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Summary
Arguments for or against a trend in the evolution of com-
plexity are weakened by the lack of an unambiguous
definition of complexity. Such definitions abound for
both dynamical systems and biological organisms, but
have drawbacks of either a conceptual or a practical
nature. Physical complexity, a measure based on auto-
mata theory and information theory, is a simple and
intuitive measure of the amount of information that an
organism stores, in its genome, about the environment in
which it evolves. It is argued that physical complexity
must increase in molecular evolution of asexual organ-
isms inasingle niche if the environmentdoesnot change,
due to natural selection. It is possible that complexity
decreases in co-evolving systems as well as at high mu-
tation rates, in sexual populations, and in time-dependent
landscapes. However, it is reasoned that these factors
usually help, rather than hinder, the evolution of com-
plexity, and that a theory of physical complexity for co-
evolving species will reveal an overall trend towards
higher complexity in biological evolution. BioEssays
24:1085–1094, 2002. � 2002 Wiley Periodicals, Inc.

Introduction

Whether or not complexity increases in evolution is one of

the central questions of evolutionary biology. Opinions about

this subject vary, but generally belong to one of three camps:

one suggests that complexity has increased, another claims

that there is not enough evidence to argue for or against an

increase, and a third denies that ‘‘progress characterizes the

history of life as a whole, or even represents an orienting force

in evolution at all’’.(1) Often, these camps disagree not only

about the existence of a trend, but also on what type of com-

plexity measure to use, and whether maximum or average

complexity is pertinent. Most agree however that nobody

knows precisely what is meant by the word ‘‘complexity’’ when

referring to a biological organism. Indeed, while complexity

measures abound (many of them invented by physicists,

Ref. 2), their relationship to biology is not always clear. I will

review here several different kinds of complexity measures

(without trying to be exhaustive), and then focus on a recent

measure that appears to capture what we intuitively expect

from such a measure in biology, and discuss what it implies

about a trend in the evolution of complexity.

Complexity is so general a term that it seems to mean

something different to everyone. The two main ‘‘user-groups’’

are physicists interested in dynamical systems, and biologists

pondering the above-mentioned question of a trend. Perhaps

we should expect that a measure exists that is so general that

it applies to both biology and dynamical systems but, in the

meantime, it may be useful to clearly separate the two (at least

until we succeed in mapping the behavior of an animal to a

dynamical system, a prospect that surely is far off).

In dynamical systems theory, we are interested in the

complexity of processes. For example, periodic and random

processes are both perceived as simple, with the random

processes at ‘‘the other end of the scale’’, whatever that scale

may be. Complex and chaotic processes are deemed to lie

somewhere in between. This ordering along a scale supports

the general idea of a relationship between structure and com-

plexity, as the consensus is that neither periodic nor random

processes possess any structure.

Because all processes can in principle be viewed as com-

putations (and vice versa), complexity measures in dynamical

systems theory are usually computational complexities. Such

constructions allow you to infer the complexity of a sequence

of symbols by finding an appropriate finite state machine that

produces this sequence. (A finite state machine is an abstract

automaton that can take on only a finite number of states.)One

such measure, called ‘‘thermodynamical depth’’ by Lloyd and

Pagels(3) attempted to capture ‘‘how hard it is to put something

together’’, but ended up just characterizing the randomness

that a process generates.(4) A measure that satisfies our

craving for a ‘‘one-humped’’ criterion (low complexity for both

ordered and random systems, with high complexity for those

in between) is the statistical complexity of Crutchfield and

Young.(5) Their measure has the added bonus of being prac-

tical because the statistical complexity can be inferred from

observations of the statistics of the sequences that their

machine produces. Nevertheless, this measure suffers from a

problem that most of the sequence complexities (see below)
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have: It characterizes the amount of information necessary to

predict the future state of the machine (or the next symbol in

a symbolic sequence), but it fails to address their meaning in

a complex world.

