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We discuss the capacity of quantum channels for information transmission and storage. Quantum channels
have dual uses: they can be used to transmitknownquantum states which code for classical information, and
they can be used in a purely quantum manner, for transmitting or storing quantum entanglement. We propose
here a definition of thevon Neumanncapacity of quantum channels, which is a quantum-mechanicalextension
of the Shannon capacity and reverts to it in the classical limit. As such, the von Neumann capacity assumes the
role of a classical or quantum capacity depending on the usage of the channel. In analogy to the classical
construction, this capacity is defined as the maximumvon Neumann mutual entropyprocessed by the channel,
a measure which reduces to the capacity for classical information transmission through quantum channels~the
‘‘Kholevo capacity’’! when known quantum states are sent. The quantum mutual entropy fulfills all basic
requirements for a measure of information, and observes quantum data-processing inequalities. We also derive
a quantum Fano inequality relating thequantum lossof the channel to the fidelity of the quantum code. The
quantities introduced are calculated explicitly for the quantum depolarizing channel. The von Neumann capac-
ity is interpreted within the context of superdense coding, and an extended Hamming bound is derived that is
consistent with that capacity.@S1050-2947~97!04511-3#

PACS number~s!: 03.65.Bz, 89.70.1c
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I. INTRODUCTION

The problem of transmission and storage of quant
states has received a considerable amount of attention
cently, owing to the flurry of activity in the field of quantum
computation@1# sparked by Shor’s discovery of a quantu
algorithm for factoring@2#. In anticipation of physical real-
izations of such computers~which still face major conceptua
challenges!, it is necessary to extend to the quantum regi
the main results of Shannon’s information theory@3#, which
provides limits on how well information can be compress
transmitted, and preserved. In this spirit, the quantum ana
of the noiseless coding theorem was obtained recently
Schumacher@4#. However, noisy quantum channels are le
well understood, mainly because quantum noise is of a v
different nature than classical noise, and the notion
‘‘quantum information’’ is still under discussion. Yet, impo
tant results have been obtained concerning the correctio
errors induced by the decoherence of quantum bits~qubits!
via suitable quantum codes. These error-correcting codes@5–
12# work on the principle that quantum information can
encoded in blocks of qubits~codewords! such that the deco
herence of any qubit can be corrected by an appropr
code, much like the classical error-correcting codes. Th
fore, it is expected that a generalization of Shannon’s fun
mental theorem to the quantum regime should exist, and
forts toward such a proof have appeared recently@13–15#.
The capacity for the transmission ofclassical information
through quantum channels was recently obtained by Ha
ladenet al. @16# for the transmission of pure states, and
Kholevo @17# for the general case of mixed states.

When discussing quantum channels, it is important
keep in mind that they can be used in two very differe
modes. On the one hand, one may be interested in the ca
561050-2947/97/56~5!/3470~14!/$10.00
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ity of a channel to transmit or else store, anunknownquan-
tum state in the presence of quantum noise. This mod
unlike any use of a channel we are accustomed to in class
theory as, strictly speaking, classical information is not tra
mitted in such a use~no measurement is involved!. Rather,
such a capacity appears to be a measure of how muchen-
tanglementcan be transmitted~or maintained! in the pres-
ence of noise induced by the interaction of the quantum s
with a ‘‘depolarizing’’ environment. On the other hand,
quantum channel can be used for the transmission ofknown
quantum states~classical information!, and the resulting ca-
pacity~i.e., the classical information transmission capacity
the quantum channel! represents the usual bound on the ra
of arbitrarily accurate information transmission. In this p
per, we propose a definition for thevon Neumanncapacity of
a quantum channel, which encompasses the capacity for
cessing quantum as well as classical information. This d
nition is based on a quantum-mechanical extension of
usual Shannon mutual entropy to a von Neumann mu
entropy, which measures quantum as well as classical co
lations. Still, a natural separation of the von Neumann cap
ity into classical and purely quantum pieces does not app
to be straightforward. This reflects the difficulty in separati
classical correlation from quantum entanglement~the ‘‘quan-
tum separability’’ problem, see, e.g., Ref.@18# and references
therein!. It may be that there is no unambiguous way
separate classical from purely quantum capacity for all ch
nels and all noise models. The von Neumann capacity
propose, as it does not involve such a separation, confo
to a number of ‘‘axioms’’ for such a measure among whi
are positivity, subadditivity, concavity~convexity! in the in-
put ~output!, and dual data-processing inequalities. We a
show that the von Neumann capacity naturally reverts to
capacity for classical information transmission through no
3470 © 1997 The American Physical Society
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56 3471VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS
quantum channels of Kholevo@17# ~the Kholevo capacity! if
the unknown states are measured just before transmis
or, equivalently, if the quantum states areprepared. In such
a use, thus, the purely quantum piece of the von Neum
capacity vanishes. We stop short of proving that the v
Neumann capacity can be achieved by quantum coding,
we do not prove the quantum equivalent of Shannon’s no
coding theorem for the total capacity. We do, however, p
vide an example where the von Neumann capacity app
achievable: the case of noisy superdense coding.

In Sec. II we recapitulate the treatment of theclassical
communication channel in a somewhat novel manner, by
sisting on the deterministic nature of classical physics w
respect to the treatment of information. This treatment pa
the way for a formal discussion of quantum channels alo
the lines of Schumacher@13# in Sec. III, which results in a
proposal for the definition of a von Neumann capacity
transmission of entanglement and/or correlation that para
the classical construction. We also prove a number of pr
erties of such a measure, such as subadditivity, concavit
convexity, forward and/or backward quantum da
processing inequalities, and derive a quantum Fano ineq
ity relating the loss of entanglement in the channel to
fidelity of the code used to protect the quantum state. T
proof uses an inequality of the Fano-type obtained rece
by Schumacher@13#. In Sec. IV we demonstrate that the vo
Neumann capacity reduces to the recently obtained Kho
capacity@17# if the quantum states areknown, i.e., measured
and kept in memory, before sending them on. In Sec. V
then apply these results directly to a specific example,
quantum depolarizing channel@19#. This generic example
allows a direct calculation of all quantities involved. Spec
cally, we calculate the entanglement and/or correlation p
cessed by the channel as a function of the entropy of
input and the probability of error of the channel. We al
show that this capacity reverts to the well-known capac
for classical information transmission in a depolarizing ch
nel if known quantum states are transmitted through
channel. In Sec. VI, finally, we interpret the von Neuma
capacity in the context of superdense coding, and deriv
quantum Hamming bound consistent with it.

