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Abstract. We study the properties of a photodetector that has a number-
resolving capability. In the absence of dark counts, due to its finite quantum
efficiency, photodetection with such a detector can only eliminate the possibility
that the incident field corresponds to a number of photons less than the detected
photon number. We show that such a non-photon number-discriminating
detector, however, provides a useful tool in the reconstruction of the photon
number distribution of the incident field even in the presence of dark counts.

1. Introduction

With the recent advent of linear optical quantum computation (LOQC),
interest in photon number-resolving detectors has been growing. The ability
to discriminate the number of incoming photons plays an essential role in the
realization of nonlinear quantum gates in LOQC [1-4] as well as in quantum state
preparation [5-9]. Such detectors are used to post-select particular quantum states
of a superposition and consequently produce the desired nonlinear interactions of
LOQC. In addition, the most probing attacks an eavesdropper can launch against a
typical quantum cryptography system exploit photon-number resolving capability
[10, 11]. Recent efforts in the development of such photon number-resolving
detectors include the visible light photon counter [12, 13], fibre-loop detectors
[14-18], and superconducting transition edge sensors [19]. Standard photodetec-
tors can measure only the presence or absence of light (single-photon sensitivity),
and generally do not have the capability of discriminating the number of incoming
photons (single-photon number resolution). There have been suggestions for
accomplishing single-photon resolution using many single-photon sensitive detec-
tors arranged in a detector array or detector cascade [20-23]. For example, the
VLPC (visible light photon counter) is based on a confined avalanche breakdown
in a small portion of the total detection area and, hence, can be modelled as a
detector cascade [24]. Then again, fibre-loop detectors may be regarded as a
detector cascade in the time domain.
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Let us suppose a number-resolving detector detects two photons in a given
time interval. If the quantum efficiency of the detector is one, we can be certain
that two photons came from the incident light during that time interval. If the
quantum efficiency is, say, 0.2, what can we say about the incident light? In the
absence of dark counts, we can safely say only that there were at least two photons
in the incident beam. In this case, photodetection rather has a non-photon number
discriminating feature, since the conditional probability of not having zero, or one
photon in the incident pulse is zero. Can we say more than that? For example, what
is the probability that the incident pulse actually corresponds to two photons, or
three? In this paper we attempt to answer these questions and discuss the effect of
quantum efficiency on the photon-number resolving capability.

The semiclassical treatment of photon counting statistics was first derived by
Mandel [25]. He showed that the photon counting distribution is Poissonian if
the intensity of the incident light beam is constant in time. The full quantum
mechanical description has been formulated by Kelley and Kleiner [26], and
Glauber [27]. Here, we start from a formula based on the photon-number state
representation, which was first derived by Scully and Lamb [28]. For a given
quantum efficiency of the photodetector, the photon counting distribution can be
written as

Pty =Y (7 )t =y S, ()
n=~k

where P(k) is the probability of detecting k photons, n is the quantum efficiency
and S(n) is the probability that the source (incident light) corresponded to =
photons. It is assumed that the quantum efficiency 1 does not depend on the
intensity of light. This distribution then leads to a natural definition of P(k|n), i.e.
as the conditional probability of detecting £ photons given n photons being in the
source, as

P(kln) = () (1 = )" . 2)

Contrariwise, suppose we detect & photons. If the detector has a quantum
efficiency much less than unity, very little can be said about the actual photon
number associated with the source. We may, however, deduce that the source
actually corresponded to n photons with a certain probability. This probability
should be high if the quantum efficiency is high. In the following, we will use
Bayes’s theorem in order to extract information about the source from the
conditional photon-counting statistics. Armed with the conditional probability
P(k|n), we may write

P(k|n)S(n) _ P(k|n)S(n)
P(k) > P(RI)S@E)

Now we will identify the conditional probability, Q(n|k), with the probability
that an ideal detector would have detected n photons, given that & photons are
detected by the imperfect detector. It is given as the product of the probability of
the source corresponding to n photons before the measurement and the probability
of k-photon detection, given that n photons are in the source, normalized to the
probability of having k photons detected.

O(nlk) = 3)
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Figure 1.  Schematic of the heralded-photon set-up.