The complexity of biological organisms cannot as yet

be captured by attempting to characterize the dynamics of all

their underlying processes. Instead, biological complexity

measures refer either to form, function, or the sequence that

codes for it. Structural complexity is generally what we mean

when we consider animals, but this seems to be the hardest

measure to define. McShea(6) has studied several measures

of structural complexity, based on number of cell types,

different limb-pair types, and even the fractal dimension of

sutures in ammonoids, and found some evidence for a trend in

these indicators, but nothing as conclusive as one might have

anticipated. Bell and Mooers(7) (see also Ref. 8) found that

the diversity of specialized cell types increases with body

size, but this correlation is not unexpected, nor does it make

a case for a general trend in evolution (some evidence for

Cope’s rule notwithstanding, Ref. 9). McShea has also made

the case for ameasure of functional complexityof organisms(10)

that counts the number of different functions an organism can

perform. While such a measure is certainly intuitively satis-

fying, its drawbacks are obviously the difficulty of defining a

range of functions, separating them into distinct non-over-

lapping ones, and plainly missing some that are not imme-

diately obvious. We should also keep in mind that complexity

should not be equated with evolutionary success(1) a miscon-

ception that has led tomany controversies. Finally, it seems to

be obvious that, during the course of evolution, the number of

levels of nestedness (number of lower-level entities nested in

higher-level ones) has increased. Thus, this nestedness could

perhaps be used as a measure of hierarchical complexity,

but again McShea(11) points out the difficulties in using such a

measure and documenting a genuine trend.

It is hard to imagine that a universal measure for struc-

tural or functional complexity can be devised, given that

organisms differ so greatly in form and function. However, all

these differences are sidestepped when we consider the

nucleic acid sequences from whence all creatures derive.

Of course, we understand that the difficulty of biology lies

precisely in the intricacy of thismap fromsequence to function.

Nevertheless, it is very likely that a properly defined sequence

complexity should mirror the complexity of the organism that

the sequence gives rise to. If this is so (and at this juncture this

is only a conjecture) then the problem of defining structural or

functional complexity can be demoted to the problem of

defining sequence complexity, which is naturallymuch simpler

because sequences are amenable to a mathematical char-

acterization. Many of the complexity measures introduced in

Ref. 2 are in fact sequence complexities. Most of them,

however, do not appear satisfactory from an intuitive point

of view. One of the measures most often put forward as a

candidate, the Kolmogorov complexity (see, e.g., Ref. 2),

turns out to be a measure of the regularity, rather than com-

plexity, of a sequence. This implies that a random sequence

is accorded maximum Kolmogorov complexity, clearly not

anything we would be interested in as biologists, because

random sequences do not give rise to organisms.

Other sequence complexities, such as Grassberger’s

effective measure complexity,(12) suffer from the same

problem as some of the statistical complexities mentioned

above. These measures attempt to characterize short-range

and long-range correlations in sequences in such a manner

that they optimally predict the next symbol on the sequence.

But we know that the sequence that codes for a functional

protein is completely unrelated to its function, and therefore

correlations among symbols in a sequence are uninteresting

for the purpose of measuring biological complexity. Instead,

we should look for a correlation of these symbols with features

of the environment within which this sequence is functional. In

other words, rather than looking for vertical correlations

between symbols (correlations between symbols along the

sequence), we should be looking for horizontal correlations,

namely correlations between the symbols in a genome and a

description of the environment within which that sequence is

functional. The physical complexity that I introduce below is

just such a measure.

Physical complexity(13) is a measure of sequence com-

plexity that is carefully defined from an automata-theoretic

point of view (just as Kolmogorov complexity was), but it has a

very simple relationship to information theory, and turns out to

bevery intuitive. Furthermore, it appears to correspondexactly

to what biologists think is increasing when ‘‘self-organizing

systems organize themselves.’’ Because such a measure

can also be applied to sequences of symbols generated by

a dynamical system, there is hope that it may bridge the

traditional gap between the physical and biological sciences.

Rather than starting with the mathematical definition, I will

instead describe the intuitive notion, and connect it with the

mathematical definition later. The latter is important to clarify

the circumstances under which physical complexity can be

measured, and to outline the assumptions and approximates

going into such an estimate.

