode the ability to self-
replicate and carry out computations, and segments 
of the code that are responsible for a particular func-
tionality are referred to as the organism’s genes. Each 
gene is made up of sets of instructions, each of which 
carries out a particular function. The language usually 
has between 20 and 30 instructions10 and is quite robust 
to mutations: depending on the program, between 20% 
and 70% of single-instruction substitutions do not 
affect the program’s function. A similar range for the 
neutrality of a sequence has been observed for proteins 
in biological organisms11,12.

Replication. Avidians replicate by executing their code, 
copying it, instruction by instruction, into fresh memory 
that is obtained by elongating their memory space, and 
then dividing off the copy. The particular sequence of 
instructions in the code represents the organism’s geno-
type. The code itself is circular and is executed by an 
instruction pointer that roams the sequence, much like 
a polymerase does when transcribing bacterial DNA 
(FIG. 1). The execution of an instruction affects the state 

of the central processing unit (CPU) that is attached to each 
program. This CPU (depicted schematically in FIG. 1a) 
represents the state of the organism, and is therefore 
the means of expression of the information, much like the 
sum of expressed proteins and their states represents a 
cell’s state. The sequence of changes that are the result of 
code execution define an organism’s phenotype.

When a program has successfully copied its code and 
divided, the Avida software places the offspring into the 
population. The user can select how this is done, but usu-
ally the offspring is placed either next to the progenitor 
on a two-dimensional regular grid (emulating growth on 
a Petri dish), or randomly in a well-mixed population 
without spatial structure (simulating the growth dynamics 
of cultures in a shaken vial or chemostat). In either case, 
a random member of the population is removed to make 
room for the new arrival. The population size is usually 
kept strictly constant to enforce selection, but it is possible 
to implement variable population sizes (up to the carrying 
capacity) by introducing other random death events.

Mutations. Digital offspring can differ genetically from 
their parents for several reasons. The most common cause 
is a single substitution error during the copying process, 
which is due to an inherent inaccuracy in the copy instruc-
tion. The probability of error per instruction copied 
can be set by the user, and the number of errors in a fixed 
time interval is given by a Poisson distribution. Besides these 
copy mutations, the user can select a rate of insertion 
and deletion mutations, and a probability of genetic 
defects occurring on code separation (division). It is also 
possible to cause substitutions that affect every existing 
individual, irrespective of whether the organism is in the 
process of copying or not. This type of mutation mimics 
the effect of cosmic rays or mutagenic chemicals.

Apart from these explicit mutations, genetic differ-
ences can also arise through implicit mutations; for example, 
if the division between parent and offspring code is asym-
metrical. Implicit mutations usually have large effects, 
and are often lethal. Another type of implicit mutation 
can occur if the replication loop is sloppy such that the par-
ent overwrites parts of its own code rather than copying 
into the pristine space of the offspring. Finally, genetic 
changes can be introduced through ‘code recombination’, 
at a rate that is set by the experimenter. This is initiated 
by a special divide instruction, and results in the inter-
change of genetic material with a nearby organism, in a 
form of digital sex. Most experiments have so far been 
run in the asexual mode.

Selection and population dynamics. As for microbial and 
viral self-replicators, the fitness of a digital organism is 
given by the growth rate of the clone it gives rise to. This 
rate is a function of two factors: the efficiency of the copy 
procedure, and the ability to exploit the environment to 
speed up replication. As with biochemical organisms, the 
replication of digital information costs energy. For avid-
ians, energy is dispensed in units that allow the execution 
of a single instruction — a so-called ‘single-instruction 
processing’ unit (SIP). There are two mechanisms to 
receive SIPs: one is passive and provides a basic amount 

Box 1 | The ‘big questions’ in evolutionary biology

Can evolution be predicted? How much do chance events shape the outcome of 
evolution? What is the role of the history of a lineage and of adaptation? What would 
happen if we ‘re-ran’ evolutionary history74–78?

How does speciation occur? The original question studied by Darwin still has no 
complete answer. Can organisms speciate in sympatry? What factors contribute to 
species diversity and which mechanisms impede it70,79,80?

What is the advantage of sex? Under which circumstances is recombination beneficial to 
the lineage? How can such benefits overcome the twofold cost of sex64,65,81–83? 

Is there a trend in the evolution of biological complexity? Does Darwinian evolution 
imply ever-increasing complexity35,40,84? If there is such a trend, what role does 
co-evolution have? What factors are responsible for complexity crashes40,41,85?

