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Entangled light in moving frames
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We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the
reference frame, in a fully relativistic framework. We find the transformation law for helicity basis states and
show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate
produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density
matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity,
and the spread of the beam.
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The second quantum revolution@1# is changing the ways
in which we think about quantum systems. Rather than
describing and predicting their behavior, we now use n
tools such as quantum information theory to organize
control quantum systems, and turn their nonclassical feat
to our advantage in creatingquantum technology. The central
feature that makes quantum technology possible is quan
entanglement, which implies that particles or fields that hav
once interacted are connected by an overall wave func
even if they are detected arbitrarily far away from each oth
Suchentangled pairs, first discussed after their introductio
by Einstein, Podolsky, and Rosen@2#, are crucial in technol-
ogy such as quantum teleportation@3# and superdense codin
@4#. Furthermore, quantum entanglement is critical in ap
cations such as quantum optical interferometry, where qu
tum entangledN-photon pairs can increase the shot-no
limited sensitivity up to the Heisenberg limit@5#.

While quantum entanglement as a resource has been
ied extensively within the last decade@6#, it was realized
only recently that this resource is frame dependent,
changes nontrivially under Lorentz transformations@7–12#.
In particular, Gingrich and Adami showed that the entang
ment between the spins of a pair of massive spin-1/2 p
ticles depends on the reference frame, and can either
crease or increase depending on the wave function of the
@11#. A consequence of this finding is that the entanglem
resource could be manipulated by applying frame chan
only. Many applications of quantum technology, howev
involve entangled photons rather than massive spin-1/2
ticles, to which the massive theory does not apply. In t
paper, we work out the consequences of Lorentz transfor
tions on photon beams that are entangled in polarizat
Each photon beam is described by a Gaussian wave pa
with a particular angular spread in momentum, and for
sake of being definite we discuss a state whose polariza
entanglement can be thought of as being produced by do
conversion. Because both spin-1/2 particles and photons
be used as quantum information carriers~qubits!, the present
calculation also contributes to the nascent field of relativis
quantum information theory@13#.

In order to calculate how a polarization-entangled pho
state transforms under Lorentz transformations, we nee
discuss the behavior of the photon basis sates. Because
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is no rest frame for a massless particle, the analysis of
spin ~polarization! properties is quite distinct from the mas
sive case. For instance, instead of usingpm5(m,0) as the
standard four-vector~see Ref.@11#!, we have to define the
massless analogkm5(1,ẑ). Note thatkm has no parameterm
and is no longer invariant under all rotations. In fact, t
little group of km is isomorphic to the noncompact two
dimensional Euclidean group E~2! ~the set of transformations
that map a two-dimensional Euclidean plane onto itself!. For
a massless spin-1 particle the standard vector allows u
define the eigenstate

Pmuẑl&5kmuẑl&, ~1!

Jzuẑl&5luẑl&, ~2!

whereẑ is a unit vector pointing in thez direction. Since the
particle is massless,l is restricted to61 @14#.

The momentum-helicity eigenstates are defined as

upl&5H~p!uẑl&, ~3!

where H(p) is a Lorentz transformation that takesẑ to p.
The choice ofH(p) is not unique, and different choices lea
to different interpretations of the parameterl. For instance,
in the massive case the choice ofH(p) can lead tol being
either the rest-frame spin or the helicity. In the present cas
is convenient to choose

H~p!5R~ p̂!Lz~jp!, ~4!

whereLz(jp) is a Lorentz boost alongẑ that takesẑ to upuẑ
and R(p) is a rotation that takesẑ to p̂, while jp is the
rapidity of the moving frame,

jp5 lnupu. ~5!

For a parametrization in polar coordinates, we can writep̂
5(sinu cosf,sinu sinf,cosu):

R~ p̂![Rz~f!Ry~u!. ~6!
©2003 The American Physical Society02-1
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Again, this choice ofR(p̂) is not unique~see, for example
Ref. @17#! but particularly easy to deal with in this contex
An arbitrary two-particle state in this formalism can be wr
ten as

uCAA8BB8&5E E (
ls

gls~p,q!upl&AA8uqs&BB8d̃pd̃q,

~7!

where upl&AA8 and uqs&BB8 correspond to the momentum
and helicity states, as defined in Eq.~3!, of photonsA andB.
Furthermore,d̃p and d̃q are the Lorentz-invariant momen
tum integration measures:

d̃p[
d3p

2upu
~8!

and the functionsgls(p,q) must satisfy

E E (
ls

ugls~p,q!u2,d̃pd̃q51. ~9!

