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Complex Langevin equation and the many-fermion problem
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We study the utility of a complex LangevifCL) equation as an alternative for the Monte CaléC)
procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a
CL approach is natural in cases where nonpositive definite probability measures occur, and remains accurate
even when the corresponding MC calculation develops a severe “sign problem.” While the convergence of CL
averages cannot be guaranteed in principle, we show how convergent results can be obtained in two simple
guantum mechanical models, as well as a nontrivial schematic shell model path integral with multiple particles
and a noncommuting interactidthe Lipkin mode).
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[. INTRODUCTION the possibility that they can be nonstationary. Here, we show
that the problem of nonstationarity can often be avoided, and
There has been recent significant progress in the largetoes not play a role in a large class of Hamiltonians which
scale numerical computation of nuclear properties in thegive rise to Langevin equations with fixed points in the com-
shell model, using the auxiliary field path-integ@FPIl)  plex plane.
Monte Carlo method1]. Due to the benign scaling of the By way of introduction and to establish notation, we
computational effort with the single-particle basis, propertieriefly review the AFPI Monte Carlo method in the next
of large nuclei can now be calculated that are out of the reachection. Section Il discusses the application of the CL
of conventional diagonalization methofi 3]. method to simple one-dimensional integrals abstracted from
Quite generally, AFPI treatments of interacting fermionthose occurring in fermionic many-body systems, while Sec.
systems with the Monte CarldC) method are difficult for 1V expands this to a simple toy Hamiltonian with character-
certain realistic Hamiltonians, and for odd-particle istics reminiscent of shell models. In Sec. V we apply the
configurations. This difficulty, also known as the “sign Mmethod to the Lipkin modelthe MC treatment of which is
problem,” is the prime impediment to large scale Computa.Sim"ar in character to the full shell modeland close with
tional efforts both in nuclear and condensed matter physicgonclusions, in Sec. VI.
calculations. Briefly, repulsive interactions and/or odd-
particle configurations can lead to probability distributions II. AUXILIARY FIELD PATH-INTEGRAL
(integration measures for the auxiliary fieldhat are nega- MONTE CARLO
tive, or even complex. As the MC update algorithm relies on
a positive-definite measure, the sign of the distribution is In the AFPI method, the significant savings in computa-
made part of the observable being calculated. Under circurfional effort are obtained through a Hubbard-Stratonovich
stances where the average sign of the distribution is smal(HS) transformation[9] (see below of the imaginary-time
the expectation value is the ratio of two very small numbers€volution operator
that converges only asymptotically.
A number of alternatives to or extensions of the MC U=exp —BH). (2.2
method have been proposed over the years, among them hy-
brid me_thods combining the MC mgthod with replication The thermal expectation value of an operaibis given by
mechanisms for importance samplif®], random-walk
branching[6], and diagonalization over optimal bases using
variational techniquef7]. Here, we investigate the possibil-
ity of replacing the MC method altogether with one based on
the complex LangeviiCL) equation, at least in those cases Where
where the sign problem is prominent. The CL equation has . )
received considerable attention in connection with lattice Z=Trexp—BH) (2.3
gauge theory calculations, where either static charges or a

nonzero chemical potential give rise to complex actiffls 5 the partition function, Tis the many-body trace, anlis

It has been abandoned mostly because of the perception thak inverse temperature. Ground-staero-temperatue
complex Langevin averages ought not to be trusted, due Broperties are obtained in the limit—oo.

(0)5=2" T O exp(— BA)], (2.2)

For a many-body operatdt in the quadratic form
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containing one-body operatof@a and two-body operators Fu.rther, sin_ce expfS,) is not positive definite, we define
@i a HS transformation of the imaginary-time evolution the sign function
operator(2.1) leads to F(o)
) ) ABIV.[| 22 CD":|F(0')|' (2.13
exp(—,BH)~fM’n dUa,n( o )

Then, writinge Se=®(o)e S with areal S,, the expec-
tation value(2.10 appears as eatio of expectation values

XG(U)I;[ exg —ABh(a,)], (2.5 )
f Dlole ¥ ®(a)}0)s (g (5),)

by splitting B into N, time slices such thak 8= B/Nj. <©>B: =
Here, o, denotes a set of auxiliary field®ne for each f p[a]efé@(g) (@)

two-body operator appearing in E.4)] at time-slicen,

and o stands for the totality of fields at all time-slices. Fur- (2.14

thermore,G(o) is the Gaussian weight factor each calculated with a positive definite probability distribu-