How did life and evolution begin86,87? How do chemical systems change from a purely 
thermodynamic regime to an information era of evolutionary replication88,89? Are there 
general principles involved in this transition90,91? What is the probability of life in a non-
terrestrial chemistry?
Of the five big questions listed above, the first four are being addressed using 
theoretical, computational and experimental approaches, including digital genetics. 
For the fifth (How did life begin?), experiments with biological organisms are 
obviously impossible, but there is a chance that digital genetics can shed light on 
some aspects of this question in the future, even though self-replicators are also 
extremely rare in the digital chemistry (estimated at 1 self-replicator among 1015 
randomly generated sequences at the most). Recently, a ‘biosignature’ algorithm that 
was originally designed to detect extraterrestrial life successfully ‘detected’ digital 
life (E.D. Dorn and C.A., unpublished observations).
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of energy that is proportional to sequence length, the 
other is active in that an organism has to earn it. The 
mechanism that allows organisms to gain energy actively 
is logically similar to a metabolic pathway in which mol-
ecules are converted enzymatically to form products, 
releasing ATP. Digital organisms earn energy by evolv-
ing computational pathways that convert input numbers 
into output numbers, and each of these calculations 
releases a specific number of SIPs (BOX 3). The speed of 
code execution, and therefore the growth rate of a clone, 
depends directly on the SIPs earned by an organism 
during its life cycle. Note that although the total amount 
of SIPs earned by the population per update can increase, 
the total amount of CPU time given to the population is 
constant. Therefore, SIPs only affect the relative rate of 
replication.

With inheritance through replication, variation 
through mutations, and selection that is due to finite 
resources of space and time, Darwinian population 
dynamics is ensured. At low mutation rates, periodic 
selection drives beneficial mutations to fixation at a rate 
that is proportional to their fitness advantage. Each 
mutation is fixed before the next one arises, so successive 
dominant genotypes replace each other13,14. However, 
at high mutation rates clonal interference15 is observed, 
and population dynamics conform to a quasispecies 
model in which mutational robustness has a key role 
in survival16 (see below).

Tools for analysing digital organisms
Several powerful tools are available for the analysis of 
digital populations. I focus here on two that are relevant 
to the studies described in this review.

Functional genomic array. Similar to DNA-based code, 
the function of a digital genome is hard to decipher 
from the code alone (although this is not impossible for 
a trained code-writer). Instead, a computational assay 
is used (BOX 4). Instructions are knocked out one after 
the other (by replacing them with an inert instruction), 
and the resulting functionality and fitness are evaluated 
by executing the organism outside the population and 
recording the number of offspring that are generated per 

unit of time, as well as the computations that are carried 
out. This tool is the digital equivalent of a classical genetics 
knockout experiment, except that the functional compo-
nents of single genes can be dissected (rather than just the 
effect of the presence or absence of a gene) by studying 
the effect of all possible mutations within each gene.

Phylogeny tool. Phylogeny reconstruction is the central 
element of evolutionary genetics. For digital organisms, 
all descent information can be stored, but because each 
experiment typically yields millions of genotypes, it is 
not practical to retain it for all types that ever existed. 
Instead, descent information is only kept for those types 
that are present in the population at the most recent point 
in time. Once a lineage becomes extinct, that branch of 
the tree is eliminated from the memory. The retained 
information is sufficient to create a phylogenetic-depth 
tree that reflects the dynamics within the adapting popu-
lation, by plotting the number of individuals at depth d 
that have arisen from the founding ancestor, against time 
(FIG. 2). The line of descent of any genotype present in 
the population when the experiment was stopped can 
be superimposed onto the phylogenetic-depth tree. 
This phylogeny tool, together with the use of functional 
genomic arrays, has been invaluable in addressing the 
questions that are outlined below using digital genetics.

Mutations and epistasis
Although classical genetics treats the effects of mutations 
mainly as independent, recent evidence implies that many 
mutations interact with each other (a phenomenon that 
is termed epistasis), either within or between genes17. 
Furthermore, the form of the interaction — whether a 
deleterious mutation at one locus increases (synergistic 
epistasis) or decreases (antagonistic epistasis) the 
deleterious effect at another — has been shown to have 
an important role in evolution. According to Kondrashov’s 
mutational deterministic hypothesis18,19, the average direc-
tion of epistasis (synergistic or antagonistic) between 
mutations has an important — perhaps determinant 
— role in an organism’s capacity to purge mutations and 
maintain a minimal mutational load. But the experimen-
tal determination of the average direction of epistasis 
in biological organisms is difficult and time-consuming 
owing to the enormous number of combinations of 
mutants that must be studied20. Therefore, there is no 
consensus about the direction of interactions — for 
single genes or whole genomes — in any organism (but see 
REF. 21). Digital genetics allows us to study the direction of 
epistasis with high statistical accuracy, and its influence on 
other determinants of evolutionary fate.

Lenski et al.22 systematically studied the average 
direction of epistasis in 87 digital organisms that were 
evolved independently from the same simple progeni-
tor. A control group of simple genomes was obtained 
by re-adapting (‘de-evolving’) each of these populations 
in an environment that favoured short sequences. The 
direction of epistasis was determined for the complex 
and de-evolved sets by measuring the effect of all pos-
sible one-, two- and three-point mutations (as well 
as a sample of higher multiples of up to ten-point 

Box 2 | Limitations of digital genetics

Digital organisms have obvious advantages for the study of evolutionary and population 
genetics, owing to the organism’s short generation time and the ease of preparing 
perfectly known environments and controls. Functional genetic studies in digital 
organisms, however, are limited to abstract investigations of how information coding is 
influenced by different selective pressures and mutational mechanisms. Because digital 
genomes are expressed directly through code execution, topics that involve the 
molecular mechanisms of transcription, translation and intron splicing, for example, are 
beyond the scope of digital genetics. Digital organisms have only limited means of 
expression regulation, and there is no developmental phase. Moreover, epigenetic 
modifications are absent, and although code recombination after replication is an 
option, digital organisms undergo neither syngamy (the fusion of two genomes) nor 
meiosis. Finally, it should always be kept in mind that digital genomes are extremely 
short compared with even the smallest free-living organisms and most viruses. 
Consequently, although the mutation rate per genome is usually comparable to those of 
most RNA viruses92, the rate per gene is unusually high.

