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Quantum extension of conditional probability
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We analyze properties of the quantum conditionalamplitudeoperator@Phys. Rev. Lett.79, 5194 ~1997!#,
which plays a role similar to that of the conditional probability in classical information theory. The spectrum
of the conditional operator that characterizes a quantum bipartite system is shown to be invariant under local
unitary transformations and reflects its inseparability. More specifically, it is proven that the conditional
amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary
condition for separability. A related separability criterion based on the non-negativity of the von Neumann
conditional entropy is also exhibited.@S1050-2947~99!00608-3#

PACS number~s!: 03.67.2a, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

Quantum inseparability, one of the most intriguing pred
tions of quantum mechanics, has remained the subjec
intense activity since its discovery by Einstein, Podols
and Rosen~EPR! @1#. One of its most heralded consequenc
is the violation of the Bell inequalities@2#, which experimen-
tally demonstrates quantum nonlocality. Recently, with
advent of the fields of quantum computation and commu
cation, quantum entanglement and the inseparability it
plies has been exploited as a resource for information tra
mission and processing@3,4#. For example, it has bee
shown that the entanglement between two systems ca
used in order to achieve quantum superdense coding or
portation @5,6#, two quantum communication schemes th
have no classical counterpart. In this context, it was reali
that Shannon’s classical theory of information does not s
fice to characterize these quantum informational proces
Consequently, anextendedtheory that explicitly takes the
quantum phases into account must be constructed in ord
properly incorporate quantum entanglement in
information-theoretic formalism.

In previous work@7–9#, we have attempted to define suc
a quantum information-theoretic formalism relying on t
notions of von Neumann conditional and mutual entropi
two quantities that we define in analogy with their classi
equivalent. In this paper, we focus on the connection
tween quantum nonseparability and the conditional am
tude operator, an operator that plays the same role as
conditional probability when defining a quantum condition
entropy. We start by detailing the mathematical properties
the conditional amplitude operator~support, spectrum, con
nection with von Neumann entropies, etc.!. We then derive a
necessarycondition for separability, based on the condition
von Neumann entropy and the underlying conditional am
tude operator. Namely, the eigenvalues of the latter oper
cannot exceed 1 if the bipartite state is separable, as
conjectured in Refs.@7–9#. This condition is alsosufficient
for a 232 system in a mixture of~generalized! Bell states. It
is not sufficient in general, however, as reflected by the p
sibility of a dilution of entanglement~i.e., the inseparability
of an extended system which contains an inseparable c
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ponent is not guaranteed to be detected by this criterio!.
Since the von Neumann conditional entropy can be nega
only if the conditional amplitude operator admits an eige
value larger than 1, a related—but weaker—separability c
dition is that the conditional entropy is non-negative~see
also Refs.@7–9# and @10#!.

II. CONDITIONAL AMPLITUDE OPERATOR AND
von NEUMANN ENTROPY

In order to establish the notation, let us first sketch
information-theoretic treatment of a bipartite classical s
tem characterized by two random variablesA andB. If A and
B are characterized by the joint probability distributio
p(a,b), one can define the joint Shannon entropy@11#

H~AB!52(
a,b

p~a,b!log2 p~a,b! ~1!

which reflects the randomness of the combined systemAB.
Using the probability ofa conditional onb

p~aub!5
p~a,b!

p~b!
~2!

one then defines the entropy ofA conditional onB

H~AuB!5(
b

p~b!H~AuB5b!

52(
b

p~b!(
a

p~aub!log2 p~aub!

52(
a,b

p~a,b!log2 p~aub! ~3!

which characterizes the~average! remaining uncertainty ofA
whenB is known@11#. Using Eq.~2!, it is easy to prove that
the conditional entropy is the entropy of the combined s
tem reduced by the entropy of the known subsystem, tha
H(AuB)5H(AB)2H(B).
893 ©1999 The American Physical Society
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894 PRA 60N. J. CERF AND C. ADAMI
Now, our goal will be to extend this construction fo
quantum variables characterized by density operators@den-
sity operatorsr are non-negative trace-class~unit-trace! Her-
mitian operators# in order to account for quantum entangl
ment as well as classical correlation. Let us conside
bipartite quantum systemAB, characterized by a density op
erator rAB in the product Hilbert spaceHAB5HA^HB .
Each subsystemA or B is characterized by the reduced de
sity operatorrA5TrB@rAB# or rB5TrA@rAB#, respectively,
where TrA and TrB denote partial traces.