To work out how a Lorentz boost affects an entang
state, we must understand how the basis statesupl& trans-
form. Following Refs.@14,15#, we apply a boostL to upl&,

Lupl&5H~Lp!H~Lp!21LH~p!uẑl&, ~10!

whereH(Lp)21LH(p) is a member of the little group ofẑ
~leavesẑ invariant!, and hence is a rotation and/or translati
in the x-y plane. The translations can be shown@14# not to
affect the spin/helicity, and we are thus left with just a ro
tion by an angleQ(L,p). Using the parametrizationp
5p(sinu cosf,sinu sinf,cosu) and solving forQ(L,p) we
obtain

Q~L,p!55
0 : L5Lz~j!

0 : L5Rz~g!, p̂Þ ẑ

g : L5Rz~g!, p̂5 ẑ

arg~B1 iA ! : L5Ry~g!

~11!

for different Lorentz transformations and momenta, wher

A5sing sinf, ~12!

B5sing cosu cosf1cosg sinu. ~13!

Noting that

Rz„Q~L8L,p!…5Rz„Q~L8,Lp!…Rz„Q~L,p!… ~14!

and taking advantage of the fact that all Lorentz boosts
be constructed usingLz , Rz and Ry , Eq. ~11! allows us to
find Q(L,p) for any L, and any momentump. Applying
this rotation to the momentum-helicity eigenstate of a ma
less particle we obtain

Lupl&5e2 ilQ(L,p)uLpl&. ~15!
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At this point one may be tempted to use the two helic
states as a basis for the polarization density matrix. Howe
because helicity states for different momentum eigenst
reside in different Hilbert spaces, tracing out the moment
degree of freedom produces unphysical results. For exam
we would find that a spatial rotation can change the entan
ment between two particles. Instead, we shall use the p
ton’s polarization four-vectors as basis states.

The polarization four-vectors for positive and negative h
licity states are given by

e6
m ~ p̂!5

R~ p̂!

A2 F 0

1

6 i

0

G . ~16!

A general polarization vector is, of course, formed by t
superposition of the two basis vectors. According Re
@9,18#, for a given four-momentumpm and associated polar
ization em, a Lorentz boost has the following effect:

D~L!em5R~Lp̂!R~ p̂!21em. ~17!

However, this transformation is only correct for pure boo
in thez direction, or rotations around thez axis if this axis is
not the momentum axis@as for those cases the angleQ(L,p)
in Eq. ~11! vanishes#. In general, the four-vectorem trans-
forms as

D~L!em5R~Lp̂!Rz„Q~L,p!…R~ p̂!21em. ~18!

It is helpful to writeD(L) in an alternative form

D~L!em5Lem2
~Lem!0

~Lpm!0
Lpm, ~19!

where (Lem)0 and (Lpm)0 denote the timelike component o
the transformed polarization and momentum four-vectors,
spectively. The form, Eq.~19!, agrees with the general law
described in Ref.@16#. Note that from Eq.~19! we can see
that D(L) is independent of our choice ofR(p̂). The proof
that Eqs.~18! and ~19! are equivalent is nontrivial, but an
outline is as follows. Note that both forms ofD(L) obey

D~L8!D~L!em5D~L8L!em ~20!

and both forms have the property

D~R!em5Rem, ~21!

where R is a rotation. An explicit calculation ofD„Lz(j)…
then shows that they are equivalent.

The second term on the right-hand side of Eq.~19! is just
a momentum-dependent gauge transformation. It must
different for each momentum in order to keep a consist
overall ~Coulomb! gauge. To see that this term leads to me
surable consequences consider the polarization vector
classical electromagnetic waves. The polarization vec
points along thegauge-invariantelectric field, and the direc-
2-2
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tion of this vector undergoes the same transformation a
Eq. ~19! @or Eq. ~18!# when acted on by a Lorentz transfo
mation. In fact, the magnitude of the electric field undergo
the same transformation as the diameter of an infinitesi
circle centered at the momentum. This holds for any Lore
transformation and momentum. A detailed study of t
transformation will be published elsewhere.

In the following, we investigate two entangled photo
beams moving along thez axis. The beams are in a mome
tum product state, and fully entangled in polarization,

gls~p,q!5
1

A2
dlseilfpeisfqf ~p! f ~q!. ~22!

In Eq. ~22!, fp andfq are the azimuthal angles ofp andq,
respectively. The phase factorseilfpeisfq allow us to write
the state as

uC&5E E 1

A2
~ uhp&uhq&2uvp&uvq&) f ~p!up& f ~q!uq&d̃pd̃q,

~23!

whereuhp& and uvp& are approximations of horizontal pola
izatoion and vertical polarization given by@19#

uhp&[
1

A2
@eifpe1

m ~ p̂!1e2 ifpe2
m ~ p̂!# ~24!

uvp&[
2 i

A2
@eifpe1

m ~ p̂!2e2 ifpe2
m ~ p̂!#. ~25!

