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Entangled light in moving frames
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We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the
reference frame, in a fully relativistic framework. We find the transformation law for helicity basis states and
show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate
produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density
matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity,
and the spread of the beam.
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The second quantum revoluti¢f] is changing the ways is no rest frame for a massless particle, the analysis of the
in which we think about quantum systems. Rather than jusspin (polarizatior) properties is quite distinct from the mas-
describing and predicting their behavior, we now use newsive case. For instance, instead of usptty=(m,0) as the
tools such as quantum information theory to organize angtandard four-vectofsee Ref[11]), we have to define the
control quantum systems, and turn their nonclassical featuraaassless analdg*=(1,7). Note thatk” has no parameten
to our advantage in creatirguantum technologyrhe central  and is no longer invariant under all rotations. In fact, the
feature that makes quantum technology possible is quantufiittle group of k* is isomorphic to the noncompact two-
entanglementwhich implies that particles or fields that have dimensional Euclidean group(8 (the set of transformations
once interacted are connected by an overall wave functiothat map a two-dimensional Euclidean plane onto its&ibr
even if they are detected arbitrarily far away from each othera massless spin-1 particle the standard vector allows us to
Suchentangled pairsfirst discussed after their introduction define the eigenstate
by Einstein, Podolsky, and Rosg?y, are crucial in technol-
ogy such as quantum teleportati®] and superdense coding pM|2)\> - k,u|2)\>' (1)

[4]. Furthermore, quantum entanglement is critical in appli-
cations such as quantum optical interferometry, where quan-
tum entangledN-photon pairs can increase the shot-noise
limited sensitivity up to the Heisenberg linfif]. - . o . _

While quantum entanglement as a resource has been Stuwhe.rez is a unit vectqr pomt_mg in the direction. Since the
ied extensively within the last decad6], it was realized Particle is massless, is restricted to+ 1 [14].
only recently that this resource is frame dependent, and The momentum-helicity eigenstates are defined as
changes nontrivially under Lorentz transformatigis-12). ~
In particular, Gingrich and Adami showed that the entangle- |pA)=H(p)|z\), 3
ment between the spins of a pair of massive spin-1/2 par-
ticles depends on the reference frame, and can either derhereH(p) is a Lorentz transformation that takesto p.
crease or increase depending on the wave function of the paithe choice oH(p) is not unique, and different choices lead
[11]. A consequence of this finding is that the entanglemento different interpretations of the parameter For instance,
resource could be manipulated by applying frame changeis the massive case the choicetdtp) can lead ta\ being
only. Many applications of quantum technology, however,either the rest-frame spin or the helicity. In the present case it
involve entangled photons rather than massive spin-1/2 pars convenient to choose
ticles, to which the massive theory does not apply. In this
paper, we work out the consequences of Lorentz transforma- H(p)=R(P)L,(&,), (4)
tions on photon beams that are entangled in polarization. P
Each photon beam is described by a Gaussian wave paCk\%ereL
with a particular angular spread in momentum, and for the i _ N - i _
sake of being definite we discuss a state whose polarizatiodd R(p) is a rotation that takeg to p, while &, is the
entanglement can be thought of as being produced by dowri@Pidity of the moving frame,
conversion. Because both spin-1/2 particles and photons can

320 =\ 20), 2)

(&) is a Lorentz boost along that takesz to |p|z

be used as quantum information carriégabits, the present &= Infp]. ®
calculation also contributes to the nascent field of relativistic .
guantum information theorj/13]. For a parametrization in polar coordinates, we can wpite

In order to calculate how a polarization-entangled photor= (Sin 6 cosé,sin#sin ¢,cost):
state transforms under Lorentz transformations, we need to A
discuss the behavior of the photon basis sates. Because there R(P)=R,(H)Ry (). (6)
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Again, this choice oR(p) is not unique(see, for example, At this point one may be tempted to use the two helicity
Ref.[17]) but particularly easy to deal with in this context. States as a basis for the polarization density matrix. However,

An arbitrary two-particle state in this formalism can be writ- because helicity states for different momentum eigenstates
ten as reside in different Hilbert spaces, tracing out the momentum

degree of freedom produces unphysical results. For example,
~ ~ we would find that a spatial rotation can change the entangle-
|WAA'BB'>ZJ f %‘; Oo(P.A)|PN) anr|9o)5e dpda, ment between two particles. Instead, we shall use the pho-
@) ton’s polarization four-vectors as basis states.
The polarization four-vectors for positive and negative he-
where |pA\)aa and |qo)gg correspond to the momentum licity states are given by
and helicity states, as defined in Eg), of photonsA andB.