Definition 1.Define the conditional amplitude operator
A conditional onB as @7–9#

rAuB[exp2@ log2 rAB2 log2~1A^ rB!#

5 lim
n˜`

@rAB
1/n~1A^ rB!21/n#n ~4!

which is a positive semidefinite Hermitian operator defin
on the support ofrAB in the joint Hilbert spaceHAB ~see
lemma 1!. We call ‘‘Hermitian’’ the operators satisfying th
property r5r†, while, strictly speaking, this property i
called ‘‘self-adjointness’’ in the mathematical literatur
However, they are equivalent for the bounded operators
consider here. In general, the support of a linear operatorr is
the closure of the set of alluc& of the domain ofr for which
ruc&Þ0. For bounded Hermitian operators, the support or
is simply the complement of the kernel ofr, that is, the
subspace of the domain ofr that is spanned by the eigen
vectors corresponding to nonzero eigenvalues.

The second expression in Eq.~4! relies on the Trotter
product formula ~see, e.g., Ref. @12#!, exp(X1Y)
5limn˜`@exp(X/n)exp(Y/n)#n. ~The Trotter formula is some
times called the Lie product formula for finite-dimension
matrices, but it also holds for unbounded self-adjoint ope
tors @12#.! It explicitly emphasizes that the conditional am
plitude operator is the natural quantum analog of the con
tional probability, Eq.~2!. As rAB and (1A^ rB)21 do not
necessarily commute, the Trotter symmetrization guaran
that rAuB is a normal operator~it commutes with its Hermit-
ian conjugate!, so that its logarithm is well defined. Indee
the exponential characterization ofrAuB immediately implies
its Hermiticity and non-negativity.

Lemma 1.Ker(1A^ rB)#Ker(rAB), where Ker(r) is the
kernel ofr ~the set of alluc& of the domain ofr for which
ruc&50). Consequently, the conditional amplitude opera
rAuB is well defined on the support ofrAB .

We must prove that any eigenvectoruc& of (1A^ rB) with
zero eigenvalue is such thatrABuc&50. First note that any
such eigenvectoruc& can be written as a linear combinatio
of statesuf&, where

uf&5ua& ^ ub& ~5!

and ua& is an arbitrary state vector inHA while ub& is an
eigenvector ofrB with zero eigenvalue, i.e.,rBub&50. Let
us now consider the positive semidefinite operatorr̃[(1A
^ Pb)rAB(1A^ Pb), with Pb5ub&^bu. It is trivial to check
that its partial trace overA vanishes, that is,

TrA@ r̃#5PbrBPb50. ~6!
a
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This results from the general relation

TrA@~1A^ lB!mAB#5lB TrA@mAB#, ~7!

wherelB and mAB are arbitrary operators inHB andHAB ,
respectively. Sincer̃ is positive semidefinite and traceles
we haver̃50. Thus, in particular, the expectation value ofr̃
in the stateuf& vanishes,

^fur̃uf&5^furABuf&50, ~8!

which in turn implies thatrABuf&50 sincerAB is positive
semidefinite. As this is true for each termuf& in the super-
position uc&, we conclude thatrABuc&50.

Remark. Lemma 1 clearly implies tha
Sup(rAB)#Sup(1A^ rB), that is, the support ofrAB is in-
cluded in that of 1A^ rB . Equivalently, Ker(1A
^ rB)ùSup(rAB)5B, so that the subspace spanned by
eigenvectors with zero eigenvalue of1A^ rB is disjoint from
the support ofrAB , and thereforerAuB contains no singulari-
ties in the support ofrAB . Of course, there is a classica
analog for probability distributions which ensures th
p(aub)5p(a,b)/p(b) is well defined if a,b are such that
p(a,b)Þ0. Indeed, ifb is such thatp(b)50, thenp(a,b)
50, ; a. This is obvious sincep(b)5(ap(a,b) and
p(a,b)>0.

Definition 2. The conditional von Neumann entropy
defined using the joint density operatorrAB and the condi-
tional amplitude operatorrAuB as @7–9#

S~AuB!52Tr8@rAB log2 rAuB# ~9!

in close analogy to the classical definition, Eq.~3!. Thus,
S(AuB) corresponds to thequantumentropy ofA conditional
on B, and is mathematically well-defined as a conseque
of lemma 1. The trace in Eq.~9! is restricted to the support o
rAB , i.e., the common eigenvectorsuc& with zero eigenvalue
of rAB and 1A^ rB are omitted in Tr8. This will be under-
stood from now on, and we will omit the prime.~Strictly
speaking, this argument is also used in classical informa
theory to define conditional entropies.!

Theorem 1.The definitions ofrAuB and the conditional
von Neumann entropy imply thatS(AuB)5S(AB)2S(B),
as for Shannon entropies.

