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Abstract
Background: Several studies have suggested that proteins that interact with more partners evolve
more slowly. The strength and validity of this association has been called into question. Here we
investigate how biases in high-throughput protein–protein interaction studies could lead to a
spurious correlation.

Results: We examined the correlation between evolutionary rate and the number of protein–
protein interactions for sets of interactions determined by seven different high-throughput
methods in Saccharomyces cerevisiae. Some methods have been shown to be biased towards
counting more interactions for abundant proteins, a fact that could be important since abundant
proteins are known to evolve more slowly. We show that the apparent tendency for interactive
proteins to evolve more slowly varies directly with the bias towards counting more interactions
for abundant proteins. Interactions studies with no bias show no correlation between evolutionary
rate and the number of interactions, and the one study biased towards counting fewer interactions
for abundant proteins actually suggests that interactive proteins evolve more rapidly. In all cases,
controlling for protein abundance significantly decreases the observed correlation between
interactions and evolutionary rate. Finally, we disprove the hypothesis that small data set size
accounts for the failure of some interactions studies to show a correlation between evolutionary
rate and the number of interactions.

Conclusions: The only correlation supported by a careful analysis of the data is between
evolutionary rate and protein abundance. The reported correlation between evolutionary rate and
protein–protein interactions cannot be separated from the biases of some protein–protein
interactions studies to count more interactions for abundant proteins.

Background
Different proteins in the same organism evolve at differ-
ent rates. An understanding of the factors that cause these
differences in rates has important ramifications for genet-
ics, molecular evolution, and evolutionary biology. Fac-

tors that are thought to influence a protein's evolutionary
rate include its abundance [1], whether its function is
encoded in a robust manner [2], and the amount of
recombination that it undergoes [3]. Of these factors,
abundance is the strongest correlate of evolutionary rate,
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and recent work has shown the importance of adequately
controlling for abundance when examining correlations
between evolutionary rate and other protein properties
[4].

Another factor that has been suggested to influence a pro-
tein's evolutionary rate is its number of interaction part-
ners, with recent studies claiming that interactive proteins
evolve more slowly because they have more functionally
constrained residues [5,6]. However, this reported associ-
ation between evolutionary rate and the number of pro-
tein–protein interactions has proven controversial, with
studies using different interactions data sets reaching dif-
ferent conclusions [7,6].

The original claim by Fraser et al. [5] that a protein's evo-
lutionary rate depends on the number of different pro-
teins it interacts with was based on a negative statistical
correlation between evolutionary rate as determined from
an alignment of orthologs, and the number of interac-
tions as determined by pooling data from several studies.
However, a second study by Jordan et al. [7] using differ-
ent data sets for both protein–protein interactions and
evolutionary rates failed to find a significant correlation
between evolutionary rate and the number of interac-
tions. A third study by Fraser et al. [6] using a much larger
protein–protein interactions data set again found a corre-
lation, and also showed that the conflicting results were
due to differences in the interactions data sets rather than
differences in the evolutionary rates. The authors of this
last study suggested that Jordan et al. failed to observe a
correlation because of an incomplete set of protein–pro-
tein interactions, yet they offered no explanation of why
only some data sets should reveal a correlation.

The biophysical explanation proposed by Fraser et al. [5]
for the tendency of proteins with more interactions to
evolve more slowly was that interactive proteins have
more residues involved in protein–protein interaction
surfaces, and are therefore less tolerant of amino acid sub-
stitutions. However, an individual residue does not distin-
guish between contacts with other residues from the same
or a different protein, so there is no obvious reason why
residues involved in intermolecular contacts should be
more evolutionary constrained than other residues with
the same number of intramolecular contacts. Indeed,
analysis of oligomeric proteins has shown that interacting
residues are not under the strong selection constraints of
enzymatic active site residues, but instead actually change
more rapidly than typical core residues and only slightly
more slowly than the average for the entire sequence [8].
On these grounds, one would expect the number of inter-
action partners to have at most a slight effect on the over-
all rate of sequence evolution, and that other factors such

as the ratio of core to surface residues should be more
important.

The sensitivity of the correlation between evolutionary
rate and the number of interactions to the particular data
set used, as well as the absence of a clear biophysical jus-
tification for why proteins with more interaction partners
should evolve more slowly, prompted us to analyze the
data more carefully. We find that the reported connection
between evolutionary rate and the number of interactions
is linked to the biases of some protein–protein interac-
tions studies to count more interactions for abundant
proteins.

Results and Discussion
Analysis of the different interactions data sets
Protein–protein interactions data for S. cerevisiae are
derived from studies using a variety of distinct methods,
each with its own strengths and weaknesses (for a compre-
hensive discussion, see [9]). In particular, several methods
have been shown to be biased towards counting more
interactions for abundant proteins [9]. Since abundant
proteins are known to evolve more slowly [1], any exami-
nation of the relationship between interactions and evo-
lutionary rate should control for biases towards counting
more interactions for abundant proteins.

