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Based on a recent model of evolving viruses competing with an adapting immune system (Kamp and Bornholdt,
Co-evolution of quasispecies: B-cell mutation rates maximize viral error catastrophes. Phys Rev Lett 88, 2002),
we study the conditions under which a viral quasispecies can maximize its growth rate. We find that a virus is
most viable if it generates on average precisely one mutation within the time it takes for the immune system to
adapt to a new viral epitope. Experimental viral mutation rates, in particular for HIV (human immunodefi-
ciency virus), seem to suggest that many viruses have achieved their optimal mutation rate. © 2003 Wiley

Periodicals, Inc.
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1. INTRODUGTION
ince Eigen and Schuster introduced the concept of a
quasispecies [1, 2], it has become a standard model to
describe molecular and viral evolution. If a simple,
single-peaked fitness landscape is assumed, quasispecies
theory predicts that error-prone replication leads to the
formation of a central “master sequence,” surrounded by a
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cloud of mutant sequences. For viral evolution, this implies
that any “wild-type” sequence is accompanied by a cloud of
related mutants that, as a whole, represent a target for the
immune system. The quasispecies approach to molecular
evolution has been the object of detailed investigations,
often supported by techniques of statistical physics [3-14],
revealing the characteristic features of such systems, includ-
ing the occurrence of an error catastrophe. The latter char-
acterizes a system in which a critical mutation rate exists
beyond which the genomic information is irretrievably lost
to mutations, i.e., beyond which selection ceases to operate
[10-12, 15-18] (for an in-depth discussion of error catastro-
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phes and related phenomena see also [19]). The destabiliz-
ing effect of increased mutation rates has been observed for
various viruses, including HIV [20] and Poliovirus [21].

Recently, various extensions of the Eigen-Schuster
model have been considered, in particular involving the
shape of the fitness peaks and the landscape’s time-depen-
dence. Although the shape of the fitness function influences
the robustness of a species to mutations [22-24], a behavior
qualitatively different from the standard results can be ob-
served for nonstationary fitness landscapes [25, 26]. In rap-
idly changing environments, a second catastrophe emerges
besides the well-known error catastrophe, termed “adapta-
tion catastrophe.” In a changing environment, sequence
replication must occur with a nonvanishing error rate to
enable the species to keep up with the environmental
changes. (In static landscapes, a zero mutation rate is ulti-
mately optimal because it maximizes the average global
fitness of the population.) Indeed, a selective advantage for
so called “mutator mutants” (or “general mutators” [27])
has been observed for Escherichia coli and Salmonella en-
terica under challenging living conditions [28-30].

For viruses in the environment of an adaptive immune
system, the fitness landscapes for both the virus and the
immune system are dynamically generated by a co-evolu-
tionary process. These dynamics can be studied within the
quasispecies framework if the quasispecies character of
both the viral population and the motifs of immune recep-
tors are acknowledged. In an immune response, the pres-
ence of an antigenic epitope induces the proliferation of the
corresponding immune receptor sequence. This “master”
sequence is associated with a cloud of closely related recep-
tor sequences that emerge from somatic hypermutation of B
cells in the germinal centers [31]. Competition between a
viral population and an adaptive immune system takes
place via an asymmetric coupling: although the immune
quasispecies is strongly attracted by the virus, the viral
quasispecies is driven away from its current master se-
quence by the immune system. This predator-prey-dynam-
ics results in a migration through sequence space as ob-
served in many infectious diseases, such as HIV [32, 33].

The co-evolutionary dynamics within an infected host
was recently formalized within a model relying only on a
few dynamical rules [34], recapitulated in the following sec-
tion. Here, we focus on the implications of an optimal
immune response within this framework and consider the
conditions that correspond to maximal viral fitness. Finally,
we compare known viral mutation rates to those expected if
a viral population has achieved an optimal mutation rate.

2. VIRUS-IMMUNE SYSTEM CO-EVOLUTION

Let us assume that the viral and the immunological quasi-
species alike experience a single-peaked fitness function
(Figure 1), albeit one that can change in time. Let us assume
further that at any particular time, the (viral) master se-

quence of length n grows at a rate o, (much larger than the
“off-peak” or background-fitness m,), and similarly for the
immune system: o;; > m;. Such a simple immunological
fitness function results from a reduction of the viral impact
to induce proliferation of immune cells to its master se-
quence. Analogously, only the dominant immune sequence
imposes a decay rate § on its complementary viral se-
quence. Both species replicate imperfectly, with copy fidel-
ities g, < 1 and g;, < 1 (denoting the probability for correct
duplication of a monomer drawn from an alphabet of size
A). The virus-immune system interaction is implemented by
the following dynamic rules that are cyclically iterated, lead-
ing to the quasispecies’ migration through sequence space:

1. Once the immune system imposes a decay rate § > 1 on
the viral master sequence (centered at the viral fitness
peak), the narrow niche of the virus is assumed to move
to an arbitrary sequence of the first error class (cf. Figure
1, bottom row).