It is evident that generally we cannot find Q(#n|k) if we do not know S(n)—the
distribution of the source. The exceptions are: (i) if n<k, then P(k|ln) =0.
Therefore, Q(nlk) =0 for n<k no matter what S(n) is. (ii) If the quantum
efficiency is unity, that is n=1, then P(k|n) = 0 when n # k, and P(kln = k) = 1.
Since P(k) = S(n=k), it leads to O(n=k|lk) =1 and QO(n # k|k) = 0. Hence,
without knowing S(n), we only have information about Q(n|k) when n<k or
n=1. Such a detector, then, readily excludes certain numbers of photons in the
source rather than determining them. Without a prior knowledge of the source, if
n # 1, we call this a non-photon number-discriminating detector.

Obviously, the difficulty in talking about this conditional probability lies in the
fact that the photodetection is destructive. We will elaborate this subtlety using
a heralded-photon set-up depicted in figure 1. The unitary operator f]H transforms
the input state in the following way:

Un Y auln) =Y aln)y|n)s. )
n=0

n=0

Suppose now the photon number in mode 1 is measured by the perfect detector
and the photon number in mode 2 is measured by the imperfect detector. It is now
simple to understand the conditional probability of finding # photons in mode 1,
given that k& photons are detected in mode 2. In this way, we can have an
operational definition of the conditional probability OQ(n|k). It is easy to show
that the conditional probability of finding n photons in mode 1 given that k
photons are detected in mode 2 is given by precisely the same expression for the
quantity O(n, k) as equation (3). (Note that the transformation given by f]H is far
from quantum cloning, since the result of U is far from being equal to the cloning
transformation (3 07 au|n)1) @ (3o auln),).)

2. POVM description
Suppose an initial quantum state |{;,) of incident light is represented in the
photon number states as

Win) = Y cyln). (5)

n=0
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The probability of finding 7 photons is then given by S(n) = |[(n|¥)|* = |a,|>.
We may describe the detection process of the perfect detector by entangling the
source with the detector ancilla |0)

V) = Ulin)|0) = D aalm)glan)ar. (6)
where
. T s
U =2 1Nl ® = @) ()
J

is the unitary operator implementing the von Neumann measurement, and
we identified the quantum (Q) and measurement device (IM) Hilbert spaces with
appropriate subscripts.

The probability to detect k& photons, P(k), can now be calculated as

P(k) = Trq (Jar) vilarl V) (Ysl) = lol?, (8)

as expected. Of course, the same result would have been obtained as
P(k) = Tr (Myp;n) using a positive operator valued operator measure (POVIM)

M = k) (k| €))

The present unitary treatment, however, is more transparent and allows a
straightforward extension to imperfect detectors.

For an imperfect photodetector with a finite quantum efficiency, the POVM
can be written as

o0
My, =) P(kln)la,){a,l, (10)
n=k
with P(k|n) given by equation (2). We can verify this by calculating as before
1¥r) = Ul¥in)[0)\10)g, (11)

except that the entanglement operator U now acts on the joint Hilbert space of
the quantum system, a measurement device and an environment |0)g, which is
where our lost photons go. Thus, the unitary operator can be given by

1
(H'"?

where ¢ is an arbitrary phase and b' is the creation operator for the relevant mode
of the environment. Similar to equation (8), we now have

P(k) = Trqg (lar) ilarl V) (Wl
_ S 2T\ keq _ \n—k
= glcxnl (k)n (1—n"* (12)

supporting our equation (10) as the correct POVM. Note that any relative phase

J
9

A o " ) aF
UZZ|])</|® (nl/zaT@)ﬂ + exp (ip)(1 — )1 @b )
J

information between the photon number states disappeared.
The POVM effectively transfers the initial quantum state of light into a certain
quantum state (as a result of k-photon detection) by the transformation

Of—k = Mppin, (13)
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where pin, = |¥in) (¥in]. The probability that k& photons are detected can then also
be written as

P(k) = T (pr—)
= Tr (Mp|¥in) {(¥inl)
- Z P(k|n)S(n). (14)

On the other hand, the joint probability that the source state is |n#) and & photons
are detected can be expressed by the probability

P(n, k) = Trg ((n, ar|yy){(Vyln, ax))
= (n|pr—k|n) = P(kIn)S(n), (15)

which defines the quantity Q(n|k) as

a,|pr_rla,
O(nlk) = {anlpr—rlan) (16)
Tr (or-+)
In particular, the quantity Q(n = k|k) corresponds to the confidence of the
state preparation in a situation that we have more than two modes for the input
and the photon number in one of the modes is measured [22].