Poisson distribution
The distribution of the number 
of occurrences of a discrete 
number of events during a 
fixed amount of time. For an 
average rate of occurrences λ, 
the probability of observing k 
events during time τ is 
P(k) = e–λτ(λτ)k/k!

Implicit mutation
A genetic change that appears 
as a consequence of a faulty 
replication process rather than 
owing to an explicit mutation 
agent such as substitution, 
insertion, deletion or 
recombination. Examples 
include repetitions, as well as 
excisions of whole segments of 
code.

Replication loop
In digital organisms, the 
segment of code responsible 
for the duplication of genetic 
information. In most cases, this 
segment is ‘looped over’ many 
times to effect replication.

Update
An arbitrary unit of time in 
digital life experiments, during 
which every member of the 
population executes a finite 
number of instructions (usually 
set as 30). The number of 
updates that elapse during one 
generation is not fixed because 
the time to produce an 
offspring changes during 
evolution.

Fixation
In population genetics, the 
fixation of an allele or trait is 
defined as the moment at 
which every member of the 
population carries that allele.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 7 | FEBRUARY 2006 | 111



© 2006 Nature Publishing Group 

 

00001100...

00000000...

00111010...

11011011...

00000000...

00000000...

11100111...

00111010...

00001100...

00000000...

00111010...

11011011...

00000000...

00000000...

nop-A

IO

nop-A

nand

h-copy

nop-b

IO

IO

add
swap

nop-C
nand

swap

if-less
pop

nop-C

nop-c

nand
nand
swap

shift-1
h-alloc

sub
IO

shift-r

shift-l

In

Out

X = 00010110...
Y = 10000100...

01101101...

EQU!

AX: 01101101...

BX: 11010011...

CX: 10110110...

a b

N
O

T
N

A
N

D
A

N
D

O
R

_N
O

R
A

N
D

_N
N

O
R

X
O

R
EQ

U

0
0
1
0
0
0
1

(1)
(2)
(3)
(4)
(5)
(6)

Total

0
0
0
0
0
1
1

0
0
0
0
0
0
0

1
0
0
0
0
0
1

0
0
0
1
0
0
1

0
0
0
0
1
0
1

0
1
0
0
0
0
1

0
0
0
0
0
0
0

0
0
0
0
0
0
0

Fitness:
Gestation time:

Genome size:

7281.78
108
50

nand
IO inc add

nand

h-copy
h-search

IO

h-copy
h-copy

nop-A

mov-head

nop-C

divide

nop-A

nop-C

if-label

nand

IO
no

p-C
h-

co
py

su
b

no
p-

B
IO

no
p-

C

na
nd

no
p-

C

h-
co

py

nan
d nop-C nand nop-B push nop-C

nop-C IO
IO

nand

nop-A

mov-head

nop-B
h-alloc
nop-B

set-flow

IO
nop-B

pop
nop-B

IO

nand

(1)

(2)

(3)
(4)

(5)(6)

Clonal interference
The competition between 
beneficial mutations or alleles 
before fixation. In clonal 
populations within a single 
niche, only one of several 
competing (interfering) 
mutations can go to fixation.

Quasispecies model
A theoretical description of a 
population of self-replicators at 
high mutation rate, which is 
characterized by a ‘cloud’ of 
mutationally interdependent 
types rather than a single, 
dominant wild type. ‘Species’ 
here refers to the species 
concept in chemistry rather 
than biology.

Phylogenetic depth
The total number of generations 
in which an offspring organism 
has differed from its parent, or 
the cumulative number of 
genetic changes that separate 
an organism from the ancestor 
of the lineage.

Kondrashov’s mutational 
deterministic hypothesis
The hypothesis that sex will 
evolve and be maintained in 
populations at high mutation 
rates if mutations interact in a 
synergistic (that is, aggravating) 
fashion, but not if mutations 
interact antagonistically.

mutations) on the fitness of every organism in the set. In 
this manner, Lenski et al. determined the ‘fitness decay 
function’, w(n), of each parent genome as a function 
of the number of mutations, n, by fitting the function: 
w(n) = w(0) exp(–αnβ).

The parameters α and β reflect the average effect of 
single mutations (the mutational robustness) and the 
average direction of epistasis, respectively, on the mean 
fitness w. If mutations are independent on average, we 
would find that β = 1. Synergistic epistasis between 
mutations, that is, interactions that reinforce the deleteri-
ous effects of multiple mutations, results in a coefficient 
β > 1, whereas antagonistic (mitigating) interactions 
lead to β < 1. Lenski et al. found that β < 1 for most of 
these organisms, but with a significant variation that is 

due to differences in genome complexity. Epistasis was 
significantly antagonistic for organisms that have com-
plex genomes, whereas a multiplicative model (whereby 
β = 1) was sufficient to explain the fitness decay of the 
simple genomes, which had shrunk to retain only their 
replicative gene. Therefore, the simple genomes were 
more sensitive to single mutations, whereas the com-
plex set showed robustness to both single and multiple 
mutations through antagonistic epistasis. However, 
the lack of epistasis for the simple genomes in general 
does not mean that pairs of mutations did not interact. 
Instead, both the simple and the complex set showed 
either antagonistic or synergistic effects for about three-
quarters of all pairs, but these all but cancelled out when 
they were averaged for the simple set.