2. The viral quasispecies adapts to this new fitness peak on
a time scale ,.

3. The fitness peak of the immune quasispecies is adjusted
and moves to the new maximum of the viral distribution
(cf. Figure 1, top row).

4. The immune system adapts to the new fitness peak on
the time scale 7.

As discussed previously [34], the dynamically generated
time scale © = 1, + 7, can be approximated by the two

expressions:
1 - qV
ln( N1 )

Cqlo,—m)+ 5

and

l l_qis
M1

- qg(o-is - T’is) ’ (2)

Tis =

The relative growth of the (moving) viral and immunological
master sequences in comparison to the environmental
(background) sequences’ growth can be determined as
[25, 34]:

(e(qf'ﬂi*m)f _ e(qf‘nﬁni)‘r)(l _ lh)(fi
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! A =1 (o;— m)q;
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leading to the conditions
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Co-evolution of viral and immune quasispecies. The figure shows the peaked fitness functions (o,, o) and the decay rate & locally imposed to the virus
by the dominant immune sequence together with the quasispecies evolving in response (distribution of sequences in terms of concentrations).

k,>1,

v Kis > 1 (4)
for viability of the viral and immunological species, respec-
tively. The regimes of (co)existence of the two quasispecies
can be determined by analyzing «, and «;,. In particular, the
viral quasispecies is subject to both a classical error catas-
trophe at high mutation rates, and an adaptation catastro-
phe for small mutation rates. In contrast, the immune sys-
tem (as the driving force) is not subject to a limiting
migration velocity and accordingly only displays the classi-
cal error catastrophe [34].

3. OPTIMAL VIRAL MUTATION RATE

Having derived the relations quantifying viral as well as im-
munological viability, we can now deduce optimal strategies
for both the virus and the immune system. The immune sys-
tem attempts to minimize viral growth (dx,/¢q,;, = 0), which
implies the relation

Mis N _ _
Mis 1 nis“’isln()\ _ l) - Ov Mis = 1 qis (5)

between the optimal immune receptor size n; and the
per-site mutation probability u;. This prediction and how it
fares against the background of experimental data has been

discussed in Kamp and Bornholdt [34]. Below, we extend
this approach to derive the conditions for optimal viral
escape from an immune response.

Let us first approximate «,, in Eq. (3) by

-q,
A—1

expl(q)o, — m,)7], (6)

K, =~

using o, > 1,, q, ~ 1. Optimizing viral viability conditions is
akin to maximizing the viral species’ relative growth rate
such that

v

GKV_

aq,

0. (7)

Inserting T = 7, + 7, into (6) leads the equivalent condition

0= (q:(c, = m,) + 8)(n(q, - V)q, o7
+ 5[% + (qv - 1)”5130'1/71‘3]
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Optimal per-site mutation rate ., comparison between the analytic approximation as given by equation (10) (dashed lines) and the numerical solution to
equation (7) (solid lines). Parameters are o, = 10; , = 1; o = 10; n,s = 1; ¢ = 0.99; n = 100; 6= 200; A = 4, unless specified otherwise in the
plot.

We can simplify this expression in the following manner.
Writing (8) in terms of the mutation probability u, =1 — q,,
rather than the copy-fidelity g, allows us to expand (8) in
terms of p, (while leaving the term in In p, untouched).
Assuming furthermore that 6 > o, > 7,, and n > 1, we find

0K,
aq

=0& 8+ ndo,(Inp, — d1)pu, =~0.  (9)

v

We now proceed to determining the root of this expression.
Although this can be done numerically (see below), we first
attempt to obtain an analytical approximation that permits
an intuitive interpretation. For this purpose, it is allowable
to assume In pu, =~ const, because In p, is a slowly varying
function of u,. The optimal per-site mutation probability
then follows as

1 1
~ no (. — const/d)  nom

T (10)

Figure 2 shows a comparison between the optimal mutation
rate as given by the approximation (10), and the exact
solution obtained numerically from (8). Despite the many
approximations that have entered the derivation of (10), the
analytic approximation is in good agreement with the nu-
merical results. Improvements to the analytic approxima-
tion are possible if we neglect fewer of the higher order
terms. [A significant improvement for small & can be ob-
tained if instead of completely neglecting the logarithmic
term, we replace it with a constant (e.g., In p, ~ — 7 for u,,
between about 10~ % and 1072.)]

