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Quantum extension of conditional probability
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We analyze properties of the quantum conditicaalplitudeoperator[Phys. Rev. Lett79, 5194 (1997],
which plays a role similar to that of the conditional probability in classical information theory. The spectrum
of the conditional operator that characterizes a quantum bipartite system is shown to be invariant under local
unitary transformations and reflects its inseparability. More specifically, it is proven that the conditional
amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary
condition for separability. A related separability criterion based on the non-negativity of the von Neumann
conditional entropy is also exhibitefS1050-294®9)00608-3

PACS numbdis): 03.67—a, 03.65.Bz, 89.70.c

[. INTRODUCTION ponent is not guaranteed to be detected by this critgrion
Since the von Neumann conditional entropy can be negative
Quantum inseparability, one of the most intriguing predic-only if the conditional amplitude operator admits an eigen-
tions of quantum mechanics, has remained the subject ofalue larger than 1, a related—but weaker—separability con-
intense activity since its discovery by Einstein, Podolsky,dition is that the conditional entropy is non-negatitsee
and RoserfEPR) [1]. One of its most heralded consequences?lso Refs[7-9] and[10]).
is the violation of the Bell inequalitid], which experimen-
tally demonstrates quantum nonlocality. Recently, with the || CONDITIONAL AMPLITUDE OPERATOR AND
advent of the fields of quantum computation and communi- von NEUMANN ENTROPY
cation, quantum entanglement and the inseparability it im-
plies has been exploited as a resource for information trans- In order to establish the notation, let us first sketch the
mission and processin{3,4]. For example, it has been information-thgoretic treatment of a .bipartite classical sys-
shown that the entanglement between two systems can K@M characterized by two random variabfeandB. If A and
used in order to achieve quantum superdense coding or tel8 are characterized by the joint probability distribution
portation[5,6], two quantum communication schemes thatP(a,b), one can define the joint Shannon entrgfy]
have no classical counterpart. In this context, it was realized
that Shannon’s classical theory of information does not suf-
fice to characterize these quantum informational processes.
Consequently, arextendedtheory that explicitly takes the
quantum phases into account must be constructed in order {ghich reflects the randomness of the combined syn

properly incorporate quantum entanglement in  anysing the probability ofa conditional onb
information-theoretic formalism.

In previous worK 7—-9], we have attempted to define such p(a,b)
a quantum information-theoretic formalism relying on the p(alb)= b (2
notions of von Neumann conditional and mutual entropies, p(b)
two quantities that we define in analogy with their classical
equivalent. In this paper, we focus on the connection be
tween quantum nonseparability and the conditional ampli-
tude operator, an operator that plays the same role as the H(A|B)=2 p(b)H(A|B=b)
conditional probability when defining a quantum conditional b
entropy. We start by detailing the mathematical properties of
the conditional amplitude operatésupport, spectrum, con- = - p(b)> p(alb)log, p(alb)
nection with von Neumann entropies, e¢t&Ve then derive a b a
necessarygondition for separability, based on the conditional
von Neumann entropy and the underlying conditional ampli- = - p(a,b)log, p(alb) 3
tude operator. Namely, the eigenvalues of the latter operator ab
cannot exceed 1 if the bipartite state is separable, as was
conjectured in Refg[7-9|. This condition is alsaufficient  which characterizes th@veragg remaining uncertainty o
for a 2X 2 system in a mixture ofgeneralizeglBell states. It whenB is known[11]. Using Eq.(2), it is easy to prove that
is not sufficient in general, however, as reflected by the posthe conditional entropy is the entropy of the combined sys-
sibility of a dilution of entanglementi.e., the inseparability tem reduced by the entropy of the known subsystem, that is,
of an extended system which contains an inseparable conii(A|B)=H(AB)—H(B).