In the following, I argue that physical complexity must in-

crease inmolecular evolution under certain circumstances,(14)

due to the actions of natural selection. This will be illustrated

with experiments conducted with digital organisms. Because

the circumstances under which the law holds exactly seem so

restrictive as to rule out all realistic situations, I discuss how the

law of increasing complexity is manifested in real biological

systems, and point out the role of co-evolution. Even though

the law can be broken (as we know that it must be and has

been) we expect it to be responsible for the general trend that

has led us from pools of replicating molecules, through

prokaryotes, to eukaryotes and multicellular organisms.
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Physical complexity

The physical complexity of a sequence refers to the amount

of information that is stored in that sequence about a parti-

cular environment. For a genome, this environment is the one

in which it replicates and in which its host lives, a concept

roughly equivalent to what we call a niche. The definition of

physical complexity must be distinguished frommathematical

(or algorithmic, or Kolmogorov) complexity, which is only con-

cerned with the intrinsic regularity (or, in this case, irregularity)

of a sequence. The regularity of a sequence is a reflection of

the unchanging laws of mathematics, and not of the physical

world in which such a sequence may mean something.

Information, on the other hand, is always about something.

Consequently, a sequence may embody information about

one environment (niche) while being essentially random with

respect to another. This makes the measure relative, or con-

ditional on the environment, and it is precisely this feature that

brings a number of important observations that are incompa-

tible with a universal increase in complexity in line with a law of

increasing physical complexity.

Randomness is in some ways the ‘‘flip side’’ of information,

and is called entropy in information theory.(15) Entropy is a

measure of potential knowledge, or if applied to a sequence,

a measure of how much information a sequence could hold,

and thusquantifies our uncertainty about thegenetic identity of

a randomly selected individual from a pool. It is useful to think

of sequence entropy as the length of a tape, while information

is the length of tape containing recordings. Measurement

(i.e., recording) turns empty tape into filled tape; entropy into

information. As we shall see, this is what happens during adap-

tation, and it is the force that drives the increase of complexity.

Information is a statistical form of correlation, and thus

requires, mathematically and intuitively, a reference to the

system that the information is about. The sequence on your

information-filled tape allows you to make predictions about

the state of the system that the sequence is information about.

This predictive capability implies that your sequence and the

system have something in common, that they are correlated.

Your sequence will most likely notmake predictions about any

other system (unless the systems are very similar). If you do

not know which system your sequence refers to, then what-

ever is on it cannot be considered information. Instead, it is

potential information (a.k.a. entropy). This is the fundamental

difference between entropy and information, often misrepre-

sented in the literature.(16)

Information-theoretic measures of complexity have been

considered before, only to be discarded because of erroneous

uses of the concept. Most often, entropy is used as a candi-

date for information-theoretic complexity. From the previous

discussion, we realize that the entropy of a sequence is the

amount of information that it could possibly carry. Of course,

this is just the length of the sequence. But it was recognized

early on that sequence length is not a good predictor of orga-

nism complexity (the C-paradox), an observation that has

discredited information-theoretic approaches to complexity.

Physical complexity, a true measure of information, does not

suffer from this handicap.

Nonmathematical, intuitive descriptions of complexity often

make use of a concept very much akin to the one presented

here, namely the idea of horizontal correlation. Most often,

this is described as ‘‘genes embody knowledge about their

niche’’ (Deutsch, Ref. 17) or, as put eloquently by Wilson:

‘‘ (Organisms) encode the predictable occurrence of nature’s

storms in the letters of their genes.(18)’’ This is precisely what

physical complexity measures, since physical complexity is

information about the environment that can be used to make

predictions about it. Being able to predict the environment

allows an organism to exploit it for survival. In such a manner,

physical complexity translates into fitness for the organism.

Let us now proceed to the mathematical definition of physical

complexity. Such a definition is important because it immedi-

ately suggests how complexity can be measured in real

adapting populations. I will refer to previous articles(13,14) for

technical points not immediately relevant for the present non-

technical discussion.

Technically, physical complexity is defined as the shared

Kolmogorov complexity between a sequence, and a des-

cription of the environment in which that sequence is to be

interpreted.(13) The details of this definition are not important

here, in particular because this definition is not practical, since

it does not allow the unambiguous determination of sequence

complexity from available data. However, it is worth mention-

ing that it is an instance of effective complexity, a concept

independently developed by Gell-Mann and Lloyd.(19) When

physical complexity is averaged over an ensemble of sequ-

ences, on the contrary it does become practical, because

average mutual (or shared) Kolmogorov complexity is, in the

limit of perfect coding, simply equal to the amount of infor-

mation that the ensemble has about the environment to which

it adapts. Perfect coding, in information theory, refers to the

limit in which information is coded without loss or waste into a

sequence. If this limit is achieved, information is perfectly

compressed. Needless to say, this limit is rarely (if ever)

achieved in nature, and we will be considering the conse-

quences of imperfect coding (in the form of epistasis) later on.