3. An example

Let us take a simple example of an input coherent state in order to see how the
value of Q(n|k) behaves. In doing this, we assume that the dark count rate is small
enough that we can ignore it, and the quantum efficiency is independent of the
number of incident photons.

A coherent state |o) is expressed in terms of number state as
la) = exp (—|a|>/2) 3, (" /(n!)"/*)|n) [29]. The probability of finding # photons in
|a) is then given by a Poisson distribution:

S(n) = |{nla? = SR (17)

n!

where 7 = |a|>. The probability of detection of k photons with an imperfect
detector is well known to be [28]

Py =Y ()1 — gy SRR

n=k

()"
R

exp (—nn). (18)

That is, the photon counting statistics are simply a Poisson distribution where
the average number of photons detected is the average number of incident
photons multiplied by the quantum efficiency of the detector—given by k = in
as expected.
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Figure 2.  The conditional probability O(n|/k=1) for a coherent state with n =1 as a
function of n. (a) For detector efficiency n=0.2, O(1|1)=0.45, O(2]1)=0.36. (b) For
detector efficiency n=0.9, O(1]1)=0.90, O(2|1)=0.09.

Now let us consider the conditional probability O(n|k). Using equation (3), it is
simply found as

(7)1 = =" exp (—qyi/m!

B — K
Qi) exp (—in)(@n)" /-]
— g (1= " exp =t — i

where |=n—k and [ = n(1 — n). Therefore, the form of Q(n|k) is again a Poisson
distribution as a function of n—k with the average number of photons that fail to
register given as #(1 —n).

Figure 2 shows the behaviour of Q(n|k) as a function of n, for the case of
coherent state input with # = 1, when one photon is detected. We can see that if
the quantum efficiency of the detector is 0.2, with the detection of one photon, then
the chances are more than 50% that the input contains more than two photons
(O(1]1) = 0.45). Obviously, O(1]|1) increases for higher values of the quantum
efficiency (O(1]1) = 0.9 for n = 0.9).

On the other hand, for a given quantum efliciency of the detector, Q(1|1) gets
large as the average number of photons in the input decreases. For n=10.2,
O(1]1) = 0.85 even if the detector efficiency is 0.2, as depicted in figure 3. In
this case, with the detection of one photon the chances are 85% that the detection
result corresponds to the correct value.

4. Reconstruction of photon-number distribution

So far we have seen that we cannot say much about Q(n|k) if we do not know
at least the form of S(n). In other words, using an imperfect detector, even after a
detection of & photons, we do not gain much information about the number of
incident photons without a prior knowledge of the incident field. Hence, the
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Figure 3. 'The conditional probability Q(nl/k=1) for a coherent state with n=0.2
as a function of n. (a) For detector efficiency n=0.2, O(1]1)=0.85, O(2|1)=0.14. (b)
For detector efficiency n=0.9, O(1]1)=0.98, O(2|1)=0.02.

problem comes back to reconstruction of photon number distribution of the
incident field, S(n), from the photon counting probability, P(k) by a sequence of
identical inputs and measurements. For this purpose, we may write equation (1)
in a matrix form as

P =PS, (20)
where
P(0) S(0)
P(1) S(1)
P=|P2 ]| S=]|S0? (21)

and each component of the matrix P represents the conditional probability
P(k|n) as

n e
Puy = Pl = ()00 =)', (22)
Then the inverse of P can be found explicitly; it is given by
— my m—n

which, in the absence of dark counts, determines the photon-number distribution
of the source from the photon-counting distribution. Note, however, that for a
fixed #n there are alternating signs in (P~!)
inversion formula can yield unphysical results depending on the probability
distribution P(k). Put another way, for small efficiencies the matrix P is ill-
conditioned and P~! will contain matrix elements that can become very large in

. as the index m changes, so that this

absolute value and can have either sign. This means that even if the calculated
S(n)’s are all non-negative, a good inversion is still not guaranteed, since the
inversion formula (23) is highly sensitive to small changes of P(k), amplifying the
statistical and other noise which is inevitably present in any actual measurement.



1524 H. Lee et al.

0.2

(a)

o
e
[9)]

Probability

0.05

Number of photons

Figure 4. Reconstruction of the input-state photon-number distribution: (a) photon
counting distribution from the NIST experiment [19]; (b) reconstruction of the
input state photon distribution (7 ~20.15), assuming a quantum efficiency of 0.2 and
no dark counts.

