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Quantum Entanglement of Moving Bodies
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We study the properties of quantum entanglement in moving frames, and show that, because spin and
momentum become mixed when viewed by a moving observer, the entanglement between the spins of a
pair of particles is not invariant. We give an example of a pair, fully spin entangled in the rest frame,
which has its spin entanglement reduced in all other frames. Similarly, we show that there are pairs
whose spin entanglement increases from zero to maximal entanglement when boosted. While spin and
momentum entanglement separately are not Lorentz invariant, the joint entanglement of the wave
function is.
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understand all those processes that might affect quantum
entanglement (in particular, those processes that lead
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Mostly, theories in physics are born out of necessity, but
not always. The thermodynamics of moving bodies, for
example (relativistic thermodynamics), was a hotly con-
tested topic without resolution [1–4] (but see [5]) mostly
because no experiment required it. As a side effect, it was
learned that the temperature concept in relativistic ther-
modynamics is ambiguous simply because radiation that
is perfectly blackbody in an inertial frame is not thermal
if viewed from a moving frame [5,6]. This is an inter-
esting result for information theory [7], however, since if
probability distributions can depend on the inertial
frame, then so can Shannon entropy and information.
Even more interesting are the consequences for quantum
information theory, where quantum entanglement plays
the role of the primary resource in quantum computation
and communication [8]. Relativistic quantum informa-
tion theory may become a necessary theory in the near
future, with possible applications to quantum teleporta-
tion [9], entanglement-enhanced communication [10],
quantum clock synchronization, and quantum-enhanced
global positioning [11].

Entanglement is a property unique to quantum systems.
Two systems (microscopic particles or even macroscopic
bodies [12]) are said to be quantum entangled if they are
described by a joint wave function that cannot be written
as a product of wave functions of each of the subsystems
(or, for mixed states, if a density matrix cannot be written
as a weighted sum of product density matrices). The
subsystems can be said not to have a state of their own,
even though they may be arbitrarily far apart. The en-
tanglement produces correlations between the subsystems
that go beyond what is classically possible [13]. It is this
feature that enables quantum communication protocols
such as teleportation and superdense coding. However,
the preparation, sharing, and purification of entanglement
is usually a complicated and expensive process that re-
quires great care. It is therefore of some importance to
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to decoherence). It was shown recently that Lorentz
boosts can affect the marginal entropy of a single quan-
tum spin [14]. Here, we determine that the entanglement
between two systems depends on the frame in which this
entanglement is measured.We show that a fully entangled
spin-1=2 system (a Bell state) loses entanglement if ob-
served by a Lorentz-boosted observer. Thus, Lorentz
boosts introduce a transfer of entanglement between de-
grees of freedom, that could be used for entanglement
manipulation. While the entanglement between spin or
momentum alone may change due to Lorentz boosts, the
entanglement of the entire wave function (spin and mo-
mentum) is invariant.

In order to define the momentum eigenstates for a
massive particle with spin, we start by defining the rest
frame eigenstates,

P�j0�i � j0�ip�0 ; (1)

J2j0�i � j0�is�s� 1�; (2)

Jzj0�i � j0�i�; (3)

where p�0 � �m; 0�, s is the total angular momentum of
the particle, and � is the z component of angular momen-
tum. Since the particle is at rest, s and � are the spin and
the z component of the spin for the particle, respectively.

We define a momentum state by acting on the rest
frame state with a pure Lorentz boost

jp�i � L��p�j0�i; (4)

where L��p� is a boost such that

L��p��m; 0� � �

������������������
p2 �m2

q
;p�; (5)

where the rapidity, �p, is given by

sinhj�pj �
jpj
m

(6)
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FIG. 1. Circuit diagram for a Lorentz boost on a state with
spins in a j��i state. Lines representing momentum degrees of
freedom are bold.
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In what follows, we use p to represent the 4-vector
�

������������������
p2 �m2

p
;p� unless it is ambiguous.

The effect of an arbitrary Lorentz transformation �
(rotation and boost) on a momentum eigenstate is

�jp�i � �L��p�j0�i (8)

� L���p�L���p�
�1�L��p�j0�i: (9)

Since L���p�
�1�L��p� leaves 0 invariant, it must be a

rotation. These rotations are called the Wigner rotations
R��;p�, and they act only on the rest frame spin compo-
nent �. Hence, we can write

�jp�i �
X
�0

j�p�0iD�s�
�0;��R��;p��; (10)

where D�s�
�0;��R� is the spin s representation of the rotation

R. Here, we restrict ourselves to s � 1=2, but the general-
ization to larger spins is straightforward. For a review of
momentum eigenstates and spin, see [15]. Since a local
unitary transformation will not affect any measure of en-
tanglement [16,17], the unitary transformation � on the
infinite dimensional space of momentum and rest frame
spin will not change the entanglement between two par-
ticles, provided we do not trace out a part of the wave
function. However, in looking at the entanglement be-
tween spins, tracing out over the momentum is implied.