H(AB)= —gj p(a,b)log, p(a,b) (1)

one then defines the entropy Afconditional onB
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Now, our goal will be to extend this construction for This results from the general relation
quantum variables characterized by density operdides-
sity operatorg are non-negative trace-cla@sit-trace Her- Tral(Ia®Ng) wagl =Ng Tral wagls (7
mitian operatorkin order to account for quantum entangle- , )
ment as well as classical correlation. Let us consider d/hereAg and u,g are arbitrary operators ifg and Hag,
bipartite quantum syste#B, characterized by a density op- respectively. Since is positive semidefinite and traceless,
erator pag in the product Hilbert spacéi{ag=H ®Hg. we havep=0. Thus, in particular, the expectation valuepof
Each subsysterA or B is characterized by the reduced den-in the statd ¢) vanishes,
sity operatorp,=Trg[ pag] OF pg=Tral pagl, respectively,

where T and Tg denote partial traces. (#|pld)=(d|pasl#)=0, (8)
Definition 1.Define the conditional amplitude operator of
A conditional onB as[7-9] which in turn implies thaipag|¢) =0 sincepag is positive
semidefinite. As this is true for each tefrt) in the super-
pap=exp[100; pag—100,(15® pp)] position| ), we conclude thapag|¢)=0.
_ h hn Remark. Lemma 1 clearly implies that
= lim[ppg(la®pe) "] (4 Sup(pap) CSUP(,® pg), that is, the support opag is in-

n—ow

cluded in that of 1,®pg. Equivalently, Ker(,

S . e . . ®pp)NSuplpag) =, so that the subspace spanned by the
\év:lfr?eISSl?pggf';tg/g Se{:‘?ﬁ;‘?gﬁ]tHﬁ{|r€ét:?2poapci2tor (gignedeigenvectors with zero eigenvalue Igfw pg is disjoint from
AB AB i i -
lemma 2. We call “Hermitian” the operators satisfying the the support 0pag, and thereforg g contains no singulari

roperty o= o' whil trictl kina. this Droperty i ties in the support opsg. Of course, there is a classical
property p=p-, While, Striclly speaxing, this property 1S o ,404 for probability distributions which ensures that
called “self-adjointness” in the mathematical literature.

However, they are equivalent for the bounded operators wi EZ gg;g(ﬁhtgézéb)ifési;’vgﬂcﬂe&n;g (g)a:’% atrr?e?]l:)(zg g;at
consider here. In general, the support ofa_\ linear opepgtsr —0, V a. This is obvious sincep(b)=3.p(ab) and
the closure of the set of dlly) of the domain ofp for which b)=0

|)# 0. For bounded Hermitian operators, the suppoi of p(a, )./..' - .
P 'ﬂ)_ I' th | t of th ﬁ’( | ’f that PP tﬁ Definition 2. The conditional von Neumann entropy is
'S slmpy fetrtl:on;p emen f(:h t? erne % b athls, M€ defined using the joint density operategg and the condi-
subspace of the domain @f that 1S spanned by the €igen- ., amplitude operatgsag as[7-9]
vectors corresponding to nonzero eigenvalues.

The second expression in E@) relies on the Trotter AlB)=—Tr' o 9
product formula (see, e.g.,, Ref.[12]), expX+Y) S(AlB) LpasloGz paje] ©
=lim,_..[expX/n)exp(Y/n)]". (The Trotter formula is some- in close analogy to the classical definition, E&). Thus,
times called the Lie product formula for finite-dimensional S(A|B) corresponds to thguantumentropy ofA conditional
matrices, but it also holds for unbounded self-adjoint operaon B, and is mathematically well-defined as a consequence
tors[12].) It explicitly emphasizes that the conditional am- of lemma 1. The trace in Eq9) is restricted to the support of
plltude operator is the natural quantum analog_?f the condip ¢, i.e., the common eigenvectdrs) with zero eigenvalue
tional probability, Eq.(2). As pag and (Ia®pg) = do not  of p,5 and 1,® pg are omitted in Tt. This will be under-
necessarily commute, the Trotter symmetrization guaranteegood from now on, and we will omit the priméStrictly

thatp g is @ normal operatofit commutes with its Hermit-  speaking, this argument is also used in classical information
ian conjugatg so that its logarithm is well defined. Indeed, theory to define conditional entropigs.