Figure 1 | Avidian genomes. a | A digital organism and its central processing unit (CPU) in Avida. The virtual CPU has 
three registers (AX, BX and CX, shown in purple), as well as input and output buffers (boxes with dashed outline) and a 
double stack (light green). Registers, buffers and stacks can hold numbers that are used by the organism both for 
replication and for computation — that is, their metabolism. The genome of a digital (shown in grey) consists of the 
computational instructions that make up its circular code, within which groups of instructions that carry out a specific 
function comprise genes. The code is executed serially (see part b), and affects the movement of numbers between 
registers, stacks and input/output buffers. For example, the first part of the code snippet highlighted in yellow carries out 
a logical ‘nand’ operation on the numbers contained in the BX and CX registers and places the result in the AX register 
(nand and nop-A). The pair IO and nop-A in turn writes the result of the AX register to the output. The CPU also 
communicates with the environment. For example, on inserting the instruction ‘divide’, the CPU signals that the code 
needs to be separated and placed into the population. b | Execution of an avidian genome. A trace of the execution 
pattern of the instruction pointer is shown. The pointer moves along the sequence of instructions, thereby executing the 
computational genes. Anticlockwise movement is indicated in blue, clockwise movement in red. The phenotypic 
characteristics of the organism — in the form of the computational tasks that are carried out — are listed in the table. The 
genome uses the computational instructions to carry out, in this particular organism, six of the nine computational tasks 
that are listed in the table (three are not performed: ‘AND’, ‘XOR’ and ‘EQU’). Therefore, it can be said to carry these six 
genes. The numbers in the outer ring indicate the IO (input/output, that is, read/write) instruction that triggers the reward 
associated with the computational task. Therefore, the instruction ‘IO’ that is marked as (6) triggers the reward for the 
‘NAND’ gene. The completion of this task is rewarded by extra CPU time (in the form of SIPs (BOX 3)) for the organism, 
thereby increasing its speed of replication. Part a reproduced with permission from Nature REF. 44 © (2003) Macmillan 
Publishers Ltd. Part b is courtesy of D. Misevic. 
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Mutational load 
The fitness reduction of a 
population owing to mutations 
in the gene pool.

For all 174 genomes, this study showed a strong 
correlation between α and β, implying that these 
parameters do not change independently23. Instead, 
the evolution of robustness to single mutations 
(smaller α) goes hand-in-hand with less antagonistic 
interactions (where β is closer to 1). This intriguing 
result indicates that there might be an evolutionary 
path towards synergistic interactions (which favour 
recombination in Kondrashov’s theory), if genomes 
are forced to develop a small α. However, it is unclear 
how the threshold β = 1 can be breached for asexual 
genomes, as discussed in more detail below.

Many uses of digital organisms in understanding 
epistasis can be predicted. For example, San Juan et al.24 
have shown that antagonistic interactions of deleteri-
ous mutations in vesicular stomatitis virus are accom-
panied by antagonistic interactions between beneficial 
mutations — something that can be verified in digital 
organisms. The interaction of deleterious mutations 
with beneficial ones (‘decompensatory pairs’)17 is even 
less understood, but might be important in the emer-
gence and maintenance of sexual recombination25.

Genetics of mutational robustness
The complexity of cellular-repair mechanisms (such 
as proofreading and error correction) highlights the 
importance of reducing the mutational load that is 
brought about by the noise inherent in genetic informa-
tion processing. Digital genetics has revealed that even in 
the absence of explicit repair mechanisms there are con-
siderable differences in how robustly genomes respond 
to mutations (reflected by differences in the average 
effect of single mutations, α)22. But this analysis did not 
shed light on whether these differences are adaptive. It 
is also not clear how these differences arise genetically, 
that is, how two functionally similar or even identical 
genomes can encode the same information in a more or 
less robust manner.

To study the evolution of mutational robustness 
in digital organisms, Wilke et al. created pairs of 
sequences with disparate robustness (differing α) and 
observed the effect on the long-term survival of the 
resulting populations16. The pairs of sequences were 
obtained by subjecting evolved sequences (from the 
‘complex’ set discussed above) to environments that had 

The digital world uses a computational chemistry, where instead of creating product R from compounds A and B, a 
calculation converts random binary numbers — for example, X and Y — to a result Ri(X,Y). This is dependent on the correct 
sequence of instructions to carry out this calculation having evolved in the digital genome. In Avida, up to 68 possible 
calculations can be rewarded, with the rewards being in the form of single-instruction processing units (SIPs — the 
computational equivalent of ATP). These calculations comprise all possible logical operations that can be carried out using 
one to three binary inputs (there are 2 one-input reactions, 8 two-input reactions and 58 computations on three inputs). 
These computational reactions differ in complexity because the genetic language includes only a single logical 
instruction, nand, that can be used to produce different results. For example, the result ‘NOT X’ is obtained from the input 
‘X’ through a single nand, whereas ‘X OR_NOT Y’ requires two nands.