We compiled S. cerevisiae protein–protein interactions
sets from nine studies using seven different high-through-
put methods, taking data from two studies that identified
interactions by mass spectrometry [10,11], two studies
that identified interactions with the yeast two-hybrid sys-
tem [12,13], and studies that identified interactions by
correlated mRNA expression (synexpression) [9], identifi-
cation of conserved gene neighborhoods [14,15,9], cooc-
currence of genes in sequenced genomes [16,9],
identification of gene fusion events [17,18,9], and syn-
thetic lethality in knockouts [19,9]. The mass spectrome-
try studies [10,11] involved tagging and overexpression of
one of the proteins, which may lead to non-native interac-
tions, so for these studies we also compiled data sets that
counted the interactions only for the untagged proteins.
We also compiled a comprehensive list of all of the inter-
actions from all studies, as well as the interactions found
independently by two and three of the studies.

We also gathered information on the evolutionary rates
and abundances of S. cerevisiae proteins. The sequence
evolution rates were based on alignments with orthologs
from Candida albicans compiled by Fraser et al. [6] accord-
ing to the method of [20]. We used two established prox-
ies for protein abundance: mRNA transcript levels from
gene microarrays [21,22] and codon adaptation indices
(CAI) calculated from gene sequences [23,24]. We used
this information to create sets of proteins that participated
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in at least one interaction and for which evolutionary rate
and abundance information were available; the size of the
coverage sets for each interactions study is shown in Table
1.

We confirmed that abundant proteins evolved more
slowly in all coverage sets (Table 1, Figure 1A), in agree-
ment with established results [1]. The tendency for abun-
dant proteins to evolve more slowly was both substantial
and robust, with all coverage sets showing significant cor-
relations (Kendall's τ ranged from -0.31 to -0.49, P < 10-3)

regardless of whether abundance was measured by expres-
sion level or CAI.

We also confirmed [9] that some of the interactions stud-
ies are biased towards counting more interactions for
abundant proteins (Table 1, Figure 1B). Among the exper-
imentally-based studies that look for direct evidence of
interactions, the mass spectrometry studies [10,11] were
consistently biased towards counting more interactions
for abundant proteins (τ ranged from 0.07 to 0.33, P < 10-

3, Table 1), while the yeast two-hybrid studies [12,13]
showed no substantial bias towards counting more

Table 1: The correlations among evolutionary rate, the number of interactions, and protein abundance for all studies when abundance 
is measured by (A) mi-croarray expression level or (B) CAI. Np and Ni are the number of proteins and interactions for each data set. 
The Kendall's rank correlations between variables are given by τEI, τAI, and τEA. The Kendall's partial rank correlation between 
evolutionary rate and the number of interactions when abundance is controlled for is given by τEI.A. All correlations have two-tailed 
significances of P < 10-3 unless another P value is given in parentheses.

(A)

Study Np Ni τEI τAI τEA τEI.A

Ito [12] 505 1007 0.03 (0.30) -0.03 (0.36) -0.34 0.02 (0.51)
Uetz [13] 607 1183 0.01 (0.63) -0.01 (0.67) -0.35 0.01 (0.75)

2H studies [12,13] 893 2034 0.02 (0.29) -0.02 (0.40) -0.36 0.02 (0.48)
Gavin [10] 1039 15224 -0.12 0.09 -0.45 -0.09

Gavin [10] untagged 1018 8568 -0.08 0.09 -0.44 -0.04 (0.04)
Ho [11] 1183 5879 -0.18 0.15 -0.41 -0.13

Ho [11] untagged 991 2990 -0.28 0.30 -0.40 -0.18
MS studies [10,11] 1698 20708 -0.13 0.12 -0.42 -0.09

MS studies [10,11] untagged 1543 11424 -0.14 0.16 -0.42 -0.08
synexpression [9] 1114 19188 0.09 -0.12 -0.40 0.05 (0.02)

gene neighborhood [9] 765 9882 -0.10 0.15 -0.44 -0.04 (0.15)
synthetic lethality [9] 524 1463 0.02 (0.50) 0.01 (0.71) -0.43 0.03 (0.40)

gene cooccurrence [9] 298 1718 -0.15 0.07 (0.08) -0.36 -0.13 (0.002)
gene fusion [9] 222 535 0.04 (0.40) -0.03 (0.51) -0.37 0.03 (0.56)
all interactions 2846 54258 -0.16 0.13 -0.39 -0.12

two studies 1112 2792 -0.17 0.14 -0.42 -0.13
three studies 329 556 0.03 (0.43) -0.03 (0.42) -0.36 0.02 (0.65)

(B)