The wave function for two massive spin-1=2 particles
can be written as

j	AA0BB0 i �
ZZ X

��

g���p;q�jp�iAA0 jq�iBB0eddpeddq; (11)

where eddp and eddq are the Lorentz-invariant momentum
integration measures given by

eddp �
d3p

2
������������������
p2 �m2

p ; (12)

and the functions g���p;q� must satisfyX
��

ZZ
jg���p;q�j2eddpeddq � 1: (13)

To an observer in a frame Lorentz transformed by ��1,
the state j	AA0BB0 i appears to be transformed by � 
�.
Using Eq. (10), and a change of variables for p, q, �, and
�, g���p;q� goes through the following transformation:

g���p;q� !
X
�0�0

U���1p�
�;�0 U���1q�

�;�0 g�0�0 ���1p;��1q�; (14)

where we defined

U�p�
�;�0 � D�1=2�

�;�0 �R��;p�� (15)

for compactness of notation. The Lorentz transformation
can be viewed as a unitary operation, R��;p�, condi-
tioned on p acting on the spin, followed by a boost p !
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�p on the momentum represented by the circuit diagram
in Fig. 1.

By writing j	AA0BB0 i as a density matrix and tracing
over the momentum degrees of freedom, the entangle-
ment between A andB (that is, between the spin degrees of
freedom) can be obtained by calculating Wootters’s con-
currence [18,19]

C��AB� � maxf�1 � �2 � �3 � �4; 0g; (16)

where f�1; �2; �3; �4g are the square roots of the eigenval-
ues of the matrix �AB~��AB, and ~��AB is the ‘‘time-reversed’’
matrix [18]

~��AB � ��y 
 �y��
?
AB��y 
 �y�: (17)

The first step in calculating the Lorentz-transformed
concurrence is to find an explicit form forU�p�

�;�0 . Since any
Lorentz transformation � can be written as a rotation
R��� followed by a boost L��� [see also Eq. (8)], it is clear
that, for a pure rotation, U�p�

�;�0 does not depend on p.
Hence, tracing over the momentum after a rotation will
not change the concurrence. Therefore, we can look only
at pure boosts, and without loss of generality we may
choose boosts in the z direction. Writing the momentum
4-vector in polar coordinates as

p � �E; p cos��� sin���; p sin��� sin���; p cos����; (18)

we obtain

U�p� �

�
� �e�i�

��ei� �

�
; (19)

where

� �

���������������
E�m
E0 �m

r �
cosh



�
2

�
�
p cos���
�E�m�

sinh



�
2

��
; (20)

� �
p sin���������������������������������������

�E�m��E0 �m�
p sinh



�
2

�
; (21)

and

E0 � E cosh��� � p cos��� sinh���: (22)
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Here we use � � j�j as the rapidity of the boost in the z
direction.

For momentum distributions in this Letter, we use a
‘‘relativistic Gaussian’’ with width �r,

f�p� �

���������������������������������������
1

N��r�
exp�



p2

2�2
r

�s
; (23)

which differs from the standard Gaussian only in the
normalization N��r�, chosen in accordance with (12).

For a spin Bell state j��i with momenta in a product
Gaussian, we have

g���p;q� �
1���
2

p #��f�p�f�q�: (24)

Boosting this state, we move some of the spin entangle-
ment to the momentum. Tracing out the momentum from
the Lorentz-transformed density matrix destroys some of
the entanglement, and, hence, the concurrence in the
moving frame diminishes. The change in concurrence
depends only on the ratio �r=m and �. Figure 2 shows
the concurrence vs rapidity �, for �r=m � 1 and 4. The
decrease from the maximum value (the concurrence is
one for Bell states) documents the boost-induced deco-
herence of the spin entanglement.

In the limit �! 1 (boost to the speed of light), the
concurrence saturates, i.e., it reaches a constant value that
depends on the mass of the particles and the shape of the
momentum distribution. In this particular example, it
depends on the ratio �r=m. The saturation level decreases
as �r=m increases until �r=m ’ 3:377 when the satura-
tion level becomes zero. Note that in the limit of ‘‘pure’’
momentum states (plane waves), the spins undergo local
unitary rotations but entanglement transfer does not oc-
cur, as was observed in [20,21]. The reason for the satu-
ration can be seen by examining (19) in the limit �! 1,
FIG. 2. Spin concurrence as a function of rapidity, for an
initial Bell state with momenta in a product Gaussian. Data is
shown for �r=m � 1 and �r=m � 4.
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lim
�!1