First, using Eqs.~4! and ~9!, we have

S~AuB!52Tr@rAB log2 rAB#1Tr@rAB log2~1A^ rB!#,
~10!

where the first term on the right-hand side is clearly equa
S(AB). In order to calculate the second term on the rig
hand side of Eq.~10!, we write

TrA@rAB log2~1A^ rB!#5TrA@rAB~1A^ log2 rB!#

5TrA@rAB# log2 rB

5rB log2 rB , ~11!

where we have made use of Eq.~7!. This implies that the
second term on the right-hand side of Eq.~10! is

TrB@rB log2 rB#52S~B! ~12!
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resulting inS(AuB)5S(AB)2S(B).
Lemma 2.The spectrum of the conditional amplitude o

eratorrAuB is invariant under unitary transformations of th
product formUA^ UB on rAB .

Let us consider the isomorphism

rAB˜rAB8 5~UA^ UB!rAB~UA
†

^ UB
† !. ~13!

We first calculate the partial trace of the joint density ope
tor overA after this transformation, that is,

rB85TrA@rAB8 #5TrA@~UA^ UB!rAB~UA
†

^ UB
† !#

5TrA@~1A^ UB!~UA^ 1B!rAB~UA
†

^ 1B!~1A^ UB
† !#

5UBTrA@~UA^ 1B!rAB~UA
†

^ 1B!#UB
†

5UBrBUB
† , ~14!

where we have used Eq.~7! and the basis invariance of th
trace. This implies that the conditional amplitude opera
transforms as

rAuB˜rAuB8 5~UA^ UB!rAuB~UA
†

^ UB
† ! ~15!

so that its spectrum is conserved underUA^ UB on rAB .
Note that the classical analog of aUA^ UB isomorphism
corresponds to permuting the rows and columns of the j
probability distributionp(a,b), so that the classical counte
part of Eq.~15! is straightforward.

Remark.Lemma 2 suggests that the spectrum ofrAuB is
related to the separability of the staterAB , since separability
~or inseparability! must be conserved under aUA^ UB iso-
morphism. This will be examined in the next section.

Corollary. The conditional von Neumann entropyS(AuB)
is invariant under a unitary transformation of the produ
form UA^ UB . This property results from the definition o
S(AuB), Eq. ~9!, together with Eq.~15!, or can be checked
trivially from theorem 1.

III. CONDITIONS FOR SEPARABILITY

Theorem 2.The operatorsAB[2 log2rAuB5log2(1A^ rB)
2 log2rAB is positive semidefinite if the quantum biparti
system characterized byrAB is separable.

Let us consider aseparable~or classically correlated! bi-
partite systemAB which is characterized by the density o
eratorrAB , i.e., a convex combination of product states~see,
e.g., Ref.@13#!:

rAB5(
i

wi~rA
( i )

^ rB
( i )! with (

i
wi51 and 0<wi<1,

~16!

whererA
( i ) and rB

( i ) are states inHA andHB , respectively.
The weightswi can be viewed as the probability distributio
of a random variable that is used by both parties in orde
prepare their subsystemsA andB. Namely, if the subsystem
A ~andB! is prepared in stater i

(A) ~andr i
(B)) when the ran-

dom variable takes on valuei, the state of the joint system i
given by Eq.~16!. Let us define the operator

lAB[1A^ rB2rAB . ~17!
-

r

t

t

o

It is easy to check thatlAB is positive semi-definite ifrAB is
separable. Indeed, in such a case we have

lAB5(
i

wi@~1A2rA
( i )! ^ rB

( i )#>0 ~18!

since a sum of positive operators is a positive operator.~The
two terms in square brackets are each>0.) Now, we can use
the fact that, ifX andY are two Hermitian operators such th
X>Y.0 ~the notationX>Y means thatX2Y is a positive
semidefinite operator!, then lnX>ln Y, as implied by Lo¨wn-
er’s theorem@14#. ~Note that the converse is not true.! As a
consequence, usingX51A^ rB and Y5rAB , we conclude
that lAB>0 impliessAB>0.

Corollary 1. Any separable bipartite state satisfies t
conditionrAuB<1.

Since we haverAuB5exp2(2sAB), theorem 2 shows in-
deed that no eigenvalue of the conditional amplitude ope
tor exceeds 1 for a separable state, as was conjecture
Refs. @7–9#. This yields a simplenecessary~but not suffi-
cient! condition for separability. The classical analog of th
property is that2 log2 p(aub)>0, ; a,b. The latter inequality
simply results from the fact thatp(aub)5p(a,b)/p(b)<1,
; a,b, asp(b)5(ap(a,b) andp(a,b)>0.