Study Np Ni τEI τAI τEA τEI.A

Ito [12] 528 1049 0.03 (0.34) -0.04 (0.21) -0.31 0.02 (0.61)
Uetz [13] 630 1213 0.01 (0.65) -0.06 (0.02) -0.32 -0.01 (0.78)

2H studies [12,13] 931 2104 0.02 (0.27) -0.06 (0.003) -0.33 0.00 (0.90)
Gavin [10] 1055 15836 -0.12 0.08 -0.38 -0.10

Gavin [10] untagged 1033 8648 -0.08 0.07 -0.37 -0.06 (0.01)
Ho [11] 1209 5941 -0.18 0.16 -0.42 -0.13

Ho [11] untagged 1013 3019 -0.28 0.33 -0.42 -0.16
MS studies [10,11] 1735 20930 -0.13 0.11 -0.40 -0.10

MS studies [10,11] untagged 1575 11531 -0.14 0.15 -0.40 -0.09
synexpression [9] 1163 20291 0.09 -0.09 -0.41 0.05 (0.06)

gene neighborhood [9] 790 10186 -0.09 0.08 -0.49 -0.06 (0.02)
synthetic lethality [9] 533 1505 0.03 (0.36) -0.02 (0.60) -0.38 0.02 (0.49)

gene cooccurrence [9] 309 1767 -0.14 0.07 (0.07) -0.44 -0.13 (0.02)
gene fusion [9] 233 559 0.04 (0.41) -0.01 (0.74) -0.40 0.03 (0.50)
all interactions 2960 56058 -0.16 0.12 -0.38 -0.13

two studies 1131 2822 -0.17 0.08 -0.41 -0.15
three studies 332 562 0.03 (0.45) -0.07 (0.06) -0.41 0.00 (0.99)
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(A) shows the relationship between evolutionary rate and expression level as measured by gene microarrays [21]Figure 1
(A) shows the relationship between evolutionary rate and expression level as measured by gene microarrays [21]. (B) shows 
the relationship between expression level and the total number of interactions from all studies. (C) shows the relationship 
between evolutionary rate and the total number of interactions from all studies. Some outlying data points are not shown, but 
are included in the calculations of the correlations in Table 1.
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interactions for abundant proteins (P > 0.25, Table 1). The
existence of a bias in the mass spectrometry but not the
yeast two-hybrid studies can be explained by considering
the experimental methods. The yeast two-hybrid studies
involve over-expression of both interacting proteins, and
so the probability of observing an interaction is unrelated
to a protein's native concentration. In contrast, in the
mass-spectrometry studies only the tagged protein is over-
expressed, and so the probability of observing an interac-
tion depends on the choice of which proteins to tag, as
well as the native concentrations of the untagged proteins.

Among the bioinformatics-based methods, the gene
neighborhood data are substantially biased towards
counting more interactions for abundant proteins (τ =
0.15 or 0.08, P < 10-3, Table 1), the gene cooccurrence data
are mildly biased towards counting more interactions for
abundant proteins (τ = 0.07, P = 0.07 or 0.08, Table 1),
while the synexpression data are actually biased towards
counting fewer interactions for abundant proteins (τ = -
0.12 or -0.09, P < 10-3, Table 1). The synthetic lethality
and gene fusion studies are unbiased with respect to pro-
tein abundance (P > 0.5, Table 1), as is the set of interac-
tions found independently by three studies (P > 0.05,
Table 1). The set of interactions found by two studies and
the set of all interactions are both biased towards counting
more interactions for abundant proteins (τ ranged from
0.15 to 0.19, P < 10-5, Table 1), presumably because both
of these sets are dominated by interactions found by the
mass spectrometry studies (see Table 1 and discussion
below).

We found that proteins with more interactions appeared
to evolve more slowly only when the interactions data set
was biased towards counting more interactions for abun-
dant proteins (Table 1, Figure 1C). The yeast-two hybrid,
the synthetic lethality, the gene fusion, and the interac-
tions found by three studies are all unbiased with respect
to abundance, and none of these data sets suggested any
significant correlation between evolutionary rate and the
number of interactions (P > 0.25 in all cases, Table 1). The
mass spectrometry, the gene neighborhood, the gene
cooccurrence, the interactions found by two studies, and
the combined sets are all biased towards counting more
interactions for abundant proteins, and data from all of
these studies suggested that proteins with more interac-
tions evolve more slowly (τ ranges from -0.08 to -0.28, P
< 10-3, Table 1). The synexpression data is biased towards
counting fewer interactions for abundant proteins, and it
suggests that proteins with more interactions actually
evolve more rapidly (τ = 0.09, P < 10-3, Table 1).