In the above pathway (which is automatically generated from an avidian genome using a tool developed by Weise 
(D. Weise, personal communication)), ovals marked ‘IO_in’ denote the uptake of a number from the environment. These 
numbers are then processed in parallel by separate computational instructions (yellow ovals) that together constitute 
genes, giving rise to the logical outputs (shown next to the arrows). The final rewarded logical outputs (‘NOT X’, ‘Y 
NOR Z’ and ‘Z AND_NOT Y’ in the left part of the pathway and ‘X OR_NOT Y’ in the right part) are shown as cyan ovals 
and are rewarded with SIPs. The most complex rewarded calculation in this pathway is ‘Y OR Z’, and is formed from the 
other rewarded outputs (more complex calculations trigger more SIPs). As organisms acquire the genes that contain 
the instructions to carry out more and more complex operations, a type of logical metabolism develops where different 
genes carry out parts of calculations that are then picked up by other genes. 

Box 3 | Digital metabolism
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1  r  h-alloc
2  m  dec
3  z  set-flow
4  a  nop-A
5  v  mov-head
6  c  nop-C
7  g  push
8  m  dec
9  c  nop-C
10  i  swap
11  q  IO
12  q  IO
13  p  nand
14  t  h-copy
15  q  IO
16  p  nand
17  q  IO
18  c  nop-C
19  p  nand
20  c  nop-C
21  t  h-copy
22  I  inc
23  e  if-less
24  t  h-copy
25  n  add
26  c  nop-C
27  o  sub
28  g  push
29  c  nop-C
30  b  nop-B
31  e  if-less
32  a  nop-A
33  m  dec
34  q  IO
35  d  if-n-equ
36  t  h-copy
37  q  IO
38  c  nop-C
39  p  nand
40  t  h-copy
41  i  swap
42  p  nand
43  q  IO
44  f  pop
45  p  nand
46  g  push
47  q  IO
48  x  get-head
49  u  h-search
50  t  h-copy
51  y  if-label
52  c  nop-C
53  u  h-search
54  a  nop-A
55  s  h-divide
56  t  h-copy
57  t  h-copy
58  t  h-copy
59  v  mov-head
60  a  nop-A
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markedly different mutation rates (2 versus 0.5 muta-
tions on average per sequence and generation), under 
the assumption that populations that are subjected to the 
high rate will recode information in a robust manner26. 

This assumption was correct, but the robust sequences 
paid a price by forgoing replication speed, putting into 
question the adaptive value of mutational robustness.

Wilke et al. asked whether the deficit in replication 
speed can be compensated by mutational robustness, 
and how this compensation depends on the mutational 
environment. Classical population genetics does not 
allow for such a circumstance because it assumes that a 
genome’s response to mutation is determined entirely by 
the rate of mutation (see REF. 27 for a full mathematical 
explanation). In these experiments, pairs of organisms, 
in which one had a lower replication rate but higher 
mutational robustness than the other, were put into 
direct competition at differing mutation rates. For low 
rates, classical population genetics correctly predicts 
the outcome: the faster replicator drives the slower one 
to extinction regardless of a difference in mutational 
robustness. But for each of the pairs, there was a critical 
mutation rate at which the outcome of the competi-
tion flipped: at high mutation rates, the more robust 
genomes reliably replaced the faster replicators. Indeed, 
this change of fortunes is predicted by an extension 
of classical population genetics theory that describes 
the situation at high mutation rates, which is known 
as the quasispecies theory28–32. Therefore, mutational 
robustness is an evolvable genetic trait33,34.

Evolution of complex genes and genomes
The study of the evolution of complex features is at the 
intersection of evolutionary and functional genetics. 
Which genetic changes occurred when, how were they 
transmitted, and what functional advantage (if any) did 
they confer? Although the fossil record that documents 
the evolution of complex features is sparse, the evidence 
that we do possess is consistent with a Darwinian 
sequence of events that builds complexity, mutation by 
mutation, mostly through gradual changes that create 
complex genes, but sometimes taking advantage of radi-
cal genome reorganizations, in the background of an ever 
changing environment and adapting to ever-changing 
targets35. Although such a (mostly) gradual mechanism 
is sometimes anecdotically questioned, it was anticipated 
by Darwin36, and there is now ample experimental evi-
dence that even complex organs such as eyes can evolve 
in such a manner37–39. 

Digital organisms are ideal for testing how complex 
genes evolve, as they allow us to ask by which path and 
using what kind of genetic changes a particularly com-
plex (digital) gene emerges, how likely the evolutionary 
path is, and how repeatable it is. But defining the concept 
of complexity in biology has been controversial40–42. The 
intuitive idea of structural complexity (the number of 
different parts and connections) is difficult to capture, 
as is functional complexity43 (the number of different 
functions an organism can carry out).