Corollary 2. The conditional von Neumann entrop
S(AuB) is non-negative for a separable bipartite state.

Since we haveS(AuB)5Tr@rAB sAB#, this simply follows
from the fact that Tr@XY#>0 if X,Y>0. Thus, the non-
negativity of the conditional entropy is another~weaker! nec-
essary condition for separability@7–9#. This has also been
shown in general for Renyi entropies in Ref.@10#. Further-
more, the negativity of conditional entropies can be rela
to the violation of entropic Bell inequalities, as shown
Ref. @15#.

Note that corollary 2 can also be obtained by using
concavity of S(AuB) in a convex combination ofrAB’s, a
property related to the strong subadditivity of quantum e
tropies@16#. If rAB5( iwi rAB

( i ) , then

S~AuB!5S~rAB!2S~rB!>(
i

wi@S~rAB
( i ) !2S~rB

( i )!#.

~19!

Using the fact that, for a separable state, theith term gives
S(AuB)5S(rA

( i )) since A and B are independent, i.e.,rAB
( i )

5rA
( i )

^ rB
( i ) , we obtain

S~AuB!>(
i

wiS~rA
( i )!>0. ~20!

Note that a negative conditional von Neumann entro
S(AuB) necessarily implies that an eigenvalue ofrAuB ex-
ceeds 1, but the converse is not true. Thus, weak insep
bility ~in the sense thatS(AuB)>0 despite the inseparability
of rAB) may be revealed by the spectrum ofrAuB .

Example.The necessary separability conditionrAuB<1
can be illustrated for two quantum bits, whenrAB is an ar-
bitrary mixture of the four Bell statesuF6&5221/2(u00&
6u11&) and uC6&5221/2(u01&6u10&). The application of
this criterion to Werner states~which are a special case o
mixtures of Bell states! was shown in Refs.@7–9#. Note first
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896 PRA 60N. J. CERF AND C. ADAMI
that, whatever the weights in such a mixture,rB51B/2, i.e.,
B is maximally disordered. Using Eqs.~4! and ~17!, we ob-
tain rAuB52rAB andlAB51AB/22rAB , which results in

rAuB51AB22lAB . ~21!

Thus, in this case,rAuB has all its eigenvalues<1 if and only
if lAB>0. ~This is not true in general as the converse
Löwner’s theorem does not hold.! This implies thatrAuB
<1 is also asufficientseparability condition for any mixture
of Bell states~the proof relies on the fact thatlAB>0 is a
necessaryandsufficient separability condition for two quan
tum bits @17#!. The same is true for mixtures ofgeneralized
Bell states~i.e., those states obtained by applying any lo
transformationUA^ UB to the Bell states!.

Theorem 3.There exist inseparable bipartite statesrAB
such that the operatorsAB is positive semidefinite; conse
quently,sAB>0 ~or rAuB<1) is not a sufficient condition for
separability.

Let us consider a bipartite systemAB characterized by
rAB , which we extend with another systemA8B8 in the state
rA8B8 . The joint system is then characterized by a dens
operator of the product form

rAA8;BB85rAB^ rA8B8 . ~22!

We first calculate the conditional amplitude operator of
joint system (AA8 conditional onBB8!

rAA8uBB85exp2@ log2 rAA8;BB82 log2~1AA8^ rBB8!#,
~23!

where the reduced density operator describingBB8 is

rBB85TrAA8@rAA8;BB8#5rB^ rB8 . ~24!

Using the identity ln(X^Y)5ln X^111^ln Y for operators
X,Y.0 as well as its exponential, i.e., expX^expY5exp(X
^111^Y), we obtain

rAA8uBB85exp2@ log2 rAB^ 1A8B811AB^ log2 rA8B8

21A^ log2 rB^ 1A8B821AB^ 1A8^ log2rB8#

5exp2@~ log2 rAB21A^ log2 rB! ^ 1A8B8

11AB^ ~ log2 rA8B821A8^ log2 rB8!#

5exp2@ log2 rAB21A^ log2 rB#

^ exp2@ log2 rA8B821A8^ log2 rB8#. ~25!