S

1 tion e™ >0, The Monte Carlo average over samples is denoted
G(U)ZEXF{ -> EA,B|VQ|U§m : (26 as{ ...). If the functionF(o) is negative on a substantial
an part of the o-field manifold, the expectation values
andf(a,) is the one-bodyHamiltonian (P (O),)» and{®P,)» can each become very small, and the

ratio only converges asymptotically. This is the essence of

~ - A the sign problem in quantum Monte Carlo calculations. Be-

h(on =2 (€at5Va0un) O, (2.7 low, we construct expectation values susceptible to the sign

“ problem, in order to gain insight into the circumstances in

wheres,=+1(==i) if V,<0(>0). Thus, the HS trans- Which a CL equation approach can be applied successfully.
formation has the effect of replacing the quadratic depen-

dence orf?a in Eq. (2.4) with a linear one, at the expense of IIl. COMPLEX LANGEVIN EQUATION AND SIMPLE

an integral over auxiliary fields. INTEGRALS
Let U, denote theone-bodyevolution operator The HS transformation is nothing but the Gaussian inte-
~ . gral identity
U,=exd —Ah(oy)] (2.8
1 (= _
andF (o) its trace: e~ (W= _—_ | (ge-(12)0’grioz, (3.2
20 )~
F(o)=Tr(U,). (2.9

Note that this case corresponds to a repulsive interaction
Expectation values can then be written using the above pathV>0 in Eq.(2.7)]. As Eq.(3.1) has no imaginary part, this

integral decomposition of the partition function: reduces to
fD[o]G(a)'T’r(éUU) e*(l’z)zzzL " doe- W29’ cogzo). (3.2
(O)p= (2.10 V2w
f Dlo]G(a)F(a) This is precisely the form appearing in the denominator of

Eqg. (2.10), but in one dimension, with cagf) playing the
An effective actionS, can be defined such that E@.10 role of F(o).

appears as a simple expectation value: Generalizing this, we would like to examine expectation
values
f Dlole 5(0),
(0) 5= (2.11 f doo2e” 12 cog gz) N
f Dlole > (o?)n= (3.3
f doe V2 cog oz) N
with
1 as a function of the real numbernd the “particle number”
SUZE _AB|Va|O-i —InF(o), (2.12 N, using MC evaluation and the complex Langevin equation
an ’ approach.
R o Clearly, the MC procedure will suffer from the sign prob-
where(O),=Tr(OU,)/F (o). lem only for odd N. Figure 1 shows a straightforward
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' T ' ' ' Eq. (3.8 reverts to an eigenvalue equation. For o,
oL N=1 ] P(o,t)—Py(0o), the solution for the lowest eigenvalle
=0. Accordingly, fort—e, if op(t) is the solution to the
Langevin equatior3.6),
_2 - -
O © O(ag(1))—(0) (t—) (3.13
= !
b4 | 08 4 with (O) given by Eq.(3.4). Finally, ergodicity assures that
o (O) is also obtained by averaging over the pati{t):
-6 0.2 n 1 T
00005 10 15 20 25 30 <O>=<<O(0’o)>>= lim ?f O(o(t))dt. (3.12
z S 0
-8 1 1 1 1 1 T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 In principle, nothing prevents us from using the Langevin
z ) equation in the case where the action is complex:
FIG. 1. Monte Carlo average of integréb?)y_, Eg. (3.3
(squarey the exact solutiorisolid line), and the sign of the calcu- S(o)=Sg(o)+iS (o). (3.13
lation (insed.