II. CLASSICAL CHANNELS

The information theory of classical channels is w
known since Shannon’s seminal work on the matter@3#. In
this section, rather than deriving any new results, we exp
the information theory of classical channels in the light
the physicsof information, in preparation of the quantum
treatment of channels that follows. Physicists are used
classical laws of physics that aredeterministic, and therefore
do not consider noise to be an intrinsic property of chann
In other words, randomness, or a stochastic component,
not existper se, but is a result of incomplete measureme
Thus, for a physicist there are no noisy channels, only
completely monitored ones. As an example, consider an
formation transmission channel where the sender’s infor
tion is the face of a coin before it is flipped, and th
receiver’s symbol is the face of the coin after it is flippe
Information theory would classify this as a useless chan
but for a physicist it is just a question of knowing the initi
on,
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conditions of the channeland the environmentwell enough.
From this, he can calculate the trajectory of the coin, and,
examining the face at the received side, infer the informat
sent by the sender. Classical physics, therefore, demands
all conditional probability distributions can be made to b
peaked, if the environment, enlarged enough to cover
interacting systems, is monitored. In other words,pi u j51 or
0 for all i , j : if the outcomej is known, i can be inferred
with certainty. As a consequence,all conditional entropies
can be made to vanish for a closed system.

According to this principle, let us then construct the cla
sical channel. Along with the ensemble of source symbolX
~symbolsx1 ,...,xN appearing with probabilitiesp1 ,...,pN!,
imagine an ensemble of received symbolsY. The usual noisy
channel is represented by the diagram on the left in Fig
the conditional entropyH(XuY) represents the lossL in the
channel, i.e., the uncertainty of inferrringX from Y, whereas
H(YuX) stands for noiseN in the output, which is unrelated
to the error rate of the channel. A channel for whichL50 is
called a losslesschannel ~no transmission errors occur!,
whereasN50 characterizes adeterministicchannel~the in-
put unambiguously determines the output!. On the right-hand
side in Fig. 1, we extend the channel to include the envir
ment. All conditional entropies are zero, and the noise a
loss are simply due to correlations of the source or recei
ensembles with an environment, i.e.,L5H(X:EuY) and
N5H(Y:EuX). The capacity of the classical channel is o
tained by maximizing the mutual entropy between sou
and received symbols@the informationI 5H(X:Y) processed
by the channel# over all input distributions:

C5max
p~x!

I . ~2.1!

If the output of the channelY is subjected toanotherchannel
~resulting in the outputZ, say!, it can be shown that the
information processed by the combined channel,H(X:Z),
cannot possibly be larger than the information processe
the first leg, H(X:Y). In other words, any subsequent pr
cessing of the output cannot possibly increase the transm
information. This is expressed in the data-processing
equality ~see, e.g., Ref.@20#!

H~X:Z!<H~X:Y!<H~X!. ~2.2!

By the same token, areversedata-processing inequality ca
be proven, which implies that the information process

FIG. 1. Entropy Venn diagram for the classical channelXY, and
its ‘‘physical’’ extension including the environment.
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3472 56C. ADAMI AND N. J. CERF
in the secondleg of the channel,H(Y:Z), must exceed the
information processed by the total channel,H(X:Z):

H~X:Z!<H~Y:Z!<H~Z!. ~2.3!

This inequality together with Eq.~2.2! reflects microscopic
time-reversal invariance: any channel used in a forward m
ner can be used in a backward manner.

As far as coding is concerned, the troublesome quantit
the lossL, while the noiseN is unimportant. Indeed, for a
message of lengthn, the typical number of input sequence
for every output sequence is 2nL, making decoding impos
sible. The principle of error correction is to embed the m
sages intocodewords, that are chosen in such a way that t
conditional entropy of the ensemble of codewordsvanishes,
i.e., on the level of message transmission the channel is l
less. Not surprisingly, there is then a relationship betw
the channel lossL and the probability of errorpc of a code c
that is composed ofs codewords:

L<H2@pc#1pclog2~s21!, ~2.4!

whereH2@p# is the dyadic Shannon entropy

H2@p#5H2@12p#52p log2 p2~12p!log2~12p!.
~2.5!

Equation~2.4! is the Fano inequality~see, e.g., Ref.@20#!,
which implies, for example, that the loss vanishes if t
probability of error of the code vanishes. Note that the no
of the channel itself in general is not zero in this situatio
Let us now turn to quantum channels.

III. QUANTUM CHANNELS

A. Information theory of entanglement

Quantum channels have properties fundamentally dif
ent from the classical channel just described, owing to
superposition principle of quantum mechanics and the n
cloning theorem that ensues@21#. First and foremost, the
input quantum state, after interaction with an environmen
lost, having become the output state. Any attempt at copy
the quantum state before decoherence will result in a cla
cal channel, as we will see later. Thus a joint probability
input and output symbols does not exist for quantum ch
nels. However, this is not essential, as the quantity of inte
in quantum communication isnot the state of an isolated
quantum system~a product state!, but the degree of en
tanglement between one quantum system and another
rametrized by their mutual entropy as shown below. A sin
nonentangled pure quantum system~such as an isolated spin
1
2 state! carries no entropy, and is of no interest for quantu
communication as it can be arbitrarily recreated at any tim
Entangled composite systems~such as Bell states!, on the
other hand, are interesting because the entanglement ca
used for communication. Let us very briefly recapitulate
quantum information theory of entanglement@22–25#.

For a composite quantum systemAB, we can write rela-
tions between von Neumann entropies that precisely par
those written by Shannon for classical entropies. Spe
cally, we can define the conditional entropy ofA ~conditional
on the knowledge ofB!,
n-
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S~AuB!5S~AB!2S~B!, ~3.1!

via a suitable definition of aconditional amplitude matrix
rAuB . The latter matrix can have eigenvalues larger th
unity, revealing its nonclassical nature and allowing con
tional quantum entropies to benegative@22#. Similarly, we
can define amutual amplitude matrixrA:B , giving rise to a
mutual von Neumann entropy

S~A:B!5S~A!1S~B!2S~AB!, ~3.2!

which exceeds the usual bound obtained for mutual Shan
entropies by a factor of two:

S~A:B!<2 min@S~A!,S~B!#. ~3.3!

The latter equation demonstrates that quantum systems
be more strongly correlated than classical ones: they ca
supercorrelated. These relations can be conveniently su
marized by entropy Venn diagrams@Fig. 2~a!#, as is usual in
classical information theory. The extension to the quant
regime implies that negative numbers can appear which
classically forbidden.1 As an example, we show in Fig. 2~b!
the quantum entropies of the Bell states~which are fully
entangled states of two qubits!. These notions can be ex
tended to multipartite systems, and will be used through
the paper.

The degree of entanglement of a bipartite pure quan
state is customarily indicated by the marginal entropy of o
of its parts, i.e., the von Neumann entropy of the dens
matrix obtained by tracing the joint density matrix over t
degrees of freedom of the other part~the entropy of entangle
ment, see Ref.@10#!. However, since the parts of an en
tangled system do not possess a state on their own, it t
up to twice the marginal entropy of one of the parts
specify ~in bits! the state of entanglement. For example,
takes up to two bits to specify the entanglement between
qubits ~there are four Bell-basis states!. Thus we propose to
measure the entanglement of pure states by the mutua
tropy between the two parts, which takes values betwee
~for nonentangled systems! and 2S ~for entangled systems o
marginal entropyS each!. In order to avoid confusion with

1In classical entropy Venn diagrams, negative numbers can o
appear in the mutual entropy of three or more systems.