At this juncture, it is sufficient to think of the physical

complexity of a sequence as the amount of information that

is coded in the genomes of an adapting population, about the

environment to which it is adapting1. This information is given

by the difference between the entropy of the population in the

absence of selection, and the entropy of the population given

1In the following, my usage of the term ‘‘physical complexity of a sequence’’

should be taken to mean ‘‘average physical complexity of an ensemble of

sequences’’ (since that is the only experimentally accessible quantity). We

shall not return to the abstract mutual Kolmogorov complexity.
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the environment, that is, given the selective forces that the

environment engenders. In the section below, I give a techni-

cal exposition of the complexity measure. Readers who are

satisfied with the intuitive description can skip this section

without loss.

Measuring complexity

Because entropies of populations can be measured, the aver-

age physical complexity is a practical measure. The entropy

of an ensemble (i.e., a population) of sequences X, in which

sequences si occur with probabilities pi, is denoted by the

symbol H(X) and calculated as

HðX Þ ¼ �
X

i¼1

pi logpi : ð1Þ

The sum in (1) goes over all the different genotypes i in

ensemble X. Whether or not selection acts on sequences of

the ensemble is crucial for the entropy. When selection does

not act, all sequences are equally probable in ensemble X

(because in the absence of selection no sequence has an

advantage over another). In this case, the probabilities pi
are each equal to the inverse population size, and the entropy

takes on its maximal value

HmaxðX Þ ¼ �
XN

i¼1

ð1=NÞ log ð1=NÞ ¼ log N: ð2Þ

In an infinite population, the number of all possible

genotypes is given by the size of the monomer alphabet, D,

to the power of the length of the sequence, L, i.e.,

N ¼ DL: ð3Þ

If we agree to take logarithms to the base of the alphabet

size, then the unconditional entropy of a population of sequ-

ences (that is, the entropy in the absence of selection) is just

equal to the sequence length:

HmaxðX Þ ¼ L: ð4Þ

This result is intuitively simple: the amount of information

that can potentially be stored in a sequence of length L is just

equal to the sequence length.

In the presence of selection, the probabilities of finding

particular genotypes i in the population are highly non-uniform:

most sequences do not appear (because either they simply

never occur, or because their fitness in the particular envi-

ronment vanishes), while a few sequences are over-repre-

sented. As described above, the amount of information that a

population X stores about the environment E in which it

evolves is then given by the difference:

IðX : EÞ ¼ Hmax � HðX jEÞ ¼ Lþ
X

i¼1

pi logpi ; ð5Þ

Here, I have introduced the standard notation IðA : BÞ for
the entropy shared between A and B (i.e., the information that

A has about B), and the symbol HðAjBÞ for the conditional

entropy of A given B. Note that while X in the above formulae

represents an ensemble of sequences, E stands for one

particular environment, not an ensemble of environments2.

Let me re-emphasize at this point that Eq. (5), because it

represents the amount of information an ensemble has about

its environment in mutation-selection balance, is the same

as the physical complexity. In order to evaluate it, we must

therefore obtain the probabilities pi.

The probabilities pi that go into the calculation of the

conditional entropy in (5) are in fact conditional probabilities,

because the probability of finding genotype i in environment E

is not equal to the probability of finding the same sequence in,

say, environment E 0. These probabilities can in principle be

estimated by simply counting theabundanceof eachgenotype

in the population, ni, so that

pi �
ni
N
;

where N is the population size. Unfortunately, the error com-

mitted by approximating the probabilities by the relative

abundance gives rise to a sizable error in the entropy of Eq.

(1), so large in fact that the estimated entropy is only meaning-

ful for essentially infinite population sizes.(20,21) Because we

need the entropy Eq. (1) in order to estimate the physical

complexity, we approximate it instead by summing up the

entropy at every site along the sequence. This is done by

aligning all sequences in the population, and obtaining the

substitution probabilities at each site. In this manner, we can

obtain the per-site entropy

Hð jÞ ¼ �
X

i¼G;C ;A;T

pi ð jÞ logpi ð jÞ ð6Þ

for site j by compiling the probabilities to find nucleotides i

at position j. The entropy Eq. (1) is then approximated by

summing over all sites j in the sequence, i.e.,

HðX Þ �
XL

j¼1

Hð jÞ; ð7Þ

so that an approximation for the physical complexity of a

population of sequences of length L is obtained by inserting

Eq. (7) into Eq. (5) above:

IðX : EÞ � C1ðX Þ ¼ L�
XL

j¼1

Hð jÞ: ð8Þ

Here, I defined implicitly C1(X), the complexity approxi-

mated using single-site entropies. Technically, this is only a

good approximation if there are no correlations between sites

in a sequence. Such correlations manifest themselves by

2Because E is not an ensemble but a particular instance, IðX : EÞ is strictly

speaking a difference of entropies rather than information in the sense of

Shannon,(15) but I will use the term information anyway.
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epistatic interactions (epistasis) between mutations. It is well

known that such epistasis exists (see Ref. 22 for a review),

in particular in populations that are not well equilibrated.

Epistasis can be particularly problematic in asexual orga-

nisms (and at low mutation rates) because asexuals are at

maximal linkage disequilibrium. Therefore, strong epistasis in

a gene that could be coded in a much shorter fashion can

prevent this compression from happening (perhaps because it

would take toomanymutations to arrive at a state at which the

genecould be compressed). In contrast, recombination canbe

thought of as a way to improve coding efficiency, as it breaks

up linkage disequilibrium. In higher organisms, we expect in

addition a considerable amount of epistasis between genes

that are part of a pathway, that regulate each other, or are

regulated by the same cis-regulatory complex. Because the

number of pairs of nucleotides that are correlated in this

manner are still expected to be small compared to all the pairs

that are independent, we do not expect strong directional

effects in epistasis even in such a case. In any case, within

each gene, it is possible to correct for directional epistasis

(the overall deviation from independence of mutations) if we

map out the decrease in fitness of this gene as a function of

mutation number (see appendix of Ref. 14, and Ref. 23 for a

measurement of directional epistasis in simulated T7 phages).

In the following, we are going to assume that epistatic effects

are sufficiently weak that the corrections can be ignored.

Natural selection increases

physical complexity

Darwinian evolution is often described as a mechanism that

increases the fitness of a population. Such a portrayal is pro-

blematic because the fitness of a population can depend on

many parameters and is difficult to measure. It is probably

more appropriate to say that evolution increases the amount of

information a population harbors about its niche (and there-

fore, its physical complexity). The only mechanism necessary

to guarantee such an increase is natural selection, acting in

a single niche, on asexual organisms adapting to a constant

unchanging world.

As we saw above, information is revealed, in an ensemble

of adapted sequences, as those symbols that are conserved

(fixed) under mutational pressure. Imagine then that a bene-

ficial mutation occurs at a variable position. If the selective

advantage that it bestowson theorganism is sufficient to fix the

mutation within the population,(24) the amount of information

(and hence the complexity) has increased. A beneficial muta-

tion that is lost before fixation does not decrease the amount of

information, nor does this happen if a neutral mutation drifts to

fixation. A deleteriousmutation that occurs at a fixed site could

lead to an information decrease, but such a mutation can only

drift to fixation in very small populations (Muller’s ratchet) or if

the mutation rate is so high that the population undergoes a

mutational meltdown.

Thus, natural selection can be viewed as a filter, a kind of

semipermeable membrane that lets information flow into the

genome, but prevents it from flowing out. In this respect, the

action of natural selection is very much akin to a device known

as a Maxwell Demon in physics,(25) which implies that natural

selection can be perfectly well understood from a thermo-

dynamics perspective as well.

Evolution of complexity in digital organisms

Because evolution is an exceedingly slow process, it is dif-

ficult to witness the emergence of novelty and the concomitant

increase in complexity in conventional experimental popula-

tions of animals, plants, or even bacteria. This obstacle disap-

pears if we have access to a form of life with a much shorter

generation time. Digital organisms are just such a form of life:

they are computer programs that self-replicate, mutate, and

compete for resources.(26–32) Because digital organismsmust

copy their entire genome to survive within the computer’s

memory, and compete for space and computer time with other

programs to which they are related by descent, experiments

with populations of digital organisms are to be contrasted with

more conventional numerical simulations of the evolutionary

process. These organisms, because they are defined by the

sequence of instructions that constitute their genome, are not

simulated. They are physically present in the computer’s

memory and live there. The world to which these creatures

adapt, on the other hand, is simulated, which allows the digital

experimenter unparalleled precision in the planning, execution

and analysis of his experiments. Evolving, self-replicating

programs behave just like evolving, self-replicatingmolecules,

and their dynamics are indeed well described by Eigen’s(33)

theory of macromolecular evolution.(34)