Then, we obtain two equations, for the real and the imagi-
MC evaluation of this integral foN=1, where the inset nary part ofo:
shows the development of the average sign(o)

=cos@o)/|cosgo)|. As expected, the accuracy of the MC dor(t) 1 _[3S
estimate deteriorates &(c)—0. a2t (v, (3.14
As an alternative to the MC procedure, consider the
Langevin equation. For systems with real actions, expecta- do(t) 1 [9S
tion values such as e m(%) (3.19
(0)= %f doO(o)e ) (3.4  However, the Fokker-Planck Hamiltonian loses its Hermitic-

ity, and the eigenvalues can acquire imaginary parts. As a

with the partition function consequence, the probability distributi®{og,o,,t) need
not converge anymore, nor does the expectation v@lje

Z:f doe S (3.5 While the lowest eigenvalue is stif;=0, the E,, with n

>0 are in general complex, and the asymptotic condition

. . . P(o0)—Pg is violated whenever there are arfy, with
can be _caIcuIatt_ad by _creatmg a_s_tophastlg: Process using ﬂl‘-@e E,>0 (n>0)[10]. As a rule of thumb then, expectation
Langevin equation, with an equilibrium distributic?y(o) values obtained via the CL equation should only be trusted if

71
=Z “exf—Yo)] L the ensemble averages become time indeperjdéht
The Langevin equation is given by For the numerical solution of Eq$3.14),(3.15 we use
the two-step algorithm of Greenside and Helfdi&]. De-
M = E '9_8 + (1) (3.6)  fining the complex gradient as
dt 2 do '
e . . o )
wheret is a fictitious time andy(t) is stochastic noise with VS(t)= %[UR(I),U,(t)], (3.1

zero mean and unit variance:
the stochastic differential equation is discretized via

(n()n(t"))=o(t—t"). 3.7

To each Langevin equation corresponds a Fokker-Planck or(ty) = Tr(to) ~ At REVS(to)]+ VAt (to), a1
equation for the probability density(o,t) (3.1

1
JP(o,t - _Z
fg t ) HeP(ot) 3.8  or(t)=0r(to)~ 5 At REVS(to) + VS(typ) ]+ VAtn(to)
(3.18
with a Hermitian Fokker-Planck Hamiltonian . .
and analogously for the imaginary part.
1918 oS For the expectation valu@.3), the effective action is
=5 —|—=+—| :
FP™2 g0\ dor (90) 3.9
For solutions with exponential time dependence, 2For this particular choice of variables, the corresponding equa-
tion for the imaginary part does not include a noise term. For other
P(o,t)=e E'Pc(0), (3.10 choices, see, e.q.13].
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_1 2 a H
Sy=30°—NIn[cogoz)], (3.19 ' R R N'_A1

while the associated Langevin equation reads or 1

o=— [o+Nztan(zo)]+ 7. (3.20 -2r -

N 10

It is immediately apparent that the fixed points of this equa- 34 | o8 i
tion (c=0) lie on the real axis. On the other hand it is also §zj
clear that, since for examplr?)y—,=1—22, the correct or
solutionoy(t) needs to spend a considerable amount of time 6 r 0 T
away from the real line, at least for odl Analytically, this 008 1013 20 25 30
must happen becausgtor odd N) there is a delta-function- _8 I L L \ |
like drift term that has been ignored in E@.20 which is 0.0 0.5 1.0 1.5 2.0 2.5 3.0

due to the imaginary part & . The additional drift term is

SVSy= *imd(cogzo)) (3.22
but cannot be adequately modeled numerically. As a conse-
guence, the solution spends most of its time on the real line
between the first turning points, and the resulting average is
inaccurate, as has been noted previoisi}. The solution to

this dilemma is also not new. Going back to E§.1) and
N=1 we see that the action can also be written as

(3.22

S,=30%+izo,

z

FIG. 2. Langevin average dfo?)y—;. Squares: extended ac-

tion; triangles: original action; solid line: exact solution.

2
2 =1—L 3.2
<U >N:2 l+e222! ( . 4)
) ) 1+3e 47
<O’ >N:3:1_Z m (323

in which case the fixed point is away from the real line in theFor evenN the complex Langevin equation does not con-

complex plane: oy=%*z. Since

f o?P(og,0)dogrdo

then P(O'R ,(T|)
Hexp(—%aﬁ)&a,iz), the complex average reduces to

verge at allz due to the problems described. We do not need
to worry about this, however, as the MC procedure is very
accurate there.

IV. QUANTUM MECHANICAL TOY MODEL

<UZ>N=1: -
f_ P((TR,O'|)dO'RdO'|

wo*ijz
f doo?exp— 3 o?)
—©Fiz

(3.23

The integral over the complex path removed from the real
line by =iz equals the one over the real line if the observable
has no poles in the enclosed area.