FIG. 2. ~a! Entropy Venn diagram for a bipartite entangle
quantum systemAB, depictingS(AB) ~total area!, marginal entro-
pies @S(A) or S(B)#, conditional@S(AuB) or S(BuA)# and mutual
@S(A:B)# entropies.~b! Entropy diagram for a fully entangled Be
state.
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56 3473VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS
the previously defined entropy of entanglement, we prop
to call this quantity themutual entanglement~or simply the
von Neumann mutual entropy!, and denote it by the symbo
I Q :

I Q5S~A:B!. ~3.4!

For pure entangled states, the mutual entanglementI Q is just
twice the entropy of entanglement, demonstrating that ei
is a good measure for thedegreeof entanglement, but no
necessarily for the absolute amount. Estimating the entan
ment ofmixedstates, on the other hand, is more complicat
and no satisfying definition is available~see Ref.@10# for the
most established ones!. The quantum mutual entropy fo
mixed states doesnot represent pure quantum entangleme
but rather classicaland quantum correlation that is difficul
to separate consistently. For reasons that become more
in the following, we believe that the mutual entanglementI Q
between two systems is the most straightforward genera
tion of the mutual informationI of classical information
theory, and will serve as the vehicle to define a quant
~including classical! von Neumanncapacity for quantum
channels.

B. Explicit model

In constructing a general quantum channel formally,
follow Schumacher@13#. A quantum mixed stateQ suffers
entanglement with an environmentE so as to lead to a new
mixed stateQ8 with possibly increased or decreased entro
In order to monitor the entanglement transmission, the ini
mixed stateQ is purified by considering its entanglemen
with a referencesystemR,

uRQ&5(
i

Api ur i ,i &, ~3.5!

whereur i& are theR eigenstates. Indeed, this can always
achieved via a Schmidt decomposition. Then the mixed s
Q is simply obtained as a partial trace of the pure stateQR:

rQ5TrR@rQR#5(
i

pi u i &^ i u. ~3.6!

Also, the interaction with the environment,

QRE ——→
UQE^ 1R

Q8R8E8, ~3.7!

now can be viewed as a channel to transmit the entanglem
betweenQR to the systemQ8R8. Here,UQE is the unitary

FIG. 3. Quantum network representation of a noisy quant
channel.R purifies the mixed stateQ; the corresponding entangle
ment is indicated by a dashed line.
e
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operation entanglingQR with the environmentE, which is
initially in a pure state. This construction is summarized
Fig. 3.

The evolution of entropies in such a channel is depicted
Fig. 4, where the entropy of the reference state@which is the
same as the entropy ofQ beforeentanglement,S(Q)5S(R)#
is denoted byS,

S52(
i

pi log2 pi , ~3.8!

while the entropy of the quantum stateQ8 after entanglemen
S(Q8)5S8, and the entropy of the environmentS(E)5Se .
The latter was termed ‘‘exchange entropy’’ by Schumac
@13#.

Note that, as for any tripartite pure state, the entropy d
gram of the entangled stateQ8R8E8 is uniquely fixed by
three parameters, the marginal entropies ofQ8, R8, andE8
respectively, i.e., the numbersS, S8, and Se . Also, in any
pure entangled diagram involving three systems, the tern
mutual entropy @the center of the ternary diagram
S(Q8:R8:E8)# is always zero@23–25#.

To make contact with the classical channel of Sec. II,
us define thequantum loss LQ :2

LQ5S~R8:E8uQ8!5Se1S2S8. ~3.9!

This represents the difference between the entropy acqu
by the environment,Se , and the entropy change ofQ, that
is, (S82S), and thus stands for the loss of entanglemen
the quantum transmission. It plays a central role in er
correction as shown below and in Sec. III D. The entro
diagram in terms ofS, Se , and LQ is depicted in Fig. 5.
From this diagram we can immediately read off inequalit
relating the lossLQ and the entropiesS andSe by consider-
ing triangle inequalities for quantum entropies@26#, namely,

0<LQ<2S, ~3.10!

2Here we follow the nomenclature that ‘‘quantum’’ always mea
‘‘quantum including classical,’’ rather than ‘‘purely quantum,’’ i
the same sense as the von Neumann entropy is not just a p
quantum entropy. This nomenclature is motivated by the difficu
to separate classical from quantum entanglement.

FIG. 4. Unitary transformation entangling the pure environm
uE& with the pure systemuQR&. The reference systemR is not
touched by this transformation, which implies that no entropy c
be exchanged across the double solid lines in the diagram on
left.
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3474 56C. ADAMI AND N. J. CERF
0<LQ<2Se , ~3.11!

which can be combined to

0<LQ<2 min~S,Se!. ~3.12!

We find therefore that the initial mutual entanglement 2S is
split, through the action of the environment, into a pie
shared with Q8 @i.e., S(Q8:R8)52S2LQ#, and a piece
shared with the environment~the remaining lossLQ! accord-
ing to the relation

S~R8:Q8!1S~R8:E8uQ8!5S~R8:E8Q8!5S~R:Q!,

~3.13!

or, equivalently,

I Q1LQ52S. ~3.14!

Finally, we are ready to propose a definition for the v
Neumann capacity. Again, in analogy with the classical c
struction, the von Neumann capacityCQ would be the mu-
tual entanglement processed by the channel~mutual von
Neumann entropy!, maximized over the density matrix of th
input channel, i.e.,

CQ5max
rQ

I Q , ~3.15!

where I Q5S(R8:Q8)5S(R:Q8) is the entanglement pro
cessed by the channel,

I Q52S2LQ . ~3.16!

From the bound~3.10!, we find that the entanglement pro
cessed by the channel is non-negative, and bounded
above by the initial entanglement 2S. An interesting situa-
tion arises when the entanglement processed by the cha
saturates this upper bound. This is the case of thelossless
quantum channel, whereLQ50.

It was shown recently by Schumacher and Nielsen@14#
that an error-correction procedure meant to restore the in

FIG. 5. Entropy diagram summarizing the entropy relations
tween the entangled systemsQ8, R8, andE8.
-

m

nel

al

quantum state~and thus the initial entanglement 2S! can
only be successful whenLQ50. From Fig. 5 we can see tha
when LQ50, Q8 is entangledseparatelywith the reference
state and the environment, leading to the diagram rep
sented in Fig. 6. For this reason alone it is possible to reco
the initial entanglement betweenQ and R via interaction
with an ancillaA ~that can be viewed as asecondenviron-
ment in a chained channel!. The latter effects a transfer of th
entanglement betweeQ8 andE8 to entanglement betweenE8
andA. This operation can be viewed as anincompletemea-
surement ofQ8 by A which only measures the environme
E8, while keeping intact the entanglement ofQ8 with R. It
was shown in@14# that LQ50 is in fact a necessaryand
sufficient condition for this to be feasible. Such a transfer
entanglement corresponds to the quantum equivalent of e
correction, and will be discussed with reference to the qu
tum Fano inequality in Sec. III D.