In creating this virtual world, we do not specify a target

sequence that represents the pinnacle of success. Instead,

rewards (in the form of bonus execution time for the programs

that reap them) are specified for phenotypes only, and thus

natural selection acts on those. Because the underlying

genetic space (the space of computer programs written in this

particular language) is so high-dimensional, a large number of

genotypes usually map to any particular phenotype, making

the identification of a global genotypic optimum practically

impossible. Phenotypes in this computational world are com-

putational in nature, as we shall see presently.

In order to survive in their world, digital organisms must

replicate fast and use the available resources efficiently. The

efficient use of resources concerns chiefly the utilization of the

primary energy source for digital organisms: CPU (central

processing unit) time. Without CPU time, no digital organism

can survive, since they need to copy themselves to survive,

and without the code being executed, no copying takes place.

Fig. 1 below shows a sketch of the world that is created inside

of a standard computer by running the Avida software,(25)

which is used for all the experiments described here.
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Using random numbers that the organisms can read into

their CPU with an appropriate instruction, programs can per-

form computations. Clearly, only very particular sequences

of instructions perform meaningful computations on input

numbers. In this sense, we can view such a sequence as the

equivalent of a nucleotide sequence coding for an enzyme that

catalyzes a reaction, involving two input chemicals, producing

the energy-rich output chemical. In the evolutionary experi-

ments described below, the rewarded computations are logi-

cal operations (such as AND, OR, NOR, etc.) performed on

binary input strings. During adaptation, many of these com-

putational reactions evolve among the digital organisms,

and are used in a coordinated manner to accelerate their

reproduction. In that sense, it can be said that these com-

putational genes play the role of a computational metabolism,

quite analogous to the enzyme-based biochemical metabo-

lisms. The monomers from which these programs are con-

structed (the instruction set) are custom-built for the CPU

described above. For these experiments,(14) the alphabet has

28 possible instructions, one of which is a logical primitive:

NAND (the ‘‘not-and’’ operation).

Consider the behavior of fitness over time (depicted here is

the replication rate of the fastest replicator in a population of

3,600 adapting programswhose sequence length is kept fixed

at 100, and seeded with a single simple replicator) in Fig. 2.

Time is here measured in arbitrary units called ‘‘updates’’,

where one update is the time it takes to execute about 30

instructions for each of the 3,600 programs in the population.

One generation corresponds to between 10 and 100 updates

in such populations. Note the sudden increase in fitness

around update 70,000. At this point in time, a mutation must

have created a new genotype much superior to all others.

Following our discussion, we expect this increase in fitness to

beassociatedwith an increase in information, so this genotype

is a good candidate to inspect for an increase in complexity.

A plot of the approximate complexity (calculated according

to Eq. (8)) can be seen in Fig. 3, where it is apparent that

the complexity steadily increases, except for a period at the

beginning and shortly after each transition. Both observa-

tions can easily be explained. During the initial growth of the

population, most instructions appear fixed in the population

because mutations have not had sufficient time to randomize

the non-coding instructions. Evolutionmayalso strugglewith a

genome (hand-written by the experimenters) that is extremely

ill-suited to the environment, but also difficult to re-code. It may

simply be badly compressed, and evolution takes a while to

find a better way to represent the same information. After each

transition, the estimated complexity overshoots its equilibrium

value due to the ‘‘hitchhiking’’ effect: neutral instructions

hitchhiking onbeneficial onesappear fixed, untilmutations can

randomize them again. This is particularly clear in the tran-

sition around 70,000 updates in Fig. 3, to which we now turn

our attention.

Because of the hitchhiking effect mentioned earlier, the

amount of information gained in the transition highlighted in

Fig. 3 is not measured very accurately, simply because the

time to equilibration (required for an accurate estimate) is

longer than the time until the next transition. To get a more

accurate estimate of the per-site entropy Eq. (6), we can ex-

tract dominating genotypes just before and after the transition.

In order to determine whether an instruction is entropy or

information, we create all possible one-point mutants of the

organisms and obtain their fitness in isolation. In a sense, this

is equivalent to building virtual, fully equilibrated populations.