In Fig. 2 we show the result of a CL evaluation of
(0?)n=1 using the “extended” actior(3.22 (squares and
the original action(3.19 (triangles. The solid line repre-

sents the exact result. As expected, a complex Langevin =

simulation with fixed points on the real line does not con-
verge, while the calculation with the extended action is ro-
bust even in the regime where the MEig. 1) fails.

Can this procedure be extended to arbitridfy A canoni-
cal extension of the method exists, whereNfog) is decom-
posed into single powers of cosines at multiplesraf Sub-
sequently, the cosines are replaced by exponentials.
However, this procedure results in a shift of the fixed point
away from the real lineonly for odd N. Figure 3 shows

results for the cased=2 andN=3, with exact results N

In this section we show how shifting the fixed points in a

CL evaluation of integrals can be used in a quantum me-
chanical model which describes a single shell of angular mo-
mentumj with variable filling. This toy model is defined by

the Hamiltonian

A=—1eN2+ 1 V32, (4.)
T T a!
e e N2
.| _
N
2T N=3 |
2 L 7]
-3 L L :
0.0 05 10 15 20

z

FIG. 3. Complex Langevin average &%), for N=2 and

=3.

034319-4



COMPLEX LANGEVIN EQUATION AND THE MANY-. .. PHYSICAL REVIEW C 63 034319

whereN is the number operator arfl; the third component

of the angular momentum. A HS transformation on the

imaginary-time evolution operator yields

'T'rN(e*B'q)

o f do,odo,le—(1/2)((r§+ Ui)er(e\/ﬁNUo—iv’B—Vazal)’

where Ty is the many-body trace for fixed particle number

N and angular momentui

j

er(é)Z 2 <mlmN|©|m1mN>

my+ .o Emy=—j
mi#:mj

SinceN and jz commute, the evolution operator does not b
need to be decomposed into time-slices. Also, the contribu- (J%) =j(j+1)+cot=
tion from the number operator is a constant factor

Tru(e P =exp(VNBe) Try(U,,)

f doe~ (1/2)0’2<j§>ge—3N(¢7)

(3= . (41D
Jdae—(uz)aze—sN(a)
where
o Tin(32Up) i1
< z/o FN(O') ( . 2
and
Sv=3 0?=In(Fy(0)). (4.13

For N=1 and arbitraryj, we find for the observable

=\BVo)

that drops out of the ratios, and will thus be ignored in the

following. Above, we defined the one-body evolution opera-

tor

U o= efi\“‘W:]zo'l_
1

Defining ¢=+/BVo, and as before

Fa(h)=Trn(U,,),

1 1 1 ¢
5 J+§ co j+§ ¢_§COtE
(4.19
while the Langevin equation is
. 1 1 o1 1 1 ¢
O'——EO'-FE\/,BV j+§)CO[(j+§ ¢_§C0t§ + 7.
(4.15

From the oscillatory nature df(¢) we expect that the
MC procedure will become imprecise at large In Fig. 4
(left pane) we show the result of a MC calculation (ﬁf)ﬁ
for a j=5/2 shell and particle numbefd=1, N=2, and
N=3. Note thatN=3 corresponds to half-filling, so that

we can write theN-particle traces in terms of the one-particle pigher N’s can be described in terms of “hole” numbers,

trace:

sin(j+ 3) ¢
sin(¢/2)

Fo()=F2(p)—F(2¢),

Fi(¢)=F(¢)=

Fa(¢)=F>(¢)—3F(2¢)F(¢)+2F(34),

and revert to the cases displayed. For this simple case, the
sign (not shown does not deteriorate too much before the
ground state has been reachgllérge, and the calculation
is consequently reliable. Let us test nevertheless how a com-
plex Langevin approach fares.