C. Axioms for quantum information

In the following, we present a number of reasonableaxi-
oms for a quantum mutual information, and show thatI Q
defined above has the required properties. These are:~i! non-
negativity, ~ii ! concavity in rQ ~for a fixed channel!, ~iii !
convexity inrQ8 ~for fixed rQ!, and~iv! subadditivity. These
requirements for a quantum mutual entropy~entanglement
and/or correlation processed by the channel! are very natu-
ral, and reflect the kind of requirements that are put on c
sical channels. The non-negativity ofI Q is simply a conse-
quence of the subadditivity of quantum entropies.~Just like
the mutual Shannon entropy, the mutual quantum entrop
a non-negative quantity!.

Concavity of quantum information inrQ @axiom ~ii !# re-
flects that the information processed by a channel with
mixture of quantum statesrQ5( iwirQ

i ~with ( iwi51! as
input should be larger than the average information p
cessed by channels that each have staterQ

i as input, i.e.,

I Q~rQ!>(
i

wi I Q~rQ
i !. ~3.17!

This is the quantum analog of the concavity of the Shann
mutual informationH(X:Y) in the input probability dis-

- FIG. 6. Entanglement betweenQ8, R8, andE8 in the lossless
quantum channel.
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56 3475VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS
tribution p(x) for a fixed channel, i.e., fixedp(yux). The
proof uses the fact that, if the quantum operation achieved
the channel is fixed, we have

rQE8 5UQES (
i

wir
i
^ u0&^0u DUQE

†

5(
i

wiUQE(r i
^ u0&^0u)UQE

†

5(
i

wir8QE
i . ~3.18!

Therefore, using

I Q~rQ!5S~R:Q8!5S~R!1S~Q8!2S~RQ8!

5S~Q8E8!1S~Q8!2S~E8!

5S~Q8uE8!1S~Q8!, ~3.19!

the concavity of the quantum information in the input resu
from the concavity ofS(Q8uE8) in rQE8 and from the con-
cavity of S(Q8) in rQ8 @27#.

Convexity of the processed information inrQ8 @axiom
~iii !# states that, if the superoperator that takes a fixedrQ into
rQ8 is such that

rQ8 5(
j

wjr8Q
j , ~3.20!

then

I Q~rQ→rQ8 !<(
j

wj I Q~rQ→r8Q
j !. ~3.21!

Thus the processed information of a channel that is a su
position of channels~each used with probabilitywj ! that re-
sult in rQ8 cannot exceed the average of the information
each channel. There is a similar property for classical ch
nels: the mutual informationH(X:Y) is a convex function of
p(yux) for a fixed input distributionp(x). The proof follows
from noting that, if the input is fixed, we have

rRQ8 5(
j

wjr8RQ
j . ~3.22!

Then, expressing the quantum information as

I Q~rQ→rQ8 !5S~R:Q8!5S~R!2S~RuQ8!, ~3.23!

and noting thatS(R) is constant, the concavity ofS(RuQ8)
in rRQ8 implies the convexity of the quantum information
the output.

Finally, the subadditivity of quantum information@axiom
~iv!# is a condition which ensures that the information p
cessed by a joint channel with inputrQ1Q2

is smaller than or
equal to the information processed in parallel by tw
channels with input rQ1

5TrQ2
(rQ1Q2

) and rQ2

5TrQ1
(rQ1Q2

), respectively. Thus, ifR is the reference sys

tem purifying the joint inputQ1Q2 , Q1 is purified byRQ2
while Q2 is purified byRQ1 ~see Fig. 7!.
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The subadditivity of von Neumann mutual entropies f
such a channel can be written as

S~R:Q18Q28!<S~RQ2 :Q18!1S~RQ1 :Q28!, ~3.24!

which can be read as

I 12<I 11I 2 , ~3.25!

with the corresponding identifications, and mirrors the cl
sical inequality

H~X1X2 :Y1Y2!<H~X1 :Y1!1H~X2 :Y2! ~3.26!

for two independent channels takingX1→Y1 andX2→Y2 .
To prove inequality~3.24!, we rewrite the quantum infor-

mation of each channel using Eq.~3.19! and the fact thatE1
andE2 are initially in aproductstate. Equation~3.24! then
becomes

S~Q18Q28uE18E28!1S~Q18Q28!<S~Q18uE18!1S~Q18!1S~Q28uE28!

1S~Q28!. ~3.27!

Subadditivity ofconditionalentropies, i.e.,

~3.28!

together with the subadditivity property of ordinary~mar-
ginal! von Neumann entropies, proves Eq.~3.24!. The terms
that are ignored in the above inequality are positive due
strong subadditivity. This property of subadditivity of th
information processed by quantum channels can be stra
forwardly extended ton channels.

An alternative definition for the quantum information pr
cessed by a channel, called ‘‘coherent information,’’ w
proposed by Schumacher and Nielsen@14# and Lloyd @15#.

FIG. 7. Parallel channels as quantum network, in the deriva
of the subadditivity of mutual von Neumann entropies. The e
tanglement betweenQ1 , Q2 , and the reference is indicated by
dashed line.
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3476 56C. ADAMI AND N. J. CERF
This quantityI e5S(R8uE8)5S2LQ is not positive@axiom
~i!#, and violates axioms~ii ! and ~iv!, which leads to avio-
lation of the reverse data-processing inequality, while
forward one is respected@14# ~as opposed to the von Neu
mann mutual entropy which observes both, see below!. The
coherent information attempts to capture the purely quan
piece of the processed information while separating out
classical components. This separation appears to be a
origin of the shortcomings mentioned above.

D. Inequalities for quantum channels

From the properties of the mutual entanglementI Q de-
rived above, we can prove data-processing inequalities foI Q
which reflect probability conservation, as well as the Fa
inequality which relates the loss of a channel to the fide
of a code.

1. Data processing

Assume that starting with the entangled stateQR, en-
tanglement with environmentE1 produces the mixed stat
Q1 . This output is used again as an input to another chan
this time entanglingQ1 with E2 to obtainQ2 ~see Fig. 8!.

The quantum analog of the~forward! data-processing in
equality~2.2! that holds for mutual informations in classic
channels involves the mutual entanglementsS(R:Q1) and
S(R:Q2), and asserts that the mutual entanglement betw
reference and output cannot be increased by any further
cessing:

S~R:Q2!<S~R:Q1!<2S. ~3.29!

That such an inequality should hold is almost obvious fr
the definition of the mutual entanglement, but a short proo
given below. This proof essentially follows Ref.@14#, and is
based on the property of strong subadditivity applied to
systemRE1E2 :

S~R:E2uE1!5S~R:E1E2!2S~R:E1!>0. ~3.30!