the exponential characterization @f s immediately implies Theorem 1.The definitions ofpag and the conditional
its Hermiticity and non-negativity. von Neumann entropy imply the®(A|B)=S(AB)—S(B),
Lemma 1Ker(l1a® pg) CKer(pap), Where Kerp) is the  as for Shannon entropies.
kernel ofp (the set of all|y) of the domain ofp for which First, using Eqs(4) and(9), we have
pl#)y=0). Consequently, the conditional amplitude operator
paje is well defined on the support @fsg . S(A|B)=—Tr{ paglog, pagl+ T paglog(1a® pe)],
We must prove that any eigenvectar of (1,® pg) with (10

zero eigenvalue is such thagg|#)=0. First note that any

such eigenvectoly) can be written as a linear combination where the first term on the right-hand side is clearly equal to
of states| ¢), where S(AB). In order to calculate the second term on the right-

hand side of Eq(10), we write

=la)®|b 5
|¢)=|2)@Ib) © Tralpaslogz(1a® pg) ]=Tral pas(1a®100; pp)]
and|a) is an arbitrary state vector i{, while |b) is an =Tralpasllog; ps
eigenvector ofpg with zero eigenvalue, i.epg|b)=0. Let o
us now consider the positive semidefinite operaier(1, ~Pel0%pE, (1D

®Pp)pas(1a®Pyp), with P,=|b){b|. It is trivial to check

. \ ) . where we have made use of EJ). This implies that the
that its partial trace oveA vanishes, that is,

second term on the right-hand side of Ef0) is

Tralp]=PupsP,=0. (6) Tre[ ps 10g; ps]= —S(B) (12)
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resulting inS(A|B)=S(AB) —S(B). It is easy to check that,g is positive semi-definite ipg is
Lemma 2The spectrum of the conditional amplitude op- separable. Indeed, in such a case we have
eratorpag is invariant under unitary transformations of the

product formU,®Ug 0N pag. _ : _ M ()=
Let us consider the isomorphism M Z Willa=pa)©@pe’]=0 (18

pae—Pas=(Ua®Ug)pag(UA2UL). (13)  since a sum of positive operators is a positive operéldre
) ) o _ two terms in square brackets are ezef.) Now, we can use
We first calculate the partial trace of the joint density operathe fact that, ifX andY are two Hermitian operators such that

tor overA afterthis transformation, that is, X=Y>0 (the notationX=Y means thaX—Y is a positive
, , semidefinite operatgrthen InX=InY, as implied by Levn-
pe=Tralpae] = Tral (Ua®Ug)pas(UA@ UL)] er's theoren{14]. (Note that the converse is not triés a
=Tral(1a®Ug)(Ua® 1) pas(Ua®l5) (1a® UE)] consequence, using=1,®pg and Y=p,g, we conclude

that A ,g=0 implies o45=0.
=UBTrA[(UA®]lB)pAB(UZ@]B)]UJEQ Corollary 1. Any separable bipartite state satisfies the
+ conditionpag=<1.
=UgpgUs, (14) Since we havepg=exp(—oag), theorem 2 shows in-

deed that no eigenvalue of the conditional amplitude opera-
tor exceeds 1 for a separable state, as was conjectured in
'Refs.[7-9]. This yields a simplenecessarybut not suffi-
cient condition for separability. The classical analog of this
property is that-log, p(alb)=0, V a,b. The latter inequality
simply results from the fact thai(a|b)=p(a,b)/p(b)<1,

Y a,b, asp(b)=2=,p(a,b) andp(a,b)=0.

Corollary 2. The conditional von Neumann entropy
§(A|B) is non-negative for a separable bipartite state.