However, because we can simply count all the func-
tions that digital organisms can carry out, functional 
complexity is straightforward in digital organisms. 
Taking advantage of this, Lenski et al. studied the evolu-
tion of complexity by tracking every mutation on the 
line of descent of a complex gene44. They studied a 

Box 4 |  The functional genomic array of an avidian

The functional array shows 
the effect of knocking out 
individual computational 
instructions on the 
functions (or genes) of a 
digital organism. The 60 
instructions of the 
organism are displayed in 
the left-hand column along 
with their alphabetical and 
mnemonic codes. For this 
experiment, the instruction 
set consisted of 26 unique 
instructions. The other 
9 columns are the functions 
that were assayed. Besides 
the activity of the 
replicative gene ‘REPL’ 
(first column of functions), 
the authors studied the 
activity of the  
computational genes NOT, 
NAND, AND, OR_N, OR, 
AND_N, NOR, XOR, 
and EQU (subsequent 
columns). The wild-type 
organism could carry out 
the six instructions 
illustrated in green and 
could not carry out those 
illustrated in red. The assay 
looked for a loss-of-
function in the former and 
a gain-of-function in the 
latter. The effect on each 
function of knocking out 
each instruction is shown: 
white indicates that the 
function is unaffected, 
red means that the 
function is turned off, 
whereas green signals 
that the function is turned 
on instead. For example, 
knocking out the 
highlighted instruction 
(‘46 g push’) activated the 
AND gene and inactivated 
the EQU gene44. Because 
organisms can carry out 
each logical calculation 
several times, this array 
can also distinguish in 
principle between 
increased versus decreased 
activity. The tool allows for 
a precise determination of gene location, whether and where the functions overlap, as 
well as whether gene functions are linked to each other. Figure reproduced with 
permission from Nature REF. 44 © (2003) Macmillan Publishers Ltd.
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Genetic drift
In evolutionary genetics, a 
random process that can lead 
to the fixation of neutral and 
even deleterious alleles.

digital gene that carries out the logical EQUALS func-
tion (a function that compares two binary numbers and 
returns a 0 for each bit that differs, and a 1 for each bit 
that is the same). Such genes (which require a minimum 
of 19 instructions, but usually take more than this) 
evolved in 23 out of 50 independent experiments that 
were seeded with a sequence that could only carry out 
replication. Although extending evolutionary time ten-
fold increased the number of successful experiments to 
44, a statistical analysis indicated that the number was 
unlikely to increase further with extra time (C. Ofria, 
personal communication).

For each experiment, the complete line of descent for 
each member of the population was reconstructed using 
the phylogeny tool (for an example see FIG. 2), and every 
mutation was characterized. Owing to the relatively high 
rate of mutation (µ = 0.225 per genome per generation 
for the ancestral type, and higher as the sequence length 
increased), various changes were observed. Single-point 
mutations were dominant, but double and even triple 
mutants were not uncommon, along with simple inser-
tion and deletion mutations and (more rarely) compli-
cated implicit mutations that affected the sequence as a 
whole. More importantly, not all the changes were ben-
eficial. Along with neutral mutations, there were several 
slightly to drastically deleterious mutations on the line 
of descent. Although slightly deleterious mutations are 
expected, the drastically deleterious ones were surprising 
because to appear on the line of descent, an organism has 
to live long enough to give rise to at least one offspring. 
These mutations that had large detrimental effects were 
followed relatively quickly by mutations that ‘rescued’ 
the injured genotype from extinction. Often, the delete-
rious mutation was necessary for the fitness effect of the 
subsequent mutation. Evidently, the evolution of com-
plex features does not necessarily take a straight path 
upwards, but takes occasional detours that lead through 
low fitness territory.

The appearance of strongly deleterious mutations on 
the line of descent cannot simply be explained by the 
possibility of reversion owing to the clear evidence of 
epistatic interactions between mutations. Indeed, stand-
ard population-genetic arguments would have a difficult 
time explaining the statistical prevalence of strongly del-
eterious mutations that reached fixation because genetic 
drift is too weak at these population sizes. However, 
recent modifications to the theory can explain these 
observations31,45 because they take into account changes 
in the genetic background that are brought about by 
mutations. In particular, deleterious mutants that are 
part of the quasispecies of genotypes that surround the 
wild type are ‘strengthened’ by the presence of neutral 
and advantageous mutants nearby31.

Selective pressures on genome organization
It has long been recognized that the genome is not a pas-
sive participant in biological evolution, but that it has 
a role beyond being the central repository of informa-
tion46–48. Natural selection must have shaped genome 
architecture to maximize the probability of long-term 
success of future generations49. However, the means to 

achieve this goal are as varied as the environments that 
genomes find themselves in.

We have seen previously that high mutation rates 
favour genomes that mitigate the effect of deleterious 
mutations. One way to achieve this is to decrease the 
amount of epistasis between genes or mutations, so that 
single mutations do not affect more than a single locus 
or gene50. Conversely, low mutation rates, combined with 
the necessity to pack as much information into a limited 
amount of space, exert the opposite pressure. This results 
in overlapping genes, where mutations are more likely to 
have deleterious effects. Overlapping genes occur mostly 
in the small genomes of viruses and parasites51,52, but 
are also common in bacteria53. However, the pressure to 
compact information into limited space is not the only 
explanation for the frequency of overlapping genes, nor 
is it immediately clear that it necessarily leads to a selec-
tive advantage54. For example, in bacteria it seems that 
the overlap has a mostly regulatory function53.