Thus, we have

rAA8uBB85rAuB^ rA8uB8 ~26!

which parallels the classical relationp(aa8ubb8)
5p(aub)p(a8ub8) if AB andA8B8 are independent bipartit
systems, that is, ifp(a,a8;b,b8)5p(a,b)p(a8,b8). Conse-
quently, we have

S~rAA8uBB8!5S~rAuB! ^ S~rA8uB8! ~27!

whereS(r) stands for the spectrum ofr.
Now, let us assume thatAB is an inseparable system wit

sAB>” 0 or rAuB<” 1. In other words, the operatorrAuB admits
f

l

y

e

an eigenvalue that exceeds 1. Assume also thatA8B8 corre-
sponds to two independent systems in a product state, th
rA8B85rA8^ rB8 . The resulting conditional amplitude op
erator forA8B8 is thenrA8uB85rA8^ 1B8 , just like its clas-
sical counterpartp(aub)5p(a) if p(a,b)5p(a)p(b). Obvi-
ously, we then haverA8uB8<1, as expected sinceA8B8 is
separable. According to Eq.~27!, the eigenvalues ofrAA8uBB8
are the pairwise products of eigenvalues ofrAuB with eigen-
values ofrA8uB8 . Therefore, it is easy to find a systemA8B8
with eigenvalues ofrA8uB8 small enough so that the produ
of any of them with an unclassical (.1) eigenvalue ofrAuB
results in eigenvalues ofrAA8uBB8 that are all<1. The ex-
tended system is then characterized bysAA8;BB8>0 or
rAA8uBB8<1, while it obviously contains an inseparable com
ponent AB. Such a dilution of inseparability is always
achievable with a systemA8B8 that is large enough and
maximally disordered~i.e., rA8B8;1A8^ 1B8). Consequently,
the condition thatsAB>0 or rAuB<1 cannot be sufficient for
separability.

Remark 1.Eq. ~27! implies that, if AB and A8B8 are
inseparable systems withrAuB<” 1 and rA8uB8<” 1, then the
inseparability of the joint system is necessarily revealed
rAA8uBB8<” 1.

Remark 2.While lAB>0 is a sufficient separability con
dition for 232 and 233 systems@17#, it cannot be con-
cluded thatsAB>0 or rAuB<1 is also sufficient in these
cases, as the converse of Lo¨wner’s theorem does not hold
Interestingly, we found numerical evidence that only ve
few inseparable states of two qubits exist withrAuB<1.
These ‘‘slightly inseparable’’ states which have a classi
conditional amplitude operator might have interesting pro
erties that are worth investigating.

IV. CONCLUSION

Given a bipartite system characterized by a density op
tor rAB , we define a conditional amplitude operatorrAuB ~a
positive semidefinite Hermitian operator defined on the s
port of rAB) which plays the same role as the condition
probability but in quantum information theory. Specificall
this operator can be used to define a conditional von N
mann entropy,S(AuB)52Tr@rAB log2 rAuB#, in perfect anal-
ogy with Shannon conditional entropy. Quantum count
parts of many classical properties also hold:~i! rAuB is
defined on the support ofrAB , so thatS(AuB) is well de-
fined, ~ii ! S(AuB)5S(AB)2S(B), ~iii ! rAuB5rA^ 1B if A
and B are independent,~iv! rAA8uBB85rAuB^ rA8uB8 if
rAA8;BB85rAB^ rA8B8 , ~v! rAuB transforms as (UA

^ UB)rAuB(UA
†

^ UB
†) when performing a local unitary trans

formation UA^ UB on rAB , so that its spectrum and there
fore S(AuB) are invariant under such transformations
rAB .

The main nonclassical feature that appears when dea
with a quantum bipartite system rather than a classical on
that rAuB may have a ‘‘nonclassical’’ spectrum, that is, e
genvalues ofrAuB may exceed 1, which in turn implies tha
S(AuB) can be negative. More specifically, we have sho
that rAB<1 for any separable state, which also straightf
wardly impliesS(AuB)>0. Therefore, anecessarycondition
for separability is that the conditional amplitude operator h
a ‘‘classical’’ spectrum, or that the conditional entropy
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non-negative~the latter is a weaker condition!. These condi-
tions arenot sufficient in general, since extending an insep
rable state with a separable one of large dimension may
sult in adilution of inseparability, that is, it may give rise t
a state withrAuB<1. In other words, some inseparable sta
exist with rAuB<1, and certainly some withS(AuB)>0
~even if rAuB<” 1). This dilution effect can be found even i
the case of 232 systems. Still, the separability conditio
rAuB<1 happens to be sufficient for a 232 system in a
mixture of generalized Bell states@or states with maximally
disordered subsystems that are characterized by aT matrix ~T
states! @10##. Very recently, a novel type of multipartite en
tanglement has been discovered which is not revealed in
n-
.

ut
-

-
e-

s

ny

bipartite separation@18#, and gives rise to so-called ‘‘bound’
entanglement@19#. Analyzing the spectrum of conditiona
amplitude operators for such systems might shed new l
on multipartite entanglement.
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