If the bias of some studies to count more interactions for
abundant proteins explains the correlation between the
number of interactions and the evolutionary rate, then

there should be a direct relationship between the bias and
the observed correlation. We examined this relationship
for all 17 data sets in Table 1, and confirmed that there
was a simple linear relationship between the correlation
of abundance with the number of interactions and the
correlation of the number of interactions with the evolu-
tionary rate, as shown in Figure 2.

The trends described here are not sensitive to the evolu-
tionary rates used. When evolutionary rates are derived
from alignments of S. cerevisiae and Schizosaccharomyces
pombe orthologs by Fraser et al. [6], there is again a consist-
ent correlation between evolutionary rate and abundance,
but a correlation between evolutionary rate and

The correlation between evolutionary rate and the number of interactions is directly related to the bias towards count-ing more interactions for abundant proteins, both when abundance is measured by (A) gene microarray expression levels and (B) CAIFigure 2
The correlation between evolutionary rate and the number 
of interactions is directly related to the bias towards count-
ing more interactions for abundant proteins, both when 
abundance is measured by (A) gene microarray expression 
levels and (B) CAI. Correlations are Kendall's rank correla-
tion τ, and points are for all data sets listed in Table 1.
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interactions emerges only for interactions data sets biased
towards counting more interactions for abundant pro-
teins (data not shown).

Controlling for bias reduces apparent correlation between 
evolutionary rate and interactions
The relationship between the correlation of evolutionary
rate with the number of interactions and the bias towards
counting more interactions for abundant proteins (Figure
2) suggests that the bias contributes to the observed corre-

lation. To obtain a statistical view of this effect, we used a
partial correlation statistic (Kendall's partial τ) to measure
the correlation between evolutionary rate and the number
of interactions when protein abundance is controlled for.
In all data sets where there is a significant correlation
between evolutionary rate and the number of interac-
tions, controlling for protein abundance reduces the mag-
nitude of the correlation (Table 1). We determined the
significance of this reduction by performing 104 randomi-
zations of the protein abundances. In none of the cases
where there was a highly significant correlation between
evolutionary rate and the number of interactions (the
mass spectrometry, synexpression, gene neighborhood,
gene cooccurrence, two study, and combined data sets)
did the randomized abundances give a partial τ with a
magnitude as small as for the actual data, demonstrating
that the reductions in the correlation due to controlling
for abundance were highly significant (P < 10-4).

Although controlling for protein abundance always
reduces the magnitude of any significant correlation
between evolutionary rate and the number of interac-
tions, in some cases the remaining partial correlation is
still statistically significant. However, this remaining cor-
relation appears to be due to an incomplete correction for
protein abundance rather than a real correlation between
evolutionary rate and the number of interactions. As Fig-
ure 3 shows, the remaining partial correlation between
evolutionary rate and the number of interactions is still
directly related to the bias towards counting more interac-
tions for abundant proteins, suggesting that this bias is
still the primary factor causing the partial correlation.
Note also that the partial correlation between evolution-
ary rate and the number of interactions for the synexpres-
sion data set still suggests that proteins with more
interactions evolve more rapidly, again suggesting that the
partial correlation statistic does not completely correct for
biases in the interactions data set.

There are several reasons why the partial correlation statis-
tic may be unable to completely correct for experimental
biases. Both microarray expression data and CAI are
imperfect proxies for true protein abundance (indeed, the
Spearman correlation between these two proxies is only
0.62) [22,24], and so statistically controlling with these
variables does not completely correct for effects due to
actual protein abundances or expression levels. In addi-
tion, the evolutionary rates and expression data for the
large set of proteins considered here may underestimate
the true tendency for abundant proteins to evolve more
slowly. Pal et al [1] analyzed the correlation between evo-
lutionary rate and protein abundance using a carefully
culled set of well-characterized proteins, and reported
Pearson correlations of evolutionary rate with the loga-
rithm of microarray expression levels and with CAI of -

Controlling for abundance reduces the magnitude of the cor-relations between evolutionary rate and the number of inter-actions from those shown in Figure 2, and the remaining partial correlation still depends on the bias towards counting more interactions for abundant proteins, both when abun-dance is measured by (A) gene microarray expression levels and (B) CAIFigure 3
Controlling for abundance reduces the magnitude of the cor-
relations between evolutionary rate and the number of inter-
actions from those shown in Figure 2, and the remaining 
partial correlation still depends on the bias towards counting 
more interactions for abundant proteins, both when abun-
dance is measured by (A) gene microarray expression levels 
and (B) CAI. The partial correlations are Kendall's partial τ, 
the correlation between interactions and abundance is Kend-
all's rank correlation τ, and points are for all data sets listed 
in Table 1.
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0.584 and -0.617 respectively (P < 10-6). In comparison,
the same Pearson correlations are substantially smaller (-
0.423 and -0.356 respectively, P < 10-6) for the set of all
proteins considered here, possibly because the larger set of
proteins here necessitates using less clean data. Such an
underestimation of the strength of the relationship
between evolutionary rate and abundance would cause
the partial correlation statistic to incompletely correct for
the bias. The fact that the remaining partial correlation
still directly depends on the extent of the bias is evidence
for this incomplete correction.