Testing an hypothesis about the selective advantage 
of a coding strategy is notoriously difficult because it 
requires controlled evolution experiments using simi-
lar organisms that have different genetic architectures. 

Figure 2 | Use of a phylogeny tool for reconstructing 
the evolution of digital organisms. Phylogenetic depth 
of a population of digital organisms that evolved the EQU 
gene before update number 30,000 at a depth of 111 
(REF. 44), with the line of descent of the most abundant 
organism after 100,000 updates superimposed in blue. 
Different orange hues indicate the relative abundance 
of genotypes present in the population (yellow depicts 
the most abundant). The line of descent usually follows the 
depth of the most abundant genotype, but with significant 
exceptions: sometimes an organism on the direct line of 
descent was never represented by more than one 
individual. Different slopes indicate different speeds of 
evolution. Because of the competitive exclusion principle93, 
only one lineage can ultimately survive in a one-niche 
experiment. In multi-niche experiments69,70, different 
branches coexist stably. Reproduced with permission from 
Nature REF. 44 © (2003) Macmillan Publishers Ltd.
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Fitness landscape
A visualization of the 
relationship between 
genotypes (providing the 
domain) and phenotype 
(the fitness) in evolutionary 
dynamics, for which the fitness 
can be characterized by a 
single real value, such as the 
rate of replication.

Modularity
In computer science, the 
degree to which a program is 
structured in independent 
components that can be 
moved around or modified 
without having an effect on 
other components (modules). 
In genetics, the degree to which 
a function is carried out by 
independent genes.

Twofold cost of sex
In a sexual population with two 
sexes, the twofold growth 
disadvantage of a population 
that has a 1:1 sex ratio, which 
is due to the fact that only 
females give birth. The 
opposite occurs when a 
population comprises only 
self-fertilizing females.

Muller’s ratchet
In population genetics, the 
irreversible loss of alleles due 
to chance in small populations 
that reproduce asexually.

Although there are no reading frames for digital organ-
isms, gene overlap can be studied by allowing multiple 
expression from multiple instruction pointers that roam 
the genome, which is akin to overlapping in-phase read-
ing frames. Ofria and Adami55 tested the degree to which 
multiple expression was acquired in populations that 
adapt to a complex fitness landscape, and compared the 
overall dynamics with controls that were restricted to a 
single-instruction pointer. In these experiments organ-
isms can acquire multiple expression by incorporating 
a sequence of instructions that creates an extra execu-
tion thread, akin to the evolution of an extra promoter 
element. Such multiple expression evolved consistently 
(because the extra functional capability is immediately 
beneficial), but overlapping genes proved to be a burden 
in the long run. In the presence of multiple expression, 
when sequence length was unconstrained, the mean 
fitness increase was slower, the sequence length was 
significantly shorter, and the average genome neutral-
ity (the probability that a mutation does not affect the 
replication rate) was significantly less than in the con-
trols55. Therefore, we expect that when there is direct 
competition, the short-term benefit of added function-
ality would ultimately prove detrimental owing to the 
impaired evolvability of overlapping genes. This has 
also been observed in the overlapping genetic code of 
the hepatitis B virus56. The digital experiments did not 
test whether multiple expression was advantageous 
when genome length was limited, and this might be the 
winning strategy under such circumstances.

If multiple expression and gene overlap impairs evolv-
ability, what factors promote it? Gene modularity has been 
suggested, as it can be seen as the antipode of overlap46. 
Mitigating gene overlap by recoding strongly epistatic 
genes in an independent manner has been shown to have 
a significant role in the evolution of mutational robustness 
in digital organisms50.

Sex in digital organisms
Digital organisms represent a unique opportunity to 
study the origin and maintenance of sexual replication 
because both the mode of replication and the factors 
believed to affect it can be controlled. However, care 
must be taken because digital sex is different in impor-
tant details from biochemical sex. For example, digital 
organisms do not suffer from the twofold cost of sex, and 
are therefore much closer to the genetically engineered 
forms of yeast that were used by Goddard et al.57 than 
to organisms that have a defined sex. These authors 
studied the effect of recombination on evolution with 
yeast strains that were engineered to be either sexual 
or asexual, in an experiment that used similar strate-
gies to those of digital genetics. Recombining strains 
evolved significantly higher fitness than asexual 
controls in harsh environments (where beneficial 
mutations are thought to be more frequent), whereas 
fitness did not change for either strain in a permis-
sive environment. However, the experiment could not 
distinguish whether the relative success of the sexual 
strain was caused by a reduction of negative (that is, 
synergistic) epistasis between deleterious mutations 

through segregation, or the recombination of beneficial 
mutations into a single strain.