The CL approach based on the Langevin equattbh5
with the observablé4.14) suffers from the same problems
that we noted with the simple integral: the fixed points are
real and the results are consequently unreliable. Again, the

and so on. Note that unlike in the previous section, the evernremedy is to shift the fixed points such that the effective path
N trace is not positive-definite, while still being mostly of integration lies in the complex plane. However, here we

positive.
We shall focus on the expectation value

j doe-12%%r (320,

<‘]§>N= 5
f doe~ (V2 Fn(o)

which we rewrite in terms of an effective action as follows:

3Note that we now writer instead ofc; for simplicity.

encounter another difficultgwhich is also common in more
refined shell-model calculations the expectation value
(4.14) has poledat the zeros of(¢)]. Consequently, the
expectation value calculated for a shifted path will equal the
real-path result plus the sum over the poles on the real-line,
of which there are infinitely many. For this simple toy
Hamiltonian, this can be shown to hold true exactly by cal-
culating the residues. In more realistic models, however, the
sum over the poles is not readily available. Fortunately, for

most Hamiltonians the observabferNTOUU) can be ob-

tained by calculating moments ofrJU,. Here, for ex-
ample,
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3 4 T T T T T T
10 J=5/2 N=2
2
08 B=1
Sr 5 06
‘| ~—
0
3
@2
&
ﬁN‘] O 1 1 | | | |
=~ 0.00 025 050 0.75 1.00 1.25 1.50
w
0
FIG. 5. Straightforward Monte Carlo average (@) for two
3 particles in a cranke@l=5/2 shell at3=1, and the sigrinse}.
2 symmetry of the integral. Results of the CL calculation are
shown in the right panel of Fig. 4. The CL averages are
: stable and accurate at larg® while accuracy deteriorates
only for small 8 where large cancellations must occur. Of
o course, a partial integration can also be performed for the
Monte Carlo integral, which improves performance mark-
00 05 10 15 2000 05 10 2.0

8 8

edly because of better sampling. In that case, the Monte
Carlo results are comparable to those obtained with the

FIG. 4. Average(J?) for aj=5/2 shell withN=1,2,3 obtained ~Langevin equation.
with a Monte Carlo approactteft pane) and the complex Langevin This changes when the action is forced to acquire substan-
equation (right pane). For both cases we took ten samples of tial complex pieces by “cranking” the Hamiltoniat¥.1),
10 000 updates each.

2

- 1 2,
TrN(‘]zU(r) =T v 72TrN U(r

BV oo

and integrating by parts twice yields

f doe™ (1/2)02<j§>ae—s,\,(a)

(D=

. f doe™ (1/2)u202€— Sn(o)
S 1—
V
B f dae’(llz)"ze’ Sn(o) 3
- (1Y) (4.17) 3
BV ' ' 2
L

J dae’(llz)gze’ Sn(o)

which corresponds to a toy nucleus with a single shell un-
dergoing a collective rotation. Ignoring the term involving
the number operator and again settivig=1, the Hamil-

(4.1  tonian becomes

H.=H-wl, (4.18

which breaks time-reversal invariance explicitly. Cranking is
notoriously difficult for quantum MC calculations because
the sign-problem is exacerbated in these cases. In fact, a
straightforward MC is hopeless because the sign drops very
quickly with increasingo. In Fig. 5 we show(J2) as well as

4 T T T T T T
J=5/2 N=2
g=1

With this observable, the action can now be extended into

the complex plane. This is achieved as in the simple integrals 1
treated previously, by writing the trace in terms of cosines, '
and replacing cogf)—exp(i¢). Quantum mechanically, this
amounts to retaining only those terms in the tré¢e) for

which the sum of the magnetic quantum numberst m, 0.00

+---my (with m;#m;) is either non-negative or non-

0.25

050 0.75 100 1.25 1.50
w

positive. In this manner, we break time-reversal invariance FIG. 6. Monte Carlo with(J2) from partial integration, as in

by hand, since we know that it will be taken care of by theFig. 5.
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25 ' ' ' ' A=3,- V(32 +3)=3,-v(32-3). (5.1
20 | J=5/2 B=10 The eigenstates can be labeled by the total quasjsgind
classified into nondegenerate multiplets ¢ft2l states each
(see, e.g[16]), from spinj=N/2 down to 0 or3, depending
~ 15 .
3 on whethem is even or odd.
&, The two-body interaction term does not commute with the
~>10 free Hamiltonian, which necessitates the introduction of
time-slices in the HS transformation. Writing the imaginary-
5 time evolution operator as
U=[exp(—ABH)I™, (5.2
O 1 1 1 1
0 2 4 6 8 where B=N,AB, we can apply the Hubbard-Stratonovich