In addition, the different native concentrations of pro-
teins is only one source of bias in the counting of interac-
tions by the mass spectrometry studies. There also is an
inherent asymmetry in the counting of interactions in the
mass-spectrometry studies because some proteins are
tagged and over-expressed while others are only present at
their native levels. If the experimenter tends to select more
abundant proteins for tagging, biases towards counting
more interactions for abundant proteins would be ampli-
fied in a way that cannot be controlled for by transcript
level. One way to examine this effect is to only consider
interactions for the untagged proteins in the mass spec-
trometry studies. When this is done for study [10], the
bias to count more interactions for abundant proteins is
slightly reduced and there is a concomitant decrease in the
association between evolutionary rate and the number of
interactions (Table 1). But when this is done for study
[11], the bias to count more interactions for abundant
proteins increases and the association between evolution-
ary rate and the number of interactions becomes larger
(Table 1). Therefore, the effect of the experimental choice
of tagged proteins differs between the studies, but in both
cases, an increased tendency to count more interactions
for abundant proteins increases the apparent correlation
between evolutionary rate and interactions.

Protein–protein interactions and evolutionary rates in 
bacteria
We suggest a simple explanation for the failure of a previ-
ous analysis to observe a correlation between evolution-
ary rate and the number of interactions in the bacteria
Helicobacter pylori [7]. This analysis was based on protein–
protein interactions data obtained from a yeast two-
hybrid study [25], and so based on our analysis here we
would expect this data to have no bias towards counting-
more interactions for abundant proteins, and therefore to
show no correlation between evolutionary rate and the
number of interactions.

Data set size or accuracy are not plausible explanations 
for absence of correlation
The most recent study by Fraser et al. [6] claiming a corre-
lation between evolutionary rate and the number of inter-

actions suggested that the correlation may not be
apparent if the interactions data set is too small, and
stresses the importance of always using the largest possi-
ble data set. In order to evaluate this claim, we investi-
gated the effect of data set size on the correlation between
evolutionary rate and the number of interactions.

If the dependence of evolutionary rate on the number of
interactions only becomes obvious for large interactions
data sets, we would expect that larger data sets would
show a greater correlation. Figure 4(A) shows how the cor-
relation depends on the size of the interactions data set.
There is no obvious trend of larger data sets yielding a
larger correlation – indeed, the strongest correlation is
found using relatively small data sets with strong biases
towards counting more interactions for abundant
proteins.

In order to investigate how the spread in observed corre-
lations between evolutionary rate and the number of
interactions would be expected to depend on data set size
if the bias towards counting more interactions for abun-
dant proteins was unimportant, we performed sampling
simulations on the set of all interactions mimicking both
the methods of the mass spectrometry studies (counting
all interactions for selected proteins) and the yeast two-
hybrid studies (counting only interactions between pairs
of selected proteins). The results of these simulations are
shown in Figure 4(B) – they show that the observed corre-
lation should be roughly constant regardless of the inter-
actions data set size. Although the spread does increase for
smaller data sets, this increase is not large enough to
explain the observed spread in correlations. This demon-
strates that differences in the data set sizes or sampling
methods do not explain the variation in the observed
correlations.

The inadequacy of data set size as an explanation for the
failure to observe a correlation for some sets is most obvi-
ous in a comparison of Figures 2 and 4(A). Data set size
bears no clear relationship to the correlation between evo-
lutionary rate and the number of interactions, but the
experimental bias towards counting more interactions for
abundant proteins is an excellent predictor of this
correlation.

We also considered the possibility that the accuracy of the
interactions data might affect the strength of the observed
correlation. In their review of protein interactions studies,
von Mering and coworkers [9] provide estimates of the
accuracies of the different studies. According to their
measure of accuracy, synthetic lethality is the single most
accurate method for detecting interactions, interactions
detected by two different studies are more accurate than
those detected by any one study, and interactions detected
Page 7 of 10
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by three studies are more accurate still [9]. The set of inter-
actions detected by two different studies does show a ten-
dency for more interactive proteins to evolve more slowly,
however it is also strongly biased towards counting more
interactions for abundant proteins (Table 1). This can be
explained by noting that over 54% of the interactions in
this data set were identified only by the two mass spec-
trometry studies, and that for 69% of the interactions in
this set, one of the two identifications was by a mass spec-
trometry study. When this heavy slant towards the mass

spectrometry studies is ameliorated by requiring the inter-
actions to be identified by three different studies (mean-
ing that at least one of the studies must use a method
other than mass spectrometry), both the bias towards
counting more interactions for abundant proteins and the
tendency of interactive proteins to evolve more slowly dis-
appear (Table 1). The data from the synthetic lethality
method show no bias towards counting more interactions
for abundant proteins and no tendency for abundant pro-
teins to evolve more slowly (Table 1). We also note that
Jordan et al [7] observed no significant correlation
between evolutionary rate and the number of interactions
when they used a set of manually curated interactions that
might be expected to be of higher accuracy than those
from any single high-throughput method. Therefore, the
accuracy of the interactions data does not appear to
explain the apparent correlation between evolutionary
rate and the number of interactions.