In T4 bacteriophages the amount of epistasis between 
genes is significantly affected by the rate of recombina-
tion58, hinting that recombination might unlink genes 
and promote modularity. Misevic, Ofria and Lenski59 
tested this hypothesis directly by measuring the degree 
and directionality of epistasis, as well as the modular-
ity of genes, in both asexual and sexual populations of 
digital organisms. Digital populations that underwent 
recombination after replication evolved significantly 
faster, and were more robust to mutations. At the same 
time, although the fraction of pairs of substitutions that 
were epistatic did not differ between sexuals and asexu-
als, the fraction that were synergistic (aggravating rather 
than alleviating) was significantly higher in asexuals. 
They used a functional genomic array to study whether 
diminished aggravating epistasis is due to the evolution 
of modular genes. They found that modules (defined as 
code segments that are involved in a particular func-
tion) overlapped significantly less in sexual populations, 
which also had a larger distance between modules, on 
average. These findings indicate that recombination has 
a similar effect on the genome as high mutation rates: 
the average deleterious effect of a mutation, as well as the 
rate of synergistic epistasis are reduced by coding genes 
in a more modular, and therefore robust, fashion. Both 
findings reinforce Kondrashov’s hypothesis18,19.

Experiments such as this indicate that the form of 
epistasis is crucial when considering recombination 
and its effect on fitness. In a series of experiments to 
determine whether sexual digital organisms can avoid 
Muller’s ratchet60, they were found to have lower fitness at 
larger population sizes than their asexual counterparts 
(even though the sexuals could better survive population 
bottlenecks). Epistasis could explain this: previous 
studies22 have found that deleterious mutations are pre-
dominantly antagonistic in digital organisms (β < 1). 
This leads to the accumulation of deleterious mutations, 
which asexuals can only get rid of ‘one mutation per 
genome’, whereas sexuals can remove several mutations 
per genetic death if they have been concentrated into one 
genome through recombination.

How could a transition from an asexual to sexual 
mode of reproduction then take place? We have seen that 
both high mutation rate and sexual recombination favour 
larger β values (deleterious mutations that interact less 
antagonistally), but high mutation rate alone cannot lead 
to β > 1, nor can the sexual mode be maintained if β < 1. 
It is tempting to think that genetic redundancy61 would 
favour β > 1 because the first few mutations would lead 
to only small (or no) changes in fitness, whereas the fit-
ness must drop catastrophically when the last redundant 
gene is knocked out. But this cannot be a path to sex, 
because redundancy can only be maintained in a sexual 
population. Indeed, if losing one copy of a redundant 
gene does not affect fitness, then redundancy cannot 
be maintained by asexuals. Therefore, sex seems to be a 
prerequisite of sex, a classic Catch-22 situation.

Perhaps this conclusion can be avoided with a plu-
ralist approach that considers scenarios in which there 
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Red-Queen effect
The theoretical result of 
continuing evolutionary 
competition between host and 
parasite genes (or sometimes 
between competing mutations 
in clonal interference) that 
requires continued evolutionary 
innovation to survive.

are multiple mechanisms that favour sex. For example, 
parasites have been implicated in the evolution of sex 
through the Red-Queen effect62,63: an evolutionary arms 
race between competing and co-adapting strains64–67. 
Owing to the constantly changing environment, the 
recombination of beneficial mutations is believed to 
outweigh the load of combined deleterious mutations, so 
favouring sex. The Red-Queen effect also exists for dig-
ital organisms68 (albeit as competition between beneficial 
mutants rather than between hosts and parasites). It is 
conceivable that the introduction of parasites will make 
multiple mutations comparatively more deleterious so 
that synergistic epistasis results, although it has not been 
possible so far to test this in digital organisms.

Conclusions
As highlighted by the studies described above, digital 
genetics has enriched classical evolutionary, functional 
and population genetics. In the future, modifications of 
digital organisms will allow their use to address ques-
tions that cannot currently be tackled. The evolution of 
gene regulation could be addressed — for example, by 
using variable transcription levels that are simulated 
by allowing multiple instruction pointers per gene that 
can run at different speeds. Also, work has begun to 

allow organisms to select a mate before recombination, 
allowing the study of another aspect of sexual reproduc-
tion. Furthermore, a satisfactory interaction of parasitic 
organisms with digital hosts is an important aim for 
the future: perhaps surprisingly, this is still problematic 
in Avida, as digital organisms seem to quickly evolve 
immunity to any parasite that is introduced, precluding 
the study of prolonged co-evolution (C. Ofria, personal 
communication). Finally, besides the areas mentioned 
in this review, it is worth noting that digital organisms 
have also been used in the study of processes such as the 
evolution of ecologies and the formation of species69,70, 
indicating the potential of using this tool to understand 
diverse areas of evolutionary biology.

The first steps towards realizing the experimental evo-
lutionist’s dream were taken by Lenski, who initiated an 
evolution experiment using Escherichia coli 71–73 that has 
run uninterrupted for over 30,000 generations. Digital 
organisms allow even more fantastic dreams, because 
their exceptionally short generation times allow us to 
evolve complex genes — to quote Darwin36 — “from 
so simple a beginning”, and study their genetics. Digital 
organisms offer a glimpse of the basic patterns by which 
genetics and environment interact to produce these 
“endless forms most beautiful and most wonderful”36.
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FURTHER INFORMATION
Avida Digital Life Platform: http://sourceforge.net/projects/
avida
Devolab — the digital evolution laboratory at Michigan 
State University: http://devolab.cse.msu.edu
Index of Avida Documentation: http://devolab.cse.msu.edu/
software/avida/doc
The Digital Life Laboratory, California Institute of 
Technology: http://www.dllab.caltech.edu
Access to this interactive links box is free online.
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