transformation to obtain
FIG. 7. Complex Langevin average 682) for a cranked;]
=5/2 shell, =1.0. _AgGE
shell, a1 e ApH OCJ DUXDayeX[(— $ABV
the sign for two particles in §=5/2 shell forw<1.5, be-
yond which the MC calculation becomes useless. Conver- « (M2 (M2 A pi()
gence improves markedly if the observable is simplified by ; (037 oy ™) | exp( = A0,
partial integration(Fig. 6), but of course the sign is still the
same and the MC approach fails.
Let us calculate this observable with the CL approach. INvhere
Fig. 7 we plot the expectation valid.10 as a function of
cranking frequency for §=5/2 shell withN=1,2,3 andB AM_3 3o o™ i3 oM
=1.0. While the sign in the MC calculation essentially dis- h(Y=3,+2v(3.0f iJyoy”). (5.9
appears foro>3, the accuracy of the CL calculation is
maintained even as the average sign is small.

(5.3

With this decomposition, exp(Agh,) is accurate to order

(AB)2 andU to orderA 8. Exact results are obtained in the
limit Ag—0.
V. LIPKIN MODEL To obtain averages at finite temperature, we need to take
traces of such operators over the many-body basis. For small
, the model can easily be diagonalized, which we use to our
advantage to compare Monte Carlo and Langevin calcula-
fj[ions of expectation values with the known exact results. We
start with the expressions for the static-path approximation
(SPA), i.e., for a single time-slice. With the representation

To test the CL equation approach in a more realistic situ
ation for a system that can be exactly diagonalized, we us
the Lipkin model[15]. The Lipkin model is a nontrivial
schematic shell model capable of describing collective e
fects in nuclei. It describedl distinguishable particles la-
beled 1,2. .. N, each of which can occupy one of two or-
bitals with energies £ 1/2) (up or down. The total number

of states therefore is"2 1 l(g igy)
The Hamiltonian has a one-body term and two two-body 2 N7
terms, and suffers from the sign-problem as we shall see h,= v . (5.5
below. If written in terms of quasispin operatads it be- —(oytioy) -5
comes J2
0.0 T T T T T
CcL
-0.2 A8=0.05 - i
< 04T ] ] FIG. 8. Monte Carlo(right pane) and com-
‘_f.. plex Langevin(left pane) average/J,) in a three
~ 06 [ T T particle Lipkin model as a function of inverse
temperature, witlA 3=0.05.
-08 - .
-1.0 L L L L1 10 1 1 I 1
00 05 10 1.5 20 00 05 10 15 20
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we have

Tr(e 2f0)=2 coer AZ—EW) , (5.6)

where

W= 142V (o5 —0y), (5.7)

and indeed quite generally

. Ag \IN
Tryexp—Aph,)=|2 cos TW (5.9
Similarly, we obtain, for example,
~. N AB W 9
(JIn=— Sy @ —- WJ. (5.9

PHYSICAL REVIEW C63 034319

and observables are obtained as usual. Here, we choose to
examine

J’ Do,Doye” Sed, (o)

(3= (5.17

f Do, Doye~ So

The complex Langevin equation requires the gradients of
Tr(U,) with respect tor, and o, for each time-slice:

aTr(U,) .
(—(n))=Tr(A(“- AL AN (5.18
doy

where A" is the derivative of thenth slice matrixA(™.
Thus,

The many-time-slice expressions are straightforward exten- ('T)((n)(t): _ E( oM N &Tr(UU)/ tr(U )) +p
2 g

sions. For time-slica, define
exp(—ABhM)=AM =3 +aM. 7 (5.10
and

U,=exp(—Aph®), ... exg—aphM)=us+u- 7,

(5.11
where 7 are the usual Pauli matrices and
A
alV= cos)’(TﬁWn> , (5.12
— 2
oV AB —iy2g™
(N=_ gj —_ y
a a sm)—( 5 Wn) . (5.13
Y
Then
Tru(U,) = (2ug)", (5.14
and, for example,
-~ ~ -~ Us
3(o)=Try (U )Ty =N5 . (519
0