Conclusions
We have examined the relationship among evolutionary
rate, protein abundance, and the number of protein–pro-
tein interactions for data from different high-throughput
studies. We have shown that while there is a consistent
tendency for abundant proteins to evolve more slowly,
proteins with more interactions only appear to evolve
more slowly when using interactions data from studies
biased towards counting more interactions for abundant
proteins. The strength of the correlation between evolu-
tionary rate and the number of interactions is directly
dependent on the strength of the bias towards counting
more interactions for abundant proteins – when there is
no bias, there is no correlation, and in the one case where
the bias is towards counting fewer interactions for abun-
dant proteins, interactive proteins actually appear to
evolve more rapidly instead. We have shown that this
effect is not explained by the size or accuracy of the inter-
actions data sets. This suggests that the apparent tendency
of interactive proteins to evolve more slowly is due to the
fact that abundant proteins evolve more slowly, com-
bined with a bias towards counting more interactions for
abundant proteins.

Our findings underscore the importance of considering
experimental methods when analyzing biological data.
The failure of Jordan et al. [7] to observe a correlation
between evolutionary rate and the number of interactions
in a data set of several thousand interactions should have
raised a red flag, yet the approach of Fraser et al. [6] was
simply to pool all available data and recalculate the
correlations. But while pooling data may yield higher sta-
tistical confidences, statistics are only as good as the
quality of the data to which they are applied. In our anal-
ysis of data from individual studies, it appears that the
correlation is contingent on a bias towards counting more

The correlation between evolutionary rate and the number of interactions does not depend on the size of the interac-tions data set as it would in the absence of bias in the count-ing of interactionsFigure 4
The correlation between evolutionary rate and the number 
of interactions does not depend on the size of the interac-
tions data set as it would in the absence of bias in the count-
ing of interactions. (A) shows the correlation and data set 
sizes for all sets in Table 1. (B) shows how the mean and 
standard deviation of the correlation should depend on the 
data set size in the absence of experimental bias in the count-
ing of interactions, based on sampling simulations of the mass 
spectrometry (green) and yeast two-hybrid (red) method of 
counting interactions.
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interactions for abundant proteins. Since this bias cannot
be properly controlled for with the presently available
data, there is no basis to conclude that there is any associ-
ation between evolutionary rate and the number of
interactions.

Recent advances in genomic and proteomic technologies
are providing vast amounts of information about proteins
and genes, including their sequences and chromosomal
locations, expression levels [21], recombination rates
[26], functions and dispensability [27], evolutionary rates
[28], and interactions [9]. Many of these properties are
interdependent, and in addition many of the high-
throughput studies are subject to systematic biases. A
major challenge of bioinformatics is to adequately correct
for these interdependencies and biases in order to extract
meaningful trends from the available data sets [4]. We
have shown here how careful consideration of the biases
of individual studies can explain correlations in pooled
biological data sets.

Methods
Gathering of Data
Protein evolutionary rate data were obtained from Fraser
[6] compiled according to the method of [20], and are
based on the alignment of S. cerivisiae and C. albicans
orthologs. Information on gene expression was taken
from [21], where the authors have estimated the number
of mRNA molecules per cell based on microarray analysis
of yeast grown to the mid-log phase in YPD (yeast-extract,
peptone, dextrose) media and presented this data online
at http://web.wi.mit.edu/young/pub/data/
orf_transcriptome.txt. CAI for the yeast genes were calcu-
lated [23] using gene sequences from the MIPS yeast data-
base [29]. Mass spectrometry protein–protein interaction
data from [10] were parsed from Table S3 of the supple-
mentary material, counting only binary interactions
between the tagged and untagged proteins in a complex.