For the channelQ→Q1 , we see easily~see Fig. 5! that

S~R:E1!5S~R:Q1E1!2S~R:Q1uE1!52S2S~R:Q1!.

~3.31!

Similarly, consideringE1E2 as the environment for the ove
all channelQ→Q2 , we find

S~R:E1E2!52S2S~R:Q2!. ~3.32!

FIG. 8. Chaining of channels in the derivation of the da
processing inequality. The outputQ1 is subjected to a second cha
nel by entangling with an environmentE2 independent fromE1 , to
give outputQ2 .
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Plugging Eqs.~3.31! and ~3.32! into the positivity condition
~3.30!, we obtain the quantum data processing inequal
Eq. ~3.29!, as claimed.

The reversequantum data-processing inequality impli
that the entanglement processed by the second leg of
channel,S(RE1 :Q2), must be larger than the entangleme
processed by the entire channel:

S~R:Q2!<S~RE1 :Q2!<S~RE1E2 :Q2!52S~Q2!.
~3.33!

The proof relies on strong subadditivity applied toQ2E1E2 :

S~Q2 :E1uE2!5S~Q2 :E1E2!2S~Q2 :E2!>0 . ~3.34!

For treating the channelQ1→Q2 ~i.e., the second leg!, we
have to purify the input state ofQ1 , that is considerRE1 as
the reference. Thus we have

S~Q2 :RE1!52S~Q2!2S~Q2 :E2!. ~3.35!

For the overall channelQ→Q2 , we have

S~Q2 :R!52S~Q2!2S~Q2 :E1E2!. ~3.36!

These two last equations, together with Eq.~3.34!, result in
the reverse quantum data-processing inequality Eq.~3.33!.

From Eq.~3.29! we immediately obtain an inequality re
lating the loss of entanglement after the first stageL1 ~we
drop the indexQ that indicated the quantum nature of th
loss in this discussion!, with the overall lossL12:

0<L1<L12. ~3.37!

Physically, this implies that the lossL12 cannot decrease
from simply chaining channels, just as in the classical ca
As emphasized earlier, the lossL1 corresponds to the shar
of initial entanglement that is irretrievably lost to the env
ronment. Indeed, if the environment cannot be acces
~which is implicit by calling it an environment! the decoher-
ence induced by the channel cannot be reversed. On
L150 can this be achieved@14#. In view of this fact, it is
natural to seek for a quantum equivalent to the classical F
inequality ~2.4!.

2. Fano inequality

To investigate this issue, let us consider the chained ch
nel above, where error correction has taken place via tran
of entanglement with a second environment. Let us also
call the definition of theentanglement fidelityof Schumacher
@13#, which is a measure of how faithfully the dynamics
the channel has preserved the initial entangled quantum
QR:

Fe~QR,Q8R!5^QRurQ8RuQR&[Fe
QQ8 . ~3.38!

Since this entanglement fidelity does not depend on the
erence system@13#, we dropR from Fe from here on, as
indicated in Eq.~3.38!.

Naturally, the entanglement fidelity can be related to
probability of error of the channel. The quantum analog
the classical Fano inequality should relate the fidelity of
code ~in our example above the fidelity betweenQR and

-
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Q2R, the error-corrected system! to the loss of the error-
correcting channelL12. The derivation of such an inequalit
is immediate using the Fano-type inequality derived
Schumacher@13#, which relates the entropy of the environ
ment of a channelS(E8) to the fidelity of entanglement,

S~E8!<H2@Fe
QQ8#1~12Fe

QQ8!log2~dQdR21!,
~3.39!

wheredQ anddR are the Hilbert-space dimensions ofQ and
R, respectively, andH2@F# is again the dyadic Shannon e
tropy. Let us apply this inequality to an error-correctin
channel~decoherence plus error correction!, i.e., the chained
channel considered above. In that case, the environme
E1E2 , and the entanglement fidelity is now betweenQ and
Q2 , i.e., the fidelity of thecode, and we obtain

S~E1E2!<H2@Fe
QQ2#1~12Fe

QQ2!log2~d21!.
~3.40!

Here,d5dRdQ2
can be viewed as the Hilbert space dime

sion of the code~this is more apparent in superdense cod
discussed in Sec. VI!. To derive the required relationship, w
simply note that

S~E1E2!>L12/2 ~3.41!

@this is Eq. ~3.11! applied to the composite channel#. This
relates the fidelity of the codeFe

QQ2 to the lossL12, yielding
the Fano inequality for a quantum code

L12<2$H2@Fe
QQ2#1~12Fe

QQ2!ln~d21!%. ~3.42!

As we noted throughout the construction of quantum ch
nels, a factor of 2 also appears in the quantum Fano ineq
ity, commensurate with the fact that the loss can be twice
initial entropy. Inequality~3.42! puts an upper limit on the
fidelity of a code for any nonvanishing lossL12.

IV. CLASSICAL USE OF QUANTUM CHANNEL

In recent papers@16,17#, the capacity for the transmissio
of classicalinformation through quantum channels has be
discussed. Essentially, this capacity is equal to the maxi
accessible informationx in the system, known as th
Kholevo bound@28#.

What we show in the following is that the mutual e
tanglement introduced in Sec. III, i.e., the quantum mut
entropyS(R:Q8) between the decohered quantum stateQ8
and the reference stateR, reduces tox if the quantum state is
measured before it is transmitted, or, equivalently, ifQ is
prepared by a classicalpreparer X. Let the systemQR be
purified again via a Schmidt decomposition as in Eq.~3.5!. If
we measureQ in its eigenbasis, we can write

uRXQ&5(
i

Api ur ixi i &, ~4.1!

wherexi are the eigenstates ofX ~if X is in statexi , Q is in
statei , etc.!. ~Figure 9 summarizes the relationship betwe
the respective entropies.! Naturally then, tracing overR, we
obtain
y
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rXQ5(
i

pi uxi&^xi u ^ r i , ~4.2!

with r i5u i &^ i u, and similarly forrRQ .
Thus,X andQ areclassicallycorrelated: each state of th

preparerX represents a state ofQ, or alternatively,X reflects
~keeps in memory! the initial quantum state ofQ. If the
entropy of the quantum systemQ before transmission isS
~just like in the previous section!, the mutual entropy be-
tween R and Q ~as well as betweenX and Q! is also S,
unlike the value 2S found in the quantum use. Decoheren
now affectsQ by entangling it with the environment, jus
like earlier. Thus

rXQ→rXQ85(
i

pi uxi&^xi u ^ r i8 , ~4.3!

where

r i85TrE$UQE~r i ^ u0&^0u!UQE
† %, ~4.4!

and we assumed again that the environmentE is in a fixed
‘‘0’’ state before interacting withQ. Now our proof pro-
ceeds as before, only that the loss in the classical cha
obeys different inequalities. The requirement that the ent
gling operationUQE does not affectX or R now implies

S~X8:E8Q8!5S~X:Q!5S~R:Q!5S ~4.5!