The action can be written as

ABV
s ARV

N¢
= (E a§“>2+a<y“>2>—|n(er(uU)), (5.16

n

FIG. 9. (a) Monte Carlo calculation of R€J,)) as in Fig. 8(ten
samples of 10 000 pointsat fixed inverse temperajé= 2.0 (with
AB=0.1) and as a function of cranking frequeney The inset
shows the real part of the sign functidrk . (b) Complex Langevin
calculation of(J,) with same parameters &a).
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since none of the tricks used in the previous examplesch as
partial integration and extending the action into the complex

J plane can be used for this model. In order to force a sign

Tr(O )N=N Tr(AM. .. A7 ANDY Ty HN-2 problem, we can revert to cranking as before.
ao{M The cranked Hamiltonian
(5.20 n
H=Ho—wJ, (5.21

if we choose a basis of multiparticle product states, and simi

larly f(.)r ay. In this manner, "."" remaining traces are over th.esingle time-slice trace (5.6) becomes complex as the argu-

two-dimensional single-particle space only. Naturally, th'sment(5.7) becomes

equation has to be separated into its real and imaginary parts

as earlier, sincém(ua) can become negative M is odd. W= \/1+w2+2\/2(02_az)_2\/§ivw0 . (5.22

This is most easily seen examining the single particle trace x Y

(5.6), which becomes oscillatory if the argumem  Figure 9 compares Monte Carlo and complex Langevin cal-

= ,/1+2V2(Ux2_ gy2) becomes complex. culations of the same observable as in Fig. 8, at fixed inverse
In Fig. 8, we show Monte Carldright) and complex temperature8=2.0 and as a function of the cranking fre-

Langevin (left) calculations of the observablgl,); as a quencyw. Because MU,) becomes complexrather than

function of the inverse temperatuge for the first non-trivial  just nonpositivg care must be given to the real and imagi-

caseN=3. Even though the sign is not strictly positive, the nary parts of the sign-functio®. Indeed, for®=oz+id,

Monte Carlo simulation is very accurate in this case. Theand the observabl®g(o)+iO,(o), the Monte Carlo aver-

Langevin averages converge well also, despite the fact thatge is

develops a sign-problem because the single parfiated

f D(re’sv(tl)ROR—CD,O,)HJ' Doe Se(d,0g+ DRO,)
(0)=

(5.23
J Doe Sedp+i f Doe S,

Figure 9a) shows the real part of Eq5.23 as well as the the fixed points move into the complex plane, without chang-
real part of the signby in the inset. The sign disappears ing the value of the average or the pole structure. The third
quickly, both in the MC as well as the Langevin calculation example, the Lipkin model, showed that such a procedure is
in Fig. 9b), but in the Langevin case the accuracy of thenot necessary if the fixed points are naturally in the complex
average actually increases with increasing cranking freplane(such as is the case at finite cranking frequenaesn
guency. Instead, for the MC calculation, this translates into ahough the averages may become non-stationary. In these
deteriorating signal-to-noise ratio. Also, the complex Lange-cases, the Langevin equation continues to deliver reliable
vin calculation does not necessitate the calculation of fouaverages even when the Monte Carlo averages have become
separate integrals such as in E§.23. However, for small meaningless.
cranking frequencies the complex Langevin averages are  While this study certainly suggests that the sign-problem
noticeably nonstationary, which results in larger error bars.can be overcome in particular cases, it is by no means certain
that the procedure will be as successful in so-called real-life
applications, with realistic interactions. However, as the pay-
VI. CONCLUSIONS off is potentially large, we believe that there is now enough
evidence to try this approach. Another area where this ap-
The complex Langevin equation offers a new perspectivgroach deserves to be tested is lattice gauge calculations of
on the pervasiveness of the sign-problem in fermionic quanmatter at finite chemical potential, which suffer from a
tum many-body calculations. It is not without its own prob- sign-problem because the action becomes complex. As the
lems, however, most notably the absence of a convergencgtractors would naturally move into the complex plane at
proof of the Langevin averages. The root of non-stationarityabout~iu, the complex Langevin approach seems particu-
for some complex Langevin averages lies in the structure ofarly natural in this case.
fixed points(attractor$ and turning pointgrepellers in the
complex plz_in_e. If both the attractors gnd repe_llers lie on the ACKNOWLEDGMENTS
real line, it is just a matter of time until the trajectory hits a
pole in the gradient, and the trajectory is thrown far into the This work was supported in part by the National Science
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