Furthermoredp anddq are the Lorentz-invariant momen- ) 0

tum integration measures: ~ Rp| 1
p)=—| . (16

~ d3p \/E =

A general polarization vector is, of course, formed by the

superposition of the two basis vectors. According Refs.
o [9,18], for a given four-momenturp* and associated polar-

f f ; |9)0(P.0)|?,dpdg=1. (99 ization €*, a Lorentz boost has the following effect:

and the functiong, ,(p,q) must satisfy

w— 0 n) " Llet
To work out how a Lorentz boost affects an entangled D(A)e"=R(AP)R(p) “e”. (a7

state, we must understand how the basis stk trans-  However, this transformation is only correct for pure boosts

form. Following Refs[14,15, we apply a boosh to [pA),  in the z direction, or rotations around treaxis if this axis is
. . not the momentum axiss for those cases the angM A ,p)
Alp\)=H(Ap)H(Ap) *AH(p)|2\), (10 in Eq. (11) vanished In general, the four-vectoe” trans-
forms as

whereH(Ap) “*AH(p) is a member of the little group af

(leavesz invariand, and hence is a rotation and/or translation D(A)et= R(Aﬁ)RZ(G(A,p))R(ﬁ)‘le“. (18
in the x-y plane. The translations can be sholid] not to

affect the spin/helicity, and we are thus left with just a rota-It is helpful to writeD(A) in an alternative form

tion by an angle®(A,p). Using the parametrizatiomp

0
= p(;in 0cosg,sindsin ¢,cosh) and solving for® (A ,p) we D(A)et=Aet— (Ae”) Ap*, (19)
obtain (ApH)°
0 1 A=Ly(9 where (A ¢*)° and (A p*)° denote the timelike component of
0 : A=R(y), p+2 the transformed polarization and momentum four-vectors, re-
O(A,p)= ' 2o E) _ (1) spectively. The form, Eq(19), agrees with the general law
Y ¢ A=R(y), p=z described in Ref[16]. Note that from Eq(19) we can see
p
argB+iA) : A=Ry(y) thatD(A) is independent of our choice &(p). The proof

that Egs.(18) and (19) are equivalent is nontrivial, but an
for different Lorentz transformations and momenta, where outline is as follows. Note that both forms Bf(A) obey

A=sinysing, 12 D(A')D(A)et=D(A’A)e (20)
B=Sinycosﬁ COS¢+Ccosy sin 6. (13 and both forms have the property
Noting that D(R)€e*=Re*, (21)

RAO(A'A,p)=R,(O(A’,Ap))RLO(A,p)) (14 WhereRis a rotation. An explicit calculation oD (L,(£))
then shows that they are equivalent.

and taking advantage of the fact that all Lorentz boosts can The second term on the right-hand side of Ef) is just

be constructed using,, R, andR,, Eq.(11) allows us to ~a momentum-dependent gauge transformation. It must be
find ®(A,p) for any A, and any momentunp. Applying  different for each momentum in order to keep a consistent
this rotation to the momentum-helicity eigenstate of a masseverall(Coulomb gauge. To see that this term leads to mea-

less particle we obtain surable consequences consider the polarization vector for
_ classical electromagnetic waves. The polarization vector
Alph)y=e NOUPAp)), (15  points along theyauge-invarianelectric field, and the direc-
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@ ® FIG. 2. Log negativity of the spin as a function of rapidity

FIG. 1. (a) “Standard” vertical polarization vectods:",) point in shown for various boost directiona. is the boost angle. For all of
azimuthal directions(b) “True” vertical polarization vectorgv,)  the curves the angular spread is the same1.0.
remain mostly in thex-y plane.

(| p[=po), (28)

We specifically consider the beams to have a Gaussian
tion of this vector undergoes the same transformation as igpread in thed direction,
Eqg. (19 [or Eq.(18)] when acted on by a Lorentz transfor- )
mation. In fact, the magnitude of the electric field undergoes (p)= 1 exp{ _ E(i)
the same transformation as the diameter of an infinitesimal N(o) 2\ oy
circle centered at the momentum. This holds for any Lorentz
transformation and momentum. A detailed study of thiswhere o, is a parameter which controls the spread of the
transformation will be published elsewhere. beam,¢ is the polar angle of the momentum vector, amds
In the fo”owing' we investigate two entang|ed photon the magnitude of the momentum of the photon beam, which
beams moving a|0ng theaxis. The beams are in a momen- Weé arbitrar”y set to Unity. We do not take into account a
tum product state, and fully entangled in polarization, spread in thenagnitudeof the momentum because the mag-
nitude w is just a constant multiplying the momentum four-
1 A A vector and so
Io(p.0)= —= 8, e Paf (p)F(q). (22 ) ) )
\/E Apt=A(w,0p)=Aw(lp)=wA(lp). (29