Mass spectrometry protein–protein interaction data from
[11] were taken from http://www.mdsp.com/yeast/, again
counting interactions as binary between the tagged and
untagged proteins in a complex. The mass spectrometry
data set in Table 1 were the combined results of these two
studies [10,11]. In the untagged-only mass spectrometry
data sets for these studies, the interactions were counted
only for the untagged proteins in a complex. Yeast two-
hybrid protein–protein interaction data from [13] were
parsed from Table 2 of the paper. Yeast two-hybrid pro-
tein–protein interaction data from [12] were downloaded
from the core data list at http://genome.c.kanazawa-
u.ac.jp/Y2H/. The yeast two-hybrid data set in Table 1 was
the combined results of these two studies [13,12]. The
high confidence, synexpression, gene neighborhood, syn-
thetic lethality, gene cooccurrence, and gene fusion inter-

actions data sets were parsed from supplementary Table 4
of [9]. The combined data sets of all proteins was formed
from all interactions from these nine studies. The sets of
interactions found by two and three of these studies were
independently listed in at least that many of the nine stud-
ies. In the interaction counts listed in Table 1, a binary
interaction was counted once for each partner except for
self-interactions, in which case the interaction was only
counted once. The interaction counts given in Table 1 are
the sums of the number of interactions assigned to all pro-
teins in the data sets for which both evolutionary rate and
abundance (expression or CAI) information was availa-
ble. When combining interactions data sets, duplicate
interactions were removed. All data will be made available
upon request.

Statistical Analysis
Statistical analyses were performed using Kendall's τ rank
correlation coefficients and two-tailed P values were cal-
culated as described in [30]. Briefly, the Kendall's correla-
tion between x and y was calculated as

 where C is the

number of concordant pairs, D is the number of discord-

ant pairs, n is the number of pairs, and 

and  are corrections for tied values com-

puted by summing over the number of observations t and
u that are tied at any given value for the x and y data sets
respectively. Kendall's partial correlation between x and y
controlling for z was calculated as

. For Kendall's partial τ correla-

tion, two-tailed P values were calculated using 104 rand-
omizations of the abundances and the evolutionary rates.
The calculations of the significances of the change in Ken-
dall's partial τ correlation were performed by determining
what fraction of 104 randomizations of the abundances
(preserving the interactions and evolutionary rates)
yielded an increase or decrease in the partial τ larger than
that observed for the actual data.

For the sampling simulations, we began with a list of all
non-duplicate interactions from the combined data set.
For the mass-spectrometry simulation, we randomly
selected n proteins and all of their interactions to add to
the interactions sample set, where n was iterated from

3341 to 10, performing  trials at each n. For the

yeast two-hybrid simulation, we selected proteins in the
same way, but only counted an interaction if both of the
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proteins participating in the interaction were among the
selected proteins. Kendall's τ correlation between the evo-
lutionary rate and the number of interactions for each
sample set was calculated, and results were binned accord-
ing to the total number of interactions in the sample set
into bins of exponentially scaled size with centers shown
in Figure 4(B). The mean and standard deviation of the
correlation were calculated for each bin.

Authors' Contributions
JDB gathered the data, performed the statistical analysis,
and wrote the manuscript. CA provided guidance on the
analysis and edited the manuscript. Both authors read and
approved the final manuscript.

Acknowledgements
We thank Frances H. Arnold for helpful comments and advice. We also 
thank an anonymous reviewer for insightful comments that greatly 
improved our work. JDB is supported by a Howard Hughes Medical Insti-
tute Predoctoral Fellowship. CA is supported by the NSF under contract 
number DEB-9981397. Part of this work was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with 
the National Aeronautics and Space Administration.

References
1. Pal C, Papp B and Hurst LD: Highly expressed genes in yeast

evolve more slowly. Genetics 2001, 158:927-931.
2. Wilke CO and Adami C: Evolution of mutational robustness.

Mut Res 2003, 523:3-11.
3. Pal C, Papp B and Hurst LD: Does the recombination rate affect

the efficiency of purifying selection? The yeast genome pro-
vides a partial answer. Mol Biol Evol 2001, 18:2323-2326.

4. Pal C, Papp B and Hurst LD: Rate of evolution and gene
dispensability. Nature 2003, 421:496-498.

5. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C and Feldman MW:
Evolutionary rate in the protein interaction network. Science
2002, 296:750-752.

6. Fraser HB, Wall DP and Hirsh AE: A simple dependence between
protein evolution rate and the number of protein–protein
interactions. BMC Evol Biol 2003, 3:11.

7. Jordan IK, Wolf YI and Koonin EV: No simple dependence
between protein evolution rate and the number of protein–
protein interactions: only the most prolific interactors tend
to evolve slowly. BMC Evol Biol 2003, 3:1.

8. Grishin NV and Phillips MA: The subunit interfaces of oligomeric
enzymes are conserved to a similar extent to the overall
protein sequences. Protein Sci 1994, 3:2455-2458.

9. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S and
Bork P: Comparative assessment of large–scale data sets of
protein–protein interactions. Nature 2002, 417:399-403.

10. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM and Cruciat CM et al.: Functional
organization of the yeast proteome by systematic analysis of
protein complexes. Nature 2002, 415:141-147.

11. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A,
Taylor P, Bennett K and Boutilier K et al.: Systematic identifica-
tion of protein complexes in Saccharomyces cerevisiae by
mass spec-trometry. Nature 2002, 415:180-183.

12. Ito T, Chiba T, Ozawa T, Yoshida M, Hattoria M and Sakaki Y: A
comprehensive two–hybrid analysis to explore the yeast pro-
tein interactome. Proc Natl Acad Sci USA 2001, 98:4569-4574.

13. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M and Pochart P et al.: A comprehen-
sive analysis of protein–protein interactions in
Saccharomyces cerevisiae. Nature 2000, 403:623-627.

14. Overbeek R, Fonstein M, D'Souza M, Pusch GD and Maltsev N: The
use of gene clusters to infer functional coupling. Proc Natl Acad
Sci USA 1999, 96:2896-2901.

15. Huynen M, Snel B, Lathe W III and Bork P: Predicting protein func-
tioin by genomic context: quantatitive evaluation and quali-
tative inferences. Genome Res 2000, 10:1204-1210.

16. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D and Yeates
TO: Assigning protein functions by comparative genome
analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA
1999, 96:4285-4288.

17. Enright AJ, Iliopoulos I, Kyrpides NC and Ouzounis CA: Protein
interaction maps for complete genomes based on gene
fusion events. Nature 1999, 402:86-90.

18. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO and Eisen-
berg D: Detecting protein function and protein–protein inter-
actions from genome sequences. Science 1999, 285:751-753.

19. Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Rob-
inson M, Raghibizedeh S, Hogue CWV, Bussey H, Andrews B, Tyers
M and Boone C: Systematic genetic analysis of ordered arrays
of yeast deletion mutants. Science 2001, 294:2364-2368.

20. Wall DP, Fraser HB and Hirsh AE: Detecting putative orthologs.
Bioinformatics 2003, 19:1710-1711.

21. Holstege FCP, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green
MR, Golub TR, Lander ES and Young RA: Dissecting the regula-
tory circuitry of a eukaryotic genome. Cell 1998, 95:717-728.

22. Gygi SP, Rochon Y, Franza BR and Aebersold R: Correlation
between protein and mRNA abundance in yeast. Mol Cell Biol
1999, 19:1720-1730.

23. Sharp PM and Li WH: The codon adaptation index – a measure
of directional synonomous codon usage bias, and its poten-
tial applications. Nucleic Acids Res 1987, 15:1281-1295.

24. Coghlan A and Wolfe KH: Relationship of codon bias to mRNA
concentration and protein length in Saccharomyces
cerevisiae. Yeast 2000, 16:1131-1145.

25. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen
G, Petel F, Wojcik J and Schachter V et al.: The protein–protein
interaction map of Helicobacter pylori. Nature 2001,
409:211-215.

26. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO and Petes TD:
Global mapping of meiotic recombination hotspots and
coldspots in the yeast Saccaromyces cerevisiae. Proc Natl Acad Sci
USA 2000, 97:11383-11390.

27. Winzeler EA, Shoemaker DD, Astromoff A and Liang H: Function
characterization of the S. cerevisiae genome by gene deletion
and parallel analysis. Science 1999, 285:901-906.

28. Brookfield RFY: What determines the rate of sequence
evolution? Curr Biol 2000, 10:R410-R411.

29. Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K,
Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S and Well B:
MIPS: a databse for genomes and protein sequences. Nucleic
Acids Res 2002, 30:31-34.

30. Gibbons JD: Nonparametric Measures of Association. In Quan-
titative Applications in the Social Sciences Volume 91. Sage Publications;
1993. 
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/421496b
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/421496b
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12556881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11976460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=166126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=166126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=166126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2148-3-11
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=140311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=140311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=140311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12515583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2148-3-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7757001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7757001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7757001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nature750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nature750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/415141a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/415141a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/415141a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/415180a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/415180a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.061034498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35001009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.96.6.2896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.10.8.1204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.10.8.1204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.10.8.1204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10200254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.96.8.4285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.285.5428.751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.285.5428.751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10427000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1065810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1065810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12967969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9845373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9845373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=83965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=83965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3547335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3547335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3547335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/1097-0061(20000915)16:12<1131::AID-YEA609>3.0.CO;2-F
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10953085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35051615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11196647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11027339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.97.21.11383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.285.5429.901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.285.5429.901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10436161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0960-9822(00)00506-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0960-9822(00)00506-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10837241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=99165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=99165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/30.1.31
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Analysis of the different interactions data sets
	Table 1

	Controlling for bias reduces apparent correlation between evolutionary rate and interactions
	Protein-protein interactions and evolutionary rates in bacteria
	Data set size or accuracy are not plausible explanations for absence of correlation

	Conclusions
	Methods
	Gathering of Data
	Statistical Analysis

	Authors' Contributions
	Acknowledgements
	Acknowledgements

	References