~see Fig. 10!.
Applying the chain rule to the left-hand side of Eq.~4.5!

leads to

S~X8:E8Q8!5S~X:Q8!1S~X:E8uQ8!. ~4.6!

The quantum mutual entropy between the preparer and
quantum state after decoherence,S(X:Q8), can be shown to
be equal to the Kholevo boundx ~see Ref.@29#!. With
L5S(X:E8uQ8) ~the classical loss of the channel! we thus
conclude from Eqs.~4.5! and ~4.6! that

S5x1L. ~4.7!

FIG. 9. Entanglement betweenQ, R, and the ancilla~or pre-
parer! X after measurement of the initial state ofQ by X, but prior
to entanglement with the environment. The initial state ofQ ~before
decoherence! is kept in memory, as it were, byX via classical
correlation withQ.
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3478 56C. ADAMI AND N. J. CERF
Note that S(X:Q8) is equal toS(R:Q8), the mutual en-
tanglement I Q introduced earlier, asS(X)5S(R) and
S(XQ8)5S(RQ8). Thus

I Q[S~R:Q8!5x, ~4.8!

if known quantum states are sent through the channel,
advertised. It was shown recently by Kholevo@17# that the
maximum of the latter quantity indeed plays the role of cha
nel capacity for classical information transmission,

C5max
pi

FS~r8!2(
i

piS~r i8!G[max
pi

x, ~4.9!

where $pi% is a probability distribution of symbols at the
source, andr i8 are the~not necessarily orthogonal! quantum
states received at the output, with the probability distributio
$pi% andr85( i pir i8 . Thus the quantityCQ that we propose
as a capacity for entanglement and/or correlation transm
sion reverts to the capacity for information transmissionC if
the unknown quantum states aremeasuredbefore transmis-
sion. This represents solid evidence in favor of our interpr
tation. Let us now calculate the quantities introduced here
a specific simple model of quantum noise.

V. QUANTUM DEPOLARIZING CHANNEL

The quantum depolarizing channel is an idealization of
quantum storage and transmission process in which
stored quantum state can undergo bit-flip and phase err
This is not the most general one-qubit channel,3 but appears
to be sufficient to examine a number of interesting aspects
quantum communication.

A. Quantum use

Imagine a quantum state

uC&5au0&1bu1&, ~5.1!

3A more general depolarizing channel could be constructed
allowing each of the possible errors a different probability.

FIG. 10. Unitary transformation entangling the ‘‘preparer’’~or
alternatively, the classical ‘‘memory’’! X with the pure environ-
mentE and the quantum systemQ. Neither the referenceR nor the
preparerX are affected by this operation. As the ternary Venn di
gram betweenQ8, E8 and X8 is not pure in this case, mutual en-
tropy betweenQ8 andX8 can be shared byE8.
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where the basis states of the qubit can be taken to be s
1
2 states polarized in thez direction, for example.~Specifi-
cally, we use the conventionszu1&5u1&.! The depolarizing
channel is constructed in such a way that, due to an inte
tion with an environment, the quantum state survives w
probability 12p, but is depolarized with probabilityp/3 by
either a pure bit flip, a pure phase error, or a combination
both:

uC& ——→
12p

uC&,

uC& ——→
p/3

sxuC&5au1&1bu0&,
~5.2!

uC& ——→
p/3

szuC&52au0&1bu1&,

uC& ——→
p/3

sxszuC&52au1&1bu0&,

where thes’s are Pauli matrices. Such an arbitrary quantu
stateC can, without loss of generality, considered to be
stateQ that is entangled with a reference stateR, such that
the marginal density matrix ofQ can be written as

rQ5qu0&^0u1~12q!u1&^1u, ~5.3!

with entropyS(rQ)52TrrQ log2 rQ5H2@q# and q a prob-
ability (0<q<1). In other words, the coefficientsa andb
need not be complex numbers. Conversely, we can start
such a mixed state at the input, and considerQR as apure
quantum state that this mixed state obtains from. For
ample,

uQR&5A12qu10&2Aqu01&. ~5.4!

Naturally then, the mixed state Eq.~5.3! is obtained by sim-
ply tracing over this reference state. Pure states with
coefficients such as Eq.~5.4! are not general, but suffice fo
the depolarizing channel asR is always traced over.

Let us now construct a basis forQR that interpolates be-
tween completely independent and completely entang
states, and allows us to choose the initial entropy ofQ with
a single parameterq. We thus introduce the orthonorma
q-basisstates

uF2~q!&5A12qu00&2Aqu11&,

uF1~q!&5Aqu00&1A12qu11&,
~5.5!

uC2~q!&5A12qu10&2Aqu01&,

uC1~q!&5Aqu10&1A12qu01&.

Note that, forq50 or 1, these states are product states, wh

for q5 1
2 they are completely entangled, andC6( 1

2) and

F6( 1
2) are just the usual Bell basis states. The possibility

quantum decoherence of these states is introduced by e
gling them with an environment in a pure state, taken to
of the same Hilbert space dimension asQR for simplicity,
i.e., a four-dimensional space for the case at hand. This is
minimal realization of a depolarizing channel.

Let us assume thatQR ~for definiteness! is initially in the
stateuC2(q)&, and the environment in a superposition
y

-
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uE&5A12puC2~q!&1Ap/3@ uF2~q!&1uF1~q!&1uC1~q!&].
~5.6!

The environment andQR are then entangled by means of t
unitary operatorUQRE5UQE^ 1R , with

UQE51^ PC2~q!1sx^ PF2~q!1~2 isy! ^ PF1~q!

1sz^ PC1~q!, ~5.7!

wherePF(q) andPC(q) stand for projectors projecting ont
q-basis states. Note that the Pauli matrices act only on
first bit of theq-basis states, i.e., the entanglement opera
only involvesQ andE. Depending on the entanglement b
tweenQ andR, however, this operation also affects the e
tanglement betweenR andE. Thus we obtain the state

uQ8R8E8&5UQREuQR&uE&

5A12puCQR
2 ~q!,CE

2~q!&

1Ap/3@ uFQR
2 ~q!,FE

2~q!&

1uFQR
1 ~12q!,FE

1~q!&1uCQR
1 ~12q!,CE

1~q!&]

~5.8!
si

ig
t

io
er
e
n

-

on account of the relations

sxuCQR
2 ~q!&5uFQR

2 ~q!&, ~5.9!

~2 isy!uCQR
2 ~q!&5uFQR

1 ~12q!&, ~5.10!

szuCQR
2 ~q!&5uCQR

1 ~12q!&, ~5.11!

and with obvious notation to distinguish the environme
(E) and quantum system (QR) basis states. The~partially
depolarized! density matrix for the quantum system is o
tained by tracing over the environment:

rQ8R85TrE~ uQ8R8E8&^Q8R8E8u!

5~12p!PC2~q!

1p/3@PF2~q!1PF1~12q!1PC1~12q!#.

~5.12!