The fact that the inverse matrix P~' is also an upper triangular matrix implies that
S(n) is determined by P(k) with & > n. In other words, the tail of the measurement
result, P(k), where the statistical noise can be expected to be greatest, affects
the inversion significantly. The validity conditions for the inversion formula shall
be discussed elsewhere.

Instead, we can carry out the following recipe. (1) Seek an underlying distri-
bution S for which PS matches the observed frequencies according to a 2
goodness-of-fit test. (2) Then, of all such distributions, seek the one with maxi-
mum entropy; i.e. pick the most likely underlying distribution, which is statisti-
cally consistent with the data. We note that entropy is the logarithm of the number
of underlying configurations corresponding to a given distribution. Thus, such a
strategy seeks the ‘most-likely’ distribution satisfying the constraint that, when
filtered by imperfect detection, the resulting distribution is consistent within the
statistical noise of the actual data [30]. This approach has been used for many years
in the imaging community for deconvolution [31]. Here we ensure a global
maximum entropy distribution is found by implementing this strategy as a genetic
algorithm, which we will discuss in a forthcoming paper [32]. Using this method,
the reconstruction of S8 with a data set from an actual experiment is depicted
in figure 4. The plot of figure 4, curve (a) shows the probability distribution
of the detected photons. The raw count data was normalized by the total number
of counts (data provided courtesy of NIST [19]). The result of reconstruc-
tion is shown by the plot of figure 4, curve (b) and yields a n = 20.15 for the
incident coherent state—a good agreement with the detected experimental value of
Nexp = 4.02 [19].

5. Dark counts

In addition to the finite quantum efficiency, the dark counts further make
the results extracted from the experiment obscure. For a constant dark-count
rate, however, a generalization of the inversion may be handled analytically.



Towards photostatistics from photon-number discriminating detectors 1525

Suppose in general that the probability of d dark counts is D(d), a discrete
probability distribution, which satisfies the normalization condition

i D(d) = 1. (24)
d=0

We assume that the distribution D(d) represents probabilities of dark counts in a
fixed interval of time 7 (duration of a single photon-counting experiment), and that
these probabilities are independent of all other relevant observables such
as incoming photon number, number of detected photons, etc. Therefore in the
presence of dark counts, the conditional probability of detecting k& photons, given
n photons in the incident field equation (2), is modified accordingly:

k
Polny =Y D@(, " )nt i — gy, (25)
D d; (k—d)" n

which expresses the probability Pp(k|n) as a sum (over all possible d) of the
probability of registering k—d photons from the incident field via true detection
while the remaining d are registered via dark-count events.

As long as the physical time scale for the emergence of a dark-count event is
much smaller than 7 and the events arrive at a constant rate A, the probability
distribution D(d) (of the arrival of d dark-count events in the fixed time interval 7)
has a Poissonian-distribution limit:

(1)
d

D(d) = exp (—A71) (26)

where the average number of dark count is d = At. Since after interchanging the
summation index d with & —d we can rewrite equation (25) as

k
Potkln) = " DGk =) )n'(4 =y, 27)
d=0

where the summation over d is in the form of a matrix multiplication (equation

(22)),

(PD)y = ) DeaPan, (28)
d
or in matrix notation,

Pp = DP, (29)

where (Pp),, = Pp(k|n), and

Dkd = D(k —_ d)
()»'L')k_d

= exp (—AT1) vk (30)

Throughout the paper, we adopt the convention that k! =T(k+ 1) =00 for

. . . a .
negative integer k, and correspondingly ( ) = (0 whenever b>a. In equation
(30), this convention implies that Dy = 0 for d> k.
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Now by inverting equation (27) in a matrix form, from the fundamental
equation,

P(k) =) Pp(kln)S(n), (31)

we can reconstruct the photon number distribution S(#) of the incident field given
the vector of observed photon-count probabilities P(k), whose relationship to S(n)
(given by equation (31)), can again be written in matrix form as P = Pp8, just as in
equations (20) and (21). The inverse of the coefficient matrix Pp(k|n) = (Pp)p, is
found from equation (29),

Py =P 'D". (32)

Let us first consider the inverse of the matrix D defined as in equation (30). It is
not difficult to prove that the inverse of D is given by