Since we hav&(A|B) =T pag oag], this simply follows
from the fact that TrXY]=0 if X,Y=0. Thus, the non-
negativity of the conditional entropy is anothereakey nec-
essary condition for separabilifyy—9]. This has also been
shown in general for Renyi entropies in REL0]. Further-
more, the negativity of conditional entropies can be related
to the violation of entropic Bell inequalities, as shown in

where we have used E{7) and the basis invariance of the
trace. This implies that the conditional amplitude operato
transforms as

PA|B—’P,A|B:(UA®UB)PA|B(UL®UE) (15

so that its spectrum is conserved undgi®Ug 0N ppg.
Note that the classical analog of B,®Ug isomorphism
corresponds to permuting the rows and columns of the join
probability distributionp(a,b), so that the classical counter-
part of Eq.(15) is straightforward.

Remark.Lemma 2 suggests that the spectrumpgfg is
related to the separability of the statgg, since separability
(or inseparability must be conserved underls, ® Ug iso-
morphism. This will be examined in the next section.

Corollary. The conditional von Neumann entrofyA| B)
is invariant under a unitary transformation of the productRef' [15]. . .
form U,®Upg. This property results from the definition of _ NOte that corollary 2 can also be obtained by using the

S(A|B), Eq. (9), together with Eq(15), or can be checked concavity of S(A|B) in a convex coml:_)i_ngtion OPag'S, &
trivially from theorem 1. property related to the strong subadditivity of quantum en-

tropies[16]. If pag=2;w; pi), then

IIl. CONDITIONS FOR SEPARABILITY ) )
S(A[B)=S(pag) — S(pe)= > Wi[S(pih) —S(pE)].

Theorem 2The operatofoag= —10g,0a5=100,(15® pg) i

—log,pag is positive semidefinite if the quantum bipartite (19
system characterized kg is separable. ) ] .

Let us consider aeparable(or classically correlatecbi- ~ USing the fact that, for a separable state, itheterm gives
partite systemAB which is characterized by the density op- S(A[B)=S(pY)) since A and B are independent, i.en{l
eratorp,g, i.e., a convex combination of product statese, =pPa ©pg’, we obtain

e.g., Ref[13)]):
S(A|B)=2 w;iS(p})=0. (20)
pas=2 Wi(pW@pd)  with D, w=1 and 0=w;<1, '
| I (16) Note that a negative conditional von Neumann entropy
_ _ S(A|B) necessarily implies that an eigenvalue @fig ex-
wherep{) and p{) are states irH{, and Mg, respectively. ceeds 1, but the converse is not true. Thus, weak insepara-
The weightsw; can be viewed as the probability distribution bility (in the sense tha®(A|B)=0 despite the inseparability
of a random variable that is used by both parties in order t®f pag) may be revealed by the spectrummfjg .
prepare their subsystemsandB. Namely, if the subsystem Example.The necessary separability conditipn g<1
A (andB) is prepared in state® (andp{®) when the ran- can be illustrated for two quantum bits, whpRg is an ar-
dom variable takes on valiethe state of the joint system is bitrary mixture of the four Bell statesd*)=2"Y%|00)
given by Eq.(16). Let us define the operator +|11)) and |¥*)=2"Y%]01)+|10)). The application of
this criterion to Werner state@vhich are a special case of
Mag=1a® pg—paB- (170  mixtures of Bell stateswas shown in Refd.7—9]. Note first
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that, whatever the weights in such a mixtupg=1g/2, i.e.,

B is maximally disordered. Using Eq&t) and (17), we ob-

tain pajg=2pag aNd A ag= lag/2— pag, Which results in
paB=lag—2Nag- (21

Thus, in this casea g has all its eigenvalues 1 if and only

if Aag=0. (This is not true in general as the converse of

Lowner’s theorem does not ho)dThis implies thatpae

=<1 is also asufficientseparability condition for any mixture

of Bell states(the proof relies on the fact that,g=0 is a

necessaryand sufficient separability condition for two quan-

tum bits[17]). The same is true for mixtures generalized

Bell states(i.e., those states obtained by applying any local

transformationU ,® Uy to the Bell states
Theorem 3.There exist inseparable bipartite stajess

such that the operatar,g is positive semidefinite; conse-

quently,oag=0 (0r pag=<1) isnota sufficient condition for
separability.