Figure 1. A: Each organism is executed on its own

virtual CPU, which consists of an instruction pointer,

registers (blue), two stacks (green), as well as input/

output buffers (yellow). The genome of each organism is

circular, like those ofmost bacteria and somebiochemical

viruses.B: Population of digital organisms living in a two-

dimensional artificial world with periodic boundary condi-

tions, colored according to their genotype. Because

newborn programs are placed next to their progenitors

by the Avida program, clones of identical organisms

spread in roughly circular fashion.
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If a mutation does not change the fitness or increases it, it is

deemed viable, while all deleterious mutations are classified

together with the lethal ones, because they have a low pro-

bability of appearing in subsequent generations. After this has

been done for each locus, the per-site entropy at locus xi can

be estimated as

Hðxi Þ � logDðNviableÞ; ð9Þ

where Nviable is the number of neutral or beneficial substi-

tutions at that locus. In equation (9), the logarithm is taken to

the base of the alphabet size, thus ensuring that our measure

for the randomness at each location is normalized to lie

between zero and one. If we do this for two organisms before

and after the transition, we obtain the per-site entropies of

Fig. 4. It is interesting to observe the changes in substitution

pattern between these two genomes.

The most radical change seems to have taken place in the

region between instructions 66 and 73, where about seven

instructions that were moderately variable (in the virtual

population) seemed to have turned ‘‘cold’’, i.e., they have

turned vulnerable to mutations. This is precisely the phenom-

enon of unidirectional information flow pointed out above:

entropy is transformed into information. There areother places

in the genome where hot instructions turned cold, and vice

versa. The net gain in information is about six instructions,

which is close to the number that we arrive at if we take into

account corrections for epistasis.(14)

Causes for complexity declines

In this section, I discuss the mechanisms by which complexity

can fail to increase, or even crash. The most obvious origin of

a complexity catastrophe is a drastically changing environ-

ment. As discussed above, physical complexity is a quantity

defined with reference to an environment. If the changes in the

environment are fast and extreme, not only will the organism

be maladapted to this new environment, but also its mea-

surable physical complexity will have decreased commen-

surately. High mutation rates can also lead to a loss of

complexity, due to the hitchhiking of deleterious mutations on

beneficial ones. In small populations, high mutation rates are

Figure 2. Replication rate of fastest replicator in a

population of 3,600 adapting digital organisms.

Figure 3. Approximate complexity according to Eq. (8) for a

population adapting to a complex world. The dashed lines

indicate the times chosen as pre and post-transition, at which

the genotypes analyzed in (Fig. 4) were extracted.

Review articles

BioEssays 24.12 1091



even more problematic, because the selective filter becomes

sloppy and information can leak out. In the extreme case

(critically high mutation rates), selection becomes inactive, a

phenomenon known as the error catastrophe in the molecular

evolution literature.(35)

As is well known, sexual recombination can also lead to

an accumulation of deleterious mutations, and thus to a loss

of information (and by proxy, complexity). While asexual

populations can purge deleterious mutations with certainty

(as long as themutation rate is not too high and the population

size too small, as described above) populations of sexual

organisms are at risk of gene loss at any mutation rate if

deleterious mutations interact antagonistically.(36) I believe

that there are good reasons to believe that the mechanism of

complexity increase that holds for asexual organisms ought to

translate unchanged to sexual organisms. First, it is clear that

we can treat each tightly linked stretch of DNA, or each single

protein, as a symbolic sequence that does not undergo re-

combination, and within which therefore we expect com-

plexity to increase. Second, the ubiquity of the sexual mode

of recombination within eukaryotes implies that selection is

not weakened by that mode, perhaps rather to the contrary.

Because strength of selection is the ultimate criterion for

information maintenance, we do not need to fear a mutational

meltdown due to recombination only.

Finally, co-evolution between species occupying different

niches is a special case of a changing environment (for each

of the interacting species), and thus opens up the possibility

of escaping the inexorable growth of complexity promised by

perfect selection. In this case, however, there are good re-

asons to assume that, for the most part, co-evolution will aid,

rather than hinder, the evolution of complexity, because co-

evolution is a slow rather than drastic environmental change,

creating new niches that provide new opportunities for

adaptation. I discuss complexity growth in ecosystems briefly

below.