1 _ (_)"T)i_j
(D7), = exp () 2
. =i
=exp (AT)(—=1)"" (’.\T). . (33)
(i —J)!
Combining equation (33) with equation (32) and equation (23), we find
1y _ AW ik (=AD"
(Pp™ D = eXP(kT)Z <k>77 (n—1) m

(=D exp ) [ (i - (1 —nrtl’
RS ;[@/ ¢ ")!][ . ] (9

The infinite power series over 7 in equation (34) is absolutely convergent for all
values of the argument

(1 —mrz
—

Z

(35)

and can be expressed in terms of the confluent hypergeometric function 1 F(a; b; 2)
(which is an entire function of the argument 2 for all parameter values a, b), giving
a compact expression for the inverse matrix elements in the form:
exp (A1)
k
(1 —-n"Go»"

n! ; .
mz 1Fim+1in—k+1;2), if k<n,

(Pp ™ Dy = (=D

(36)

1
mzlel(k-i-l,k—ﬂ—i-l,Z), if &> n.

The inversion of equation (32) can now be effected by substituting equations (35)
and (36) into the matrix formula

S(k) =Y (Pp ")y, P(n). (37)

This suggests that the reconstruction of the photon statistics of the source may be
possible with any given quantum efficiency of the detector, even in the presence of
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dark counts [32]. However, as the efficiency falls and the dark-count rate grows,
more and more data points will be required for the inversion.

6. Summary

We have shown a way of quantifying the capability of photon-number dis-
criminating detectors by the conditional probability, Q(n|k), given in equation (3).
This conditional probability, however, can be obtained only when a priori knowl-
edge of the input is available. Without a prior knowledge of the input state the
results of photodetection can only eliminate the possibility of having certain
numbers of photons in the source rather than determining them in the absence
of dark counts. Hence, the term non-photon number-discriminating detector corre-
sponds to the situation where the input state is unknown. On the other hand, the
same photodetector could be a photon number-discriminating detector if the input
state is known. Of course, the number resolving capability, without a prior
knowledge of the input, can be measured qualitatively using the conditional
probability P(k|n) of equation (2), which is given by the characteristics of the
detector itself. In particular, C, = P(k|k) may serve the measure of that capability.
For the detector model considered in this paper, the number-resolving capability
up to two photons can be written as Cy—, = 12, and for C; to be bigger than 0.5,
should be bigger than 1/2/2 2 0.71. Similarly, Pp(k|k) of equation (27) plays the
same role in the presence of dark counts. For example, with a given dark-count
rate AT = 0.5, the detector efficiency 1 should be more than 0.78 for Pp(k|k) to be
larger than one half.

We then introduced a simple matrix inversion formula in order to reconstruct
the input-state photon distribution from the measured photon counting distri-
bution. Due to the form of the inverse matrix and its high sensitivity to the
fluctuations, restrictions need to be imposed on the use of this inversion formalism.
Alternatively, we can use a genetic algorithm that finds the distribution with
maximum entropy after passing the x> goodness-of-fit test. We have shown good
results for the reconstruction of the input distribution using the data from a recent
experiment at NIST. Finally, we have considered the reconstruction task in
the presence of dark counts and derived a completely analytic formula for the
inversion. A detailed analysis of the conditions for the inversion formula to be
applicable will be discussed in future work.

Acknowledgments

This work was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration. We wish to thank G. S. Agarwal, J. D. Franson and T. B.
Pittman for helpful discussions as well as A. J. Miller for sharing data from the
experiment performed at NIST. We would like to acknowledge support from
Advanced Research and Development Activity, the Army Research Office,
Defense Advanced Research Projects Agency, National Reconnaissance Office,
National Security Agency, the Office of Naval Research, and NASA Code Y.



1528 H. Lee et al.

References

(1]
(2]

(3]
(4]

(5]
(6]
[7]
[8]
(9]
(10]
(11]

[12]
(13]

[14]
[15]
[16]

(17]
(18]
(19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]
[27]

[28]
[29]
[30]

[31]
[32]

KNILL, E., LAFLAMME, R., and MILBURN, G. J., 2001, Nature, 409, 46.

PrrrMmanN, T. B., Jacoss, B. C., and FrRaNsoN, J. D., 2002, Phys. Rev. Lett., 88,
257902.