Let us consider a bipartite systeAB characterized by
pag., Which we extend with another syste®iB’ in the state
Parg’ -
operator of the product form

PAA’:BB' = PAB® PA/B - (22)
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an eigenvalue that exceeds 1. Assume alsoAhBt corre-
sponds to two independent systems in a product state, that is,
parer=pa ®pg: . The resulting conditional amplitude op-
erator forA’B’ is thenpa:gr=par®lg:, just like its clas-
sical counterpanp(alb)=p(a) if p(a,b)=p(a)p(b). Obvi-
ously, we then have,/g'<1, as expected sincd’B’ is
separable. According to E7), the eigenvalues quA,‘BB,
are the pairwise products of eigenvaluespgfg with eigen-
values ofpa: g . Therefore, it is easy to find a systeNiB’
with eigenvalues opa/ g small enough so that the product
of any of them with an unclassicai1) eigenvalue opag
results in eigenvalues gfaa/gg: that are all<1. The ex-
tended system is then characterized by, .gg:=0 or
paa e’ <1, while it obviously contains an inseparable com-
ponent AB. Such adilution of inseparability is always
achievable with a systerA’B’ that is large enough and
maximally disorderedi.e., parg'~1a®1g/). Consequently,
the condition thatrag=0 or pag=<1 cannot be sufficient for
separability.

Remark 1.Eq. (27) implies that, if AB and A'B’ are
inseparable systems WI'[blA‘B%‘él and pajgr %1, then the
Inseparability of the joint system is necessarily revealed by
PAA’| ger ¥+ 1.

Remark 2While N pg=0 is a sufficient separability con-
dition for 2Xx2 and 2<3 systemg17], it cannot be con-

We first calculate the conditional amplitude operator of thecluded thato,g=0 or pA‘le is also sufficient in these

joint system AA’ conditional onBB')

l0g>(1aa'®pBe’) ]
(23

PaA’ (BB’ = EXP[100; panr.BEr —

where the reduced density operator descrilB®j is

pee' = TTan[paar:Be 1= PE® pE! - (24

Using the identity INK®Y)=InX®1+1®InY for operators
X,Y>0 as well as its exponential, i.e., expexpY=expX
®1+1®Y), we obtain

exp[109; pas® lars + 14821002 pars:

—lag® 1A ®100Gpp]

=exp[ (109, pap—1a®10g; pp) @ 1arp:
+1a8® (1092 pargr —1ar®10g; pg)]

=exp[log; pag—1a®109; pgl

Paa’|BB' =

- HA® |0g2 pB® 1A’B’

®expllog; pargr —1ar®109; pg!]. (29

Thus, we have
PaA’|BB' = PAB® PA’|B (26)
which parallels the classical relationp(aa’|bb’)

=p(alb)p(a’|b’) if ABandA’B’ are independent bipartite

systems, that is, ip(a,a’;b,b")=p(a,b)p(a’,b’). Conse-
quently, we have
2(paarise’) =2(pag) ®=(parsr) (27

whereX (p) stands for the spectrum of.

cases, as the converse ofviseer’'s theorem does not hold.
Interestingly, we found numerical evidence that only very
few inseparable states of two qubits exist wiijg<1.
These “slightly inseparable” states which have a classical
conditional amplitude operator might have interesting prop-
erties that are worth investigating.

IV. CONCLUSION

Given a bipartite system characterized by a density opera-
tor pag, We define a conditional amplitude operag (a
positive semidefinite Hermitian operator defined on the sup-
port of pag) Which plays the same role as the conditional
probability but in quantum information theory. Specifically,
this operator can be used to define a conditional von Neu-
mann entropyS(A|B) = —Trpagl0g, pagl; in perfect anal-
ogy with Shannon conditional entropy. Quantum counter-
parts of many classical properties also hold: pag is
defined on the support gfag, so thatS(A|B) is well de-
fined, (ii) S(A|B)=S(AB)—S(B), (iii) pag=pa®ls if A
and B are independent(iv) paage'=pa®@parjpr if
PaA ;BB = PAB®PA’B’ , (V) pap transforms as Wa
®UB)PA|B(UA®UB) when performing a local unitary trans-
formationU,®Ug 0N pag, SO that its spectrum and there-
fore S(A|B) are invariant under such transformations on
PaB-