� �

����������������������������������
E�m

2�E� p cos����

s 

1�

p cos���
E�m

�
; (25)

lim
�!1

� �
p sin������������������������������������������������������

2�E�m��E� p cos����
p : (26)

The parameter � represents the amount of rotation due to
the boost. If we maximize �with respect to �, we obtain

�!
p=m

1�
������������������������
1� �p=m�2

p ; (27)

which is a monotonically increasing function of p=m. For
a particle of mass m and magnitude of momentum p,
Eq. (27) represents the maximal amount of rotation due to
a boost. By increasing �r=m in our example, we effec-
tively increase this limit for �, and, hence, how much we
can alter the concurrence. Note that since for large p=m
the rotation � tends to one, the Lorentz transformation is
equivalent to a conditional spin flip in this regime.

If boosts can disentangle spins, can they transfer en-
tanglement from the momentum degrees of freedom to an
unentangled spin wave function? Indeed this is possible.
One way to achieve this is to take any of the resulting
states after boosting the state in Eq. (24) and apply the
inverse boost to increase concurrence to one. Note that
the increase in spin entanglement comes at the expense of
a loss of momentum entanglement, since the entangle-
ment between all degrees of freedom (spin and momen-
tum) is constant under Lorentz transformations.

Simply reversing a previously applied Lorentz transfor-
mation as in the last example is not a very satisfying way
to create entanglement. Is there a way we could create an
unentangled state in the laboratory frame that would ap-
pear entangled to a moving observer? Consider the state

j	AA0BB0 i �
1���
2

p �jp;�pij��i � jp?;�p?ij��i�; (28)

where p and p? are both in the x, y plane, have the same
magnitude p, and are perpendicular. We could imagine
such a state arising from a particle decay where the
products are restricted to movement in the x or y axes
with a conditional �z gate on the perpendicular direction.
The reduced density matrix �AB for this wave function
is separable, and its concurrence vanishes. However, tak-
ing the large p limit in Eqs. (25) and (26) and choosing�
and � appropriate for p and p? in the x and y directions,
respectively, one can show that for a large boost in the z
direction both j��i and j��i are transformed into the
j �i state and, hence, the spins are maximally entangled
in this reference frame. In fact, the concurrence as a
function of p and � is given by

C��AB� �
p2�cosh2��� � 1�

�
���������������
1� p2

p
cosh��� � 1�2

; (29)

when choosing m � 1. Note that the concurrence is
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greater than zero whenever p and � are nonzero, and as p
and � become large the concurrence tends to one. So, if
we restrict ourselves to spin measurements, an observer in
the rest frame of the decay particle cannot use entangle-
ment as a resource (e.g., for teleportation, superdense
coding, etc.) while the moving observer can. Such a
purification of spin entanglement is not always possible,
however, and the following theorem characterizes the
limitations.

Theorem.—The entanglement between the spin and
momentum parts of a pure state wave function,
j	AA0BB0 i, must be nonzero to allow the spin entanglement
to increase under Lorentz transformations.

Proving the contrapositive, starting with a product
state of the form

j	AA0BB0 i � j iA0B0 j�iAB; (30)

and applying boosts of the form � 
� or even � 
�0,
we obtain

�AB �
X
i

piUi
A 
 V

i
Bj�ih�jU

iy
A 
 ViyB ; (31)

where Ui
A and ViB are unitary operators and the sum

P
i pi

will be an integral for certain states j i.We can now plug
Eq. (31) into any entanglement monotone E��� and obtain
the inequality,

E��AB� �
X
i

piE�Ui
A 
 V

i
Bj�i� (32)

�
X
i

piE�j�i� (33)

� E�j�i�; (34)
where inequality (32) comes from the definition of an
entanglement monotone [22]. Hence, for states of the
form Eq. (30), the spin entanglement can only decrease
after a Lorentz transformation. �

Note that this theorem does not hold if arbitrary uni-
tary operations are applied to a particle’s spin and mo-
mentum degrees of freedom (for instance, a swap gate),
but it does hold for the entire class of unitaries realized by
Lorentz transformations.

We have investigated the properties of moving en-
tangled pairs of massive particles. Because Lorentz
boosts entangle the spin and momentum degrees of free-
dom, entanglement can be transferred between them. This
is true for single particles [14], and we have shown here
that it is true for pairs, where the Lorentz boost affects the
entanglement between spins. Quite generally, we can say
that fully entangled spin states will (depending on the
initial momentum wave function) most likely decohere
due to the mixing with momentum degrees of freedom.
We also note, however, that such mixing can purify spin
entanglement if the momentum degrees are entangled
with the spin. The physics of creating entanglement be-
270402-4
tween spins and between momenta is very different. Thus,
the possibility of entanglement transfer via Lorentz
boosts could conceivably, in special situations, lead to
simplified state preparation and purification protocols.
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