So, for smallu ~small spread of the momentum distributio!
we have

uhp&. x̂, ~26!

uvp&. ŷ, ~27!

and Eq.~23! is a close approximation to a polarization Be
state. Omitting the phase factors in Eqs.~22! and~24! instead
describes a photon beam where horizontal and vertical po
izations point in ther̂ andf̂ directions, respectively~see Fig.
1!.

FIG. 1. ~a! ‘‘Standard’’ vertical polarization vectorsuvp8& point in
azimuthal directions.~b! ‘‘True’’ vertical polarization vectorsuvp&
remain mostly in thex-y plane.
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We specifically consider the beams to have a Gaus
spread in theu direction,

f ~p!5
1

N~s!
expF2

1

2 S u

su
D 2Gd~ upu2p0!, ~28!

where su is a parameter which controls the spread of t
beam,u is the polar angle of the momentum vector, andp0 is
the magnitude of the momentum of the photon beam, wh
we arbitrarily set to unity. We do not take into account
spread in themagnitudeof the momentum because the ma
nitudev is just a constant multiplying the momentum fou
vector and so

Lpm5L~v,vp̂!5Lv~1,p̂!5vL~1,p̂!. ~29!

Inserting this result into Eq.~19!, we see that thev depen-
dence cancels. We now boost state~23! and trace out the
momentum degrees of freedom to construct the polariza
density matrix@20#.

Even though photons are constrained to be transverse
any particular momentum, states that arenot momentum
eigenstates must, because they are spin-1 particles, be tr
as three-level systems. In order to calculate the entanglem
present in the quantum state, we therefore cannot use W
ters’ concurrence@21#, as it is only a measure of entangle
ment for two-state quantum entangled systems. Instead
use here ‘‘log negativity,’’ an entanglement measure int
duced by Vidal and Werner@22#. This measure is defined a

EN~r!5 log2irTAi , ~30!

whereiri is the trace norm andrTA is the partial transpose
of r. EN(r) is a measure of the entanglement but is una
to detect bound entanglement. We can now calculate
change in log negativity explicitly for a Lorentz boost wit
rapidity j at an anglea with respect to the photon momen
tum, i.e., a Lorentz transformation

L5Ry~a!Lz~j!Ry~a!21, ~31!

applied to Eq.~23!. Figure 2 summarizes the results of var
ing the boost directiona for a given spreadsu , and shows
that the entanglement can increase or decrease, dependi
boost direction. Fora50, positivej corresponds to boost
ing the photon in the direction of the detector. Note that
entanglement at zero rapidity is only about half its maxim

FIG. 2. Log negativity of the spin as a function of rapidi
shown for various boost directions.a is the boost angle. For all o
the curves the angular spread is the same,s51.0.
2-3
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value, because the angular spread of the momentum le
the spin degrees of freedom in a mixed state after tracing
momentum.

In general, boosts in the direction of motion tend to
crease the entanglement to saturation, while boosts a
from it decrease it. Asa approachesp/2, the effect on en-
tanglement becomes symmetric.

Figure 3 summarizes the effect of applying the boost
Eq. ~31! for varying spreads in the momentum distributio
for a boost direction given bya52p/5.

Distributions with small spreadsu<0.1 tend to change
entanglement only imperceptively, while for larger spre
the entanglement changes become more pronounced.
that for su51.3 the entanglement becomes zero~for boosts
of negative rapidity! and then increases. This appears to h
pen because the momentum spread becomes so large

FIG. 3. Log negativity as a function of rapidity shown for beam
of various angular spreads,s. For all of the above curves the boo
directiona52p/5.
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significant portion of the beam is in fact moving in the2 ẑ
direction. Because of the collimating effect that a Loren
boost has on the beam, the entanglement can actually
crease in such a situation.

We have derived the relativistic transformation law f
photon polarizations, and shown that the entanglemen
polarization-entangled pairs of photon beams depends on
reference frame. Boosting a detector~even at an angle! to-
wards the beams increases this entanglement becaus
momentum distribution is shrunk by the boost~see also Ref.
@12#!. The type of entangled beams that we have investiga
in this paper are idealizations of realistic states that can
created using parametric down-conversion. In princip
therefore, the effects discussed here should become rele
as soon as linear-optics based quantum technology is cre
that is placed on systems that move with respect to a dete
~or when the detector moves with respect to such a syste!.
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