Its eigenvalues can be obtained to calculate the entropy:
Se~p,q![S~Q8R8!5HF2p

3
~12q!,

2pq

3
,
1

2S 12
2p

3
1D D ,

1

2S 12
2p

3
2D D G , ~5.13!
of
with H@p1 , . . . ,p4# the Shannon entropy, and

D5@~122p/3!2216/3p~12p!q~12q!#1/2. ~5.14!

By tracing over the reference state we obtain the den
matrix of the quantum system after the interactionrQ8 , and
its respective entropy

S8~p,q![S~Q8!5H2Fq1
2p

3
~122q!G . ~5.15!

Together with the entropy of the reference state~which is
unchanged sinceR was not touched by the interaction!,
S(R8)5S(R)5H2@q#; this is enough to fill in the ternary
entropy diagram reflecting the dynamics of the channel, F
5. We thus find the mutual entanglement processed by
channel,

I Q5S~Q8:R!52H2@q#2LQ~p,q!, ~5.16!

where the loss is

LQ~p,q!5H2@q#2H2Fq1
2p

3
~122q!G1Se~p,q!. ~5.17!

The mutual entanglement is plotted in Fig. 11, as a funct
of the error probabilityp of the channel and of the paramet
q which determines the initial entropy.
ty

.
he

n

The mutual entanglement is maximal when the entropy

the source is maximal~as in the classical theory!, i.e., q5 1
2.

Then

CQ5max
q

I Q522Se~p,1
2!522H2@p#2p log2 3. ~5.18!

FIG. 11. Mutual entanglement between the depolarized stateQ8
and the reference systemR85R, as a function of errorp and pa-

rameterq. Note that the channel is 100% depolarizing atp5
3
4. The

concavity inq @according to axiom~ii !# as well as the convexity in
p @axiom ~iii !# are apparent.
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3480 56C. ADAMI AND N. J. CERF
In that case, the maximal rate of entanglement transfer is
bits ~error-free transfer,p50!. The capacity only vanishes a

p5 3
4, i.e., the 100% depolarizing channel. This is analogo

to the vanishing of the classical capacity of the binary sy

metric channel atp5 1
2. As an example of such a channel, w

shall discuss the transmission of the entanglement prese
a Bell state~one out of four fully entangled qubit pairs!
through a superdense coding channel in Sec. VI A. T
maximal mutual entanglement and minimal loss implied
Eq. ~5.18! are plotted in Fig. 12 as a function ofp. This error
ratep can be related to the fidelity of the channel by

Fe
Q8Q512p1

p

3
~122q!2, ~5.19!

whereFe
Q8Q is Schumacher’s fidelity of entanglement intr

duced earlier. Note that this implies that the Fano inequa

Eq. ~3.39! is saturated atq5 1
2 for any p.

B. Classical use

Now, instead of using the channel to transmit entang
ment ~sending unknown quantum states!, one could equally
well use it to send classical information~known quantum
states! as outlined in Sec. IV. Here we calculate the capac
for the transmission of classical information through t
quantum depolarizing channel, and verify that the resul
equal to the value obtained by Calderbank and Shor@6# using
the Kholevo theorem.

Before entanglement with the environment, let us meas
the mixed stateQ via an ancillaX, after whichQ andX are
classically correlated, with mutual entropyH2@q#. Note that
this operation leads to an entangled tripletQRXat the outset,
as in Fig. 9, withS5H2@q#. We now proceed with the cal
culation as before. The basis states for the systemuQXR& are
then simply

uFX
2~q!&5A12qu000&2Aqu111&,

uFX
1~q!&5Aqu000&1A12qu111&,

~5.20!

uCX
2~q!&5A12qu110&2Aqu001&,

FIG. 12. Maximal entanglement transferC(p) and minimal loss
L(p) as a function of the error probabilityp.
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uCX
1~q!&5Aqu110&1A12qu001&,

where we used the indexX on the basis states to distinguis
them from the two-qubit basis states introduced earlier. T
entanglement operation is as before, with a unitary oper
acting onQ andE only. Because of the additional trace ov
the ancillaX, however, we now find for the density matri
rQ8R8 :

rQ8R85~122p/3!@~12q!u10&^10u1qu01&^01u#

12p/3@~12q!u00&^00u1qu11&^11u#. ~5.21!

Consequently, for the mutual information transmitt
through the channel, we find

I 5S~Q8:R!5H2@q#2L~p,q!, ~5.22!

with the ~classical! loss of information

L~p,q!5HF2p

3
~12q!,

2p

3
q,S 12

2p

3 D ~12q!,S 12
2p

3 DqG
2H2Fq1

2p

3
~122q!G . ~5.23!

Maximizing over the input distribution as before, we obta

C5max
q

S~Q8:R!512H2@2p/3#, ~5.24!

the result derived recently for the depolarizing channel s
ply from using the Kholevo theorem@6#. Note that Eq.~5.24!
is just the Shannon capacity of a binary symmetric chan
@20#, with a bit-flip probability of 2p/3 ~of the three quantum
error syndromes, only two are classically detectable as
flips!.

VI. INTERPRETATION

A. Quantum capacity and superdense coding

The interpretation of the capacity suggested here a
quantum-mechanical extension of the classical construc
can be illustrated in an intuitive manner with the example
the depolarizing channel introduced above. The idea is
I Q reflects the capacity for transmission of quantum mut
entropy~entanglement and/or classical information! but that
the amount transferred in a particular channel depends
how this channel is used. A particularly elegant channel t
usesI Q to its full extent is the noisy superdense coding cha
nel. There, the entanglement between sender and receiv
used to transmit two bits of classical information by send
just onequantum bit@30,22#. In a general superdense codin
scheme, the initial stateQR is one of a set of entangled state
specified by classical bitsC. This situation can be related t
our previous discussion by noting that all entropies appe
ing there are to be understood asconditionalon the classical
bits C that are to be sent through the channel as shown
Fig. 13. The von Neumann capacity introduced above is t
just

I Q5S~R:Q8uC!. ~6.1!
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It is not immediately obvious that this von Neumann cap
ity is equal to theclassicalcapacity between preparer~usu-
ally termed Alice! and the receiver~Bob!. However, it is
not difficult to prove @using the fact that S(R:Q)
5S(R:C)5S(Q:C)50# that Eq.~6.1! is in fact equal to the
maximal amount of classical information aboutC extractable
from RQ8 ~after Q decohered!, which is4

x5S~RQ8:C!. ~6.2!

Thus, in this example the amount of entanglement proces
in a channel can be viewed as the amount ofclassicalinfor-
mation about the preparer of the entangled stateQR. This
amount of information can reachtwice the entropy ofQ ~2
bits in standard superdense coding!, which is classically im-
possible.~The superdense coding and teleportation chan
will be discussed in detail elsewhere!.