Let us now rewrite (10) in terms of the optimal genomic
mutation rate:

1

0, Tis

pe = npy = (11)

This form suggests the following intuitive interpretation.
The immune system adapts to a new virus strain within a
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Regrowth from a single virus particle to a population size of eight,
within the time-span 7 (dots indicate mutations). The virus can best
evade the immune system if almost every virion in the population at
t = 7, differs from the initial virion by one mutation.

time-span 1;, whereas the virus replicates in a time-span
1/0,. The ratio between these two time scales measures the
duration of one generation of the virus in units of the
response time of the immune system. Hence, Eq. (11) im-
plies that the virus can optimally evade the immune system
if the virus suffers on average one mutation per genome
within the time the immune system needs to adapt to a new
strain (Figure 3). This condition guarantees that a maximal
number of virions have mutated away from the epitope to
populate its first error class, precisely at that point in time
when the immune system has adapted to attack the new
viral quasispecies. A similar result has been obtained by
Kimura who found that the optimal mutation rate at a locus
is equal to the substitution rate needed at that locus to keep
up with the changing environment [35].

If a viral quasispecies optimizes its mutation rate according
to Eq. (11), we expect to see this reflected in a relation between
the mutation rate and genome size, such that their product is
constant (given a particular generation time 1/0,). Optimiza-
tion of genomic mutation rate can take place via an optimi-
zation of sequence length, given any particular per-site muta-
tion rate. Table 1 shows that the genomic mutation rate uS
only slightly varies within the class of RNA viruses, which
presumably have a similar generation time. This is well in
agreement with the prediction (11).

Given the adaptation time of the immune system 7, and
the generation time 1/0,, we can test the prediction of Eq.
(11) more specifically. The adaptation time 7, is the time
necessary for the immune system to develop a specific
answer to an antigen. For most systems, this can be esti-
mated to take between 7 and 14 days [39]. The generation
times of viral species of course vary, but data from HIV-1 is
available. Table 2 shows that the optimal genomic mutation
rate as predicted by formula (11) is well within the range of

TABLE 1

Genomic Length n and Spontaneous Mutation Rates per Base Pair and
Replication ., for RNA-based Viruses that Compete with Advanced
Immune Systems as well as Genomic Mutation Rate, u¢ = npu,. Note
that This Product is an Approximation for ué = 1 — (1 — w,)" for
nu, <1

Organism n w, Ky = Nw,

Lytic RNA-based viruses [37]

Poliovirus 7.4 x 10° 1.1 x107* 0.81
Influenza A virus 13.6 X 103 >7.3x10°° 0.99
RNA-based retroviruses [36,37]

Spleen necrosis

virus 7.8 x 10% 20x10°° 0.16
Molony murine

leukemia virus 84 x10° >35x10"° 0.029
Rous sarcoma

virus 9.3 x 10° 46 x 1075 0.43
HIV-1 9.2 x 10° 24 x107° 0.22

Data are reproduced from [36-38].

the experimentally determined rate. This suggests that
HIV-1 has adapted its mutation rate to optimally escape the
immune system as well as the error catastrophe.

4. SUMMARY

The dynamics of co-evolution between virus and immune
system can be studied within the framework of molecular
evolution in time-dependent fitness landscapes, in which a
constantly changing, polymorphic, viral population competes
with an immune system adapting to keep track of the viral
changes. Such an analysis [34] reveals an optimal mutation
rate for the immune system (so as to constrain the range of
mutation rates within which the virus is stable) that appears to
be compatible with available data. The same formalism can be
used to determine the optimal viral mutation rate, by maxi-
mizing the speed of adaptation while minimizing information
loss due to mutations. It follows that the optimal viral muta-
tion rate is reached if a sequence undergoes on average one
mutation within the time it takes for the immune system to

Comparison of the Genomic Mutation Rate w& of HIV-1 with the
Theoretical Estimate (o, 7,9 from Formula (11)

old] T[] (CX AN [T

HIV-1 04---35 7---14 0.02 --- 0.36 0.22

Data are reproduced from [40, 41].
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adapt to the viral genomic signature, thus barely staying ahead
of the immune system. Such optimal mutation rates are com-
patible with experimentally determined ones and suggest that
the constancy of genomic mutation rates within viral classes
(while sequence length and per-site mutation rates vary over
many orders of magnitude) can be explained by selection
favoring viral strains at or near the optimal rate.
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