FraxsoN, J. D., DONEGAN, M. M., FircH, M. J., JacoBs, B. C., and PirT™MAN, T. B.,
2002, Phys. Rev. Lett., 89, 137901.

RaLpH, T. C., GILCHRIST, A., MILBURN, G. J., MuNrO, W. ]J., and GLANCY, S.,
2003, Phys. Rev. A, 68, 042319.

LEE, H., Kok, P., CERF, N. J., and DOWLING, ]J. P., 2002, Phys. Rev. A, 65, 030101.

Kok, P., LEE, H., and DOWLING, J. P., 2002, Phys. Rev. A, 65, 052104.

FIURASEK, ]., 2002, Phys. Rev. A, 65, 053818.

GERRY, C. C., BENMOUSSA, A., and Campros, R. A., 2002, Phys. Rev. A, 66, 013804.

PrYDE, G. ]J., and WHITE, A. G., 2003, Phys. Rev. A, 68, 052315.

GILBERT, G., and HAMRICK, M., 2001, Algorithmica, 34, 314.

Gi1siN, N., RiBorDY, G., TITTEL, W., and ZBINDEN, H., 2002, Rev. Mod. Phys.,
74, 145.

Kiwm, J., TAKEUCHI, S., and YAMAMOTO, Y., 1999, Appl. Phys. Lett., 74, 902.

TAKEUCHI, S., Kim, J., YAMAMOTO, Y., and HOGUE, H. H., 1999, Appl. Phys. Lett.,
74, 1063.

BaNaszek, K., and WAMSLEY, 1. A., 2003, Opt. Lett., 28, 52.

HADERKA, O., HAMAR, M., and PERINA, JR, J., 2003, Euro. Phys. J. D, 28, 149.

REHACEK, J., HRADIL, Z., HADERKA, O., PERINA, JR, J., and HAMAR, M., 2003, Phys.
Rev. A, 67, 061801.

AcHILLES, D., SILBERHORN, C., SLiwa, C., BaANAszEK, K., and WAMSLEY, 1. A,
2003, Opt. Lett., 28, 2387.

Frrcu, M. J., Jacoss, B. C., PrrrMmaN, T. B., and FrRANSON, J. D., 2003, Phys. Rev.
A, 68, 043814.

MILLER, A. J., NaMm, S. W., MARTINIS, J. M., and SERGIENKO, A. V., 2003, Appl.
Phys. Lett., 83, 791.

SONG, S., Caves, C. M., and YURKE, B., 1990, Phys. Rev. A, 41, R5261.

PauL, H., TorMma, P., Kiss, T., and JEX, 1., 1996, Phys. Rev. Lett., 76, 2464.

Kok, P., and BRAUNSTEIN, S. L., 2001, Phys. Rev. A, 63, 033812.

Kok, P., 2003, IEEE Sel. Top. Quant. El., 9, 1498.

BArRTLETT, S. D., DiamaNTI, E.; SANDERS, B. C., and YamaMoTO, Y., 2002, Proc.
Free-Space Communication & Laser Imaging 11, 4821, edited by J. C. Ricklin and
D. G. Voelz (Bellingham, WA: SPIE).

MANDEL, L., 1958, Proc. Phys. Soc., 72, 1037.

KELLEY, P. L., and KLEINNER, W. H., 1964, Phys. Rev., 136, A316.

GLAUBER, R. J., 1965, in Quantum Optics and Electronics, edited by C. DeWitt,
A. Blandin and C. Cohen-Tannoudji (New York: Gordon and Breach Publishers),
p. 63.

ScuLLy, M. O., and LAwmB, Jr, W. E., 1969, Phys. Rev., 179, 368.

ScuLLy, M. O., and ZUBAIRY, M. S., 1997, Quantum Optics (Cambridge: Cambridge
University Press).

SKILLING, J., and GuLL, S. F., 1985, Maximum-Entropy and Bayesian Methods in
Inverse Problems, edited by C. R. Smith and W. T. Grandy Jr (Dordrecht: Reidel
Publishing), p. 83.

GuLL, S. F., and DANIELL, G. ]., 1978, Nature, 272, 686.

YURTSEVER, U. H., BRAUNSTEIN, S. L., HockNEY, G. M., Kok, P., LEg, H.,
Abpawmi, C., and DOWLING, ]. P., in preparation.



	first