Evolution of ecosystem complexity

With the present tools we cannot, strictly speaking, make

any prediction about a trend in the complexity of entire eco-

systems of interacting niches, since the concept of physical

complexity only makes sense within an organism’s own niche.

An increase in complexity can only be observed in any parti-

cular niche, for the amount of time that this niche exists

unchanged. Furthermore, the complexity of an organism can

never exceed the potential complexity of the niche. Because

niches do change, and because many niches of differing

potential information coexist at the same time, we cannot

expect that a trend in one niche will persist forever, nor that

the same trend will be observable in all currently existing

niches. In one niche, for example, its inhabitants may have

incorporated all of its potential information into their genome

(such as some prokaryotes), while another niche may just

have been invaded so that its inhabitants show rapid

gene turnover. The coexistence of niches with different

entropy (different potential complexity) explains the coexis-

tence of organismswith differing complexity in our ecosystems

today, and should not be viewed as an argument against a

trend.

Should we not expect an overall trend if evolution pro-

duces more and more diverse niches with more and more

potential information?This questionaddresses the issueof co-

evolution, and whether this process indeed produces niches

with more and more entropy (which could then host, in turn,

organisms with more and more complexity). This question is

complicated by the fact that co-evolution necessarily produces

changes in an organism’s niche, which can reduce an orga-

nism’s complexity. In general, a change in niche will almost

Figure 4. Each instruction in the twogenomes in

(A) and (B) are colored according to their per-site

entropy (scale in the middle). An instruction that is

fixed in the population has entropy close to zero

(blue), implying that a mutation of that locus

produces a non-functional organism. On the

contrary, loci that can be mutated with impunity

have entropy one (red). The genome (A) was

extracted from the population after 2,991 genera-

tions (the left dashed line in Fig. 3), while genome

(B) was extracted just after the transition at 3,194

generations (right dashed line in Fig. 3).
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always produce an instant decrease in physical complexity,

because only in the most rare circumstances will the change

be exactly right to convert an entropic sequence into an infor-

mational one. However, if the change in the niche makes it

richer (i.e., produces features that are awaiting discovery),

then following the initial decline in complexity the species can

enter a period of adaptation that can take it into realms of

complexity hitherto unattainable. Also, if a species invades a

new niche that leads to the loss of a previously functional gene

(either through mutation accumulation or antagonistic pleio-

tropy,Ref. 37),most likely a specieswould still exist that did not

undergo the change, so that the total complexity of the two

species would be constant or increasing.

Thus, we have to look at the process of co-evolution and

its capacity to create more complicated environments as the

possible unifying process that could give rise to an overall

trend. Unfortunately, the mathematics of information in co-

evolving environments appears as yet too daunting to make

a prediction about whether this is the case or not. It seems

plausible to me, but it is clear that counterexamples can be

manufactured where co-evolution gives rise to catastrophic

extinctions, which reduce the environment’s complexity and,

necessarily, the physical complexity of its inhabitants at the

same time. In such a formalism, the total complexity of an

ecosystem would have to be defined as the mutual entropy of

all organisms, about each other and the world they live in. This

is an information-theoretic formula that is not difficult to write

down, but the associated quantity promises to be much more

difficult to measure.

Conclusions

In order to be able to speak about complexity, we must define

it. In this review, I have presented a mathematical definition

of sequence complexity that has a very intuitive interpretation

for biological genomes, as the amount of information that

a population stores about the environment in which it lives.

With this definition, we can address the issue of a trend in the

evolution of complexity. By recognizing that natural selection

in a niche is equivalent to a filter that allows increases in

informationbut not decreases, it is possible to show that,within

that niche, physical complexity must increase if the environ-

ment does not change.

While natural selection can fail to maintain the acquired

information, it is highly likely that the mechanism of interacting

niches in an ecosystem will ultimately lead not only to a trend

within each niche, but also to a trend in the overall (total)

complexity of an ecosystem. Physical complexity increases if

selection is efficient, and decreases if it fails. Still, thismeasure

of complexity does not translate to adaptation. An organism

well-adapted to a simple niche can have a lower physical

complexity than an organism badly adapted to a complicated

niche. Thus, adaptation reflects only the degree to which the

potential complexity of the niche is reflected in the physical

complexity of the organism, and certainly does not allow

complexity comparisons across niches.
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