The main nonclassical feature that appears when dealing
with a quantum bipartite system rather than a classical one is
that pag may have a “nonclassical” spectrum, that is, ei-
genvalues opag may exceed 1, which in turn implies that
S(A|B) can be negative. More specifically, we have shown
that pag=<1 for any separable state, which also straightfor-
wardly impliesS(A|B)=0. Therefore, aecessargondition

Now, let us assume th&B is an inseparable system with for separability is that the conditional amplitude operator has

a0 orppg%1. In other words, the operatpi g admits

a “classical” spectrum, or that the conditional entropy is
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non-negativegthe latter is a weaker conditipnThese condi- bipartite separatiofil8], and gives rise to so-called “bound”
tions arenot sufficient in general, since extending an insepa-entanglemen{19]. Analyzing the spectrum of conditional
rable state with a separable one of large dimension may reamplitude operators for such systems might shed new light
sult in adilution of inseparability, that is, it may give rise to on multipartite entanglement.

a state withpag<1. In other words, some inseparable states

exist with pag<1, and certainly some wittS8(A|B)=0

(even if pag%1). This dilution- effect can be f_o.und even in ACKNOWLEDGMENTS
the case of X2 systems. Still, the separability condition
pae<1 happens to be sufficient for ax2 system in a We acknowledge useful discussions with Lev Levitin,

mixture of generalized Bell stat¢er states with maximally Barry Simon, and Armin Uhlmann. This work was supported
disordered subsystems that are characterizedTogatrix (T in part by NSF Grant Nos. PHY 94-12818 and PHY 94-
state$ [10]]. Very recently, a novel type of multipartite en- 20470, and by a grant from DARPA/ARO through the QUIC
tanglement has been discovered which is not revealed in arfgrogram(No. DAAH04-96-1-3086.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. R&Y, 777 [10] R. Horodecki and M. Horodecki, Phys. Rev. 24, 1838

(1935. (1996.
[2] J. S. Bell, Physic$N.Y.) 1, 195(1964; Rev. Mod. Phys38, [11] C. E. Shannon, Bell Syst. Tech. 27, 379 (1948; 27, 623
447 (1966. (1948.
[3] D. P. DiVincenzo, Scienc270, 255 (1995. [12] M. Reed and B. SimonMethods of Modern Mathematical
[4] A. Barencoet al, Phys. Rev. Lett74, 4083(1995. Physics(Academic Press, New York, 1979vol. |, pp. 295—
[5] C. H. Bennett and S. J. Wiesner, Phys. Rev. L&%. 2881 297.
(1992. [13] R. F. Werner, Phys. Rev. A0, 4277(1989.
[6] C. H. Bennettet al, Phys. Rev. Lett70, 1895(1993. [14] R. A. Horn and C. R. Johnsomatrix Analysis(Cambridge
[7] N. J. Cerf and C. Adami, Phys. Rev. Let9, 5194(1997. University Press, Cambridge, 1985

[8] N. J. Cerf and C. Adami, ilNew Developments on Fundamen- [15] N. J. Cerf and C. Adami, Phys. Rev. %5, 3371(1997).
tal Problems in Quantum Physicadited by M. Ferrero and A. [16] A. Wehrl, Rev. Mod. Phys50, 221 (1978.
van der MerwegKluwer Academic, Dordrecht, 1997pp. 77—  [17] N. J. Cerf, C. Adami, and R. M. Gingrich, Phys. Rev.68,

84. 898(1999.

[9] N. J. Cerf and C. Adami, Physica D20, 62 (1998; in Pro- [18] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A.
ceedings of the Fourth Workshop on Physics and Computa-  Smolin, and B. M. Terhal, Phys. Rev. Le&2, 5385(1999.
tion, edited by T. Toffoliet al. (New England Complex Sys- [19] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.
tems Institute, Cambridge, MA, 1986p. 65. Lett. 80, 5239(1998.