In Eq. (22), ¢, and ¢q are the azimuthal angles pfandd,  |nserting this result into Eq:19), we see that thes depen-
respectively. The phase factogd ?re'”?a allow us to writt  dence cancels. We now boost Sté®®) and trace out the
the state as momentum degrees of freedom to construct the polarization
L density matrix[20].
-~ ~ o~ Even though photons are constrained to be transverse for
|\P>_f J E(lhp)lhq>—|vp>|vq>)f(p)|p)f(q)|q)dpdq, any particular momentum, states that aret momentum
Pk) eigenstates must, because they are spin-1 particles, be treated
as three-level systems. In order to calculate the entanglement
where|hp) and|up> are approximations of horizontal polar- present in the quantum state, we therefore cannot use Woot-
izatoion and vertical polarization given h§9] ters’ concurrencg21], as it is only a measure of entangle-
ment for two-state quantum entangled systems. Instead, we

1 b oA b A use here “log negativity,” an entanglement measure intro-
lhp)y= E[e pel (p)+e ' ?rel (p)] (24 duced by Vidal and Wernd®2]. This measure is defined as
. En(p)=logyllp T, (30)
- N .
lop)= E[e"ﬁpeﬁ(p)—e 'Ppet (p)]. (25 wherel|p| is the trace norm and™ is the partial transpose

of p. Ex(p) is @ measure of the entanglement but is unable
to detect bound entanglement. We can now calculate the

So, for smallé (small spread of the momentum distribution i “ 0 .
change in log negativity explicitly for a Lorentz boost with

we have - .
rapidity £ at an anglex with respect to the photon momen-
o) =X (26) tum, i.e., a Lorentz transformation
p H
- A=Ry(a)L(£)Ry(a) 7, (31
[vp)=Y, (27) o

applied to Eq(23). Figure 2 summarizes the results of vary-
and Eq.(23) is a close approximation to a polarization Bell ing the boost directiorr for a given spreadr,, and shows
state. Omitting the phase factors in E(®2) and(24) instead  that the entanglement can increase or decrease, depending on
describes a photon beam where horizontal and vertical polagoost direction. Forr=0, positive¢ corresponds to boost-
izations point in the and ¢ directions, respectivelisee Fig.  ing the photon in the direction of the detector. Note that the
1). entanglement at zero rapidity is only about half its maximal
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Eﬁ’(”) significant portion of the beam is in fact moving in thez

direction. Because of the collimating effect that a Lorentz
boost has on the beam, the entanglement can actually in-
crease in such a situation.
We have derived the relativistic transformation law for
photon polarizations, and shown that the entanglement of
¢ polarization-entangled pairs of photon beams depends on the
- (0,0) 5 reference frame. Boosting a detectewen at an ang)eto-
FIG. 3. Log negativity as a function of rapidity shown for beamsWards the bgams Increases this entanglement because the
of various angular spreads, For all of the above curves the boost Momentum distribution is shrunk by the bogsee also Ref.
direction a=2/5. [12]). The type of entangled beams that we have investigated
in this paper are idealizations of realistic states that can be

created using parametric down-conversion. In principle,
value, because the angular spread of the momentum leavgsy efore, the effects discussed here should become relevant
the spin degrees of freedom in a mixed state after tracing oWs soon as linear-optics based quantum technology is created
momentum. that is placed on systems that move with respect to a detector

In general, boosts in the direction of motion tend 10 in- (4 when the detector moves with respect to such a system
crease the entanglement to saturation, while boosts away

from it decrease it. Asx approachesr/2, the effect on en- We would like to thank Jonathan Dowling, and the mem-
tanglement becomes symmetric. bers of the JPL Quantum Computing Group, for useful dis-

Figure 3 summarizes the effect of applying the boost incussions and encouragement. We also acknowledgesJa
Eq. (31) for varying spreads in the momentum distribution, Bergou for helpful suggestions. This work was carried out at
for a boost direction given byw=2/5. the Jet Propulsion Laboratofgalifornia Institute of Tech-

Distributions with small spread,<0.1 tend to change nology under a contract with the National Aeronautics and
entanglement only imperceptively, while for larger spreadSpace Administration Code Y, with support from the Army
the entanglement changes become more pronounced. NdResearch Office, the National Security Agency, the Ad-
that for 0 4,=1.3 the entanglement becomes zéiar boosts vanced Research and Development Activity, the Defense Ad-
of negative rapidityand then increases. This appears to hapvanced Research Projects Agency, the National Reconnais-
pen because the momentum spread becomes so large thasamnce Office, and the Office of Naval Research.
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