Having established this relation between superdense
ing and the general quantum channels treated here, le
imagine that the qubit that is sent through the channel~and
which is ‘‘loaded’’ with entanglement! is subject to the de-
polarizing noise of Sec. V. Indeed, ifp50 the two classical
bits can be decoded perfectly, achieving the value of
capacity. It has been argued recently@22# that this can be
understood by realizing that besides the qubit that is s
forwards in time in the channel, the entanglement betw
sender and receiver can be viewed as an antiqubit sentback-
wardsin time ~which is equivalent to a qubit sent forwards
time if the appropriate operations are performed on it in
future!. Thus, the quantum mechanics of superdense co
allows for the time-delayed~error-free! transmission of in-
formation, which shows up as excessive capacity of the
spective channel. On the other hand, it is known that~for
unencoded qubits! superdense coding becomes impossible
p'0.189, which happens to be the precise point at wh
I Q51. This is related to the fact that at this point the pur
cation of noisy pairs becomes impossible. However, the

4That the quantum mutual entropy between a preparer and a q
tum system is an upper bound to the amount of classical infor
tion obtainable by measuring the quantum system~the Kholevo
bound! is shown in Ref.@29#.

FIG. 13. Quantum Venn diagram for the noisy superdense c
ing channel before decoherence. Conditionally on the classical
C,QR is in a pure entangled state described by a Venn diagram
the form (2S,2S,2S). Note that no information aboutC is con-
tained inR or Q alone, i.e., S(C:R)5S(C:Q)50.
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pacity of this channel is not zero. While no information c
be retrieved from the past in this case, the single qubit tha
sent through the channel still carries information, indeed
shares one bit of mutual entropy with the qubit stored by
receiver. Clearly, this is still a quantum channel: if it we
classical, the transmission of one bit could not take pla
with unit rate and perfect reliability, due to the noise lev
p50.189. As the receiver possesses both this particle (Q8)
and the one that was shared earlier (R), he can perform joint
measurements~in the spaceQ8R! to retrieve at least one o
the two classical bits.

An extreme example is thedephasingchannel, which is a
depolarizing channel with onlysz-type errors that affect the
phase of the qubit. As is well known, classical bits are un
fected by this type of noise, while quantum superpositio
are dephased. The channel becomes useless~for the storage
of superpositions! at p50.5, yet measuring the qubit yield
one classical bit in an error-free manner. A calculation o
maxq S(R:Q8) for this channel indeed yields

I Q~p!522H2@p#. ~6.3!

In this limiting case thus, it appears possible to separate
classical (I 51) from the purely quantum capacity. Howeve
it might well be possible that this cannot be achieved
general. Below, we show that such an excessive von N
mann capacity~as in superdense coding! is consistent with a
commensurate quantum Hamming bound.

B. Quantum Hamming bounds

Classically, the Hamming bound@20# is an upper bound
on the numbers of codewords~bit strings of lengthn! for a
code to correctt errors:

s(
i 50

t S n
i D<2n. ~6.4!

This is a necessary~but not sufficient! condition for error-
free coding, which reflects the necessary space to accom
date all the codewords and associated descendants fo
error syndromes. Fors codewords coding fork bits (s52k),
we can consider the asymptotics of Eq.~6.4! in the limit of
infinitely long messages (n→`), and find that the rate o
error-free transmission is limited by

R<2
1

n
log2 (

i 50

pn S n
i D S 1

2D i S 1

2D n2 i

, ~6.5!

where R5k/n is the transmission rate andp5t/n is the
asymptotic probability of error. Using

lim
n→`

2
1

n
log2H (

i 50

pn S n
i D r i~12r !n2 iJ

5p log2

p

r
1~12p!log2

12p

12r

[H~p,12pir ,12r !, ~6.6!

whereH(p,12pir ,12r ) is therelativeentropy between the
probability distributionsp and r , we can write
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R<H~p,12pi1/2,1/2!512H2~p!. ~6.7!

The relative entropy thus turns out to be just the class
capacity of the binary symmetric channel, and measures
distanceof the error-probability of the channel relative to th

‘‘worst case,’’ i.e., p5 1
2. Note that relative entropies ar

positive semidefinite.
For quantum channels, the standard quantum Hamm

bound for nondegenerate~orthogonal! codes is written as@8–
10#

2k(
i 50

t

3i S n
i D<2n, ~6.8!

which expresses that the number of orthogonal states id
fying the error syndromes on the 2k different messages mus
be smaller than 2n, the dimension of the Hilbert space of th
quantum stateQ ~n qubits!. In the limit of large n, this
translates into an upper bound for the rate of nondegene
quantum codes

R<2
1

n
log2H (

i 50

pn S n
i D S 3

4D i S 1

4D n2 iJ 21. ~6.9!

which can~as in the classical case! be written in terms of a
relative entropy

R<H~p,12pi3/4,1/4!21512Se~p!

512H2@p#2p log2 3. ~6.10!

Thus the usual quantum Hamming bound limits the rate
nondegenerate quantum codes by the capacity based o
herent information proposed in Refs.@14,15#, which is
thought of as the purely quantum piece of the capacity. N
that the positivity of the relative relative entropy doesnot in
this case guarantee such a capacity to be positive, which
just be a reflection of the inseparability of the von Neuma
capacity.

The quantum Hamming bound shown above relies
coding the error syndromes only into the quantum stateQ
that is processed, or, in the case of superdense coding,
through the noisy channel. As we noted earlier, howeve
quantum system that is entangled does not, as a matte
principle, have a state on its own. Thus the entangled re
ence systemR necessarilybecomes part of the quantum sy
tem, even if it is not subject to decoherence. Thus, the H
bert space available for coding automatically becomes
large as 2n, the combined Hilbert space ofQ andR. This is
most obvious again in superdense coding, where the de
ing of the information explicitly involves joint measuremen
of the decoheredQ8 and the referenceR, shared between
sender and receiver~in a noise-free manner!. The corre-
spondingextendedquantum Hamming bound therefore ca
be written by remarking that while the coding space is 2n,
only n qubits are sent through the channel, and thus
al
he

g
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2k(
i 50

t

3i S n
i D<22n. ~6.11!

Proceeding as before, the rate of such quantum codes is
ited by

R<H~p,12pi3/4,1/4!522Se~p!, ~6.12!

the von Neumann capacityCQ for the depolarizing channe
proposed in this paper, Eqs.~3.15! and ~5.18!. The latter is
always positive, and represents the distance between th
ror probability p of the channel and the worst-case err

p5 3
4 ~corresponding to a 100% depolarizing channel!, in

perfect analogy with the classical construction.

VII. CONCLUSIONS

We have shown that the classical concept of informat
transmission capacity can be extended to the quantum
gime by defining a von Neumann capacity as the maxim
mutual von Neumann entropy between the decohered q
tum system and its reference. This mutual von Neuma
entropy, that describes the amount of information—class
and/or quantum—processed by the channel, obeys axi
that any measure of information should conform to. As
any quantum extension, the von Neumann capacity rever
its classical counterpart when the information is classiciz
~i.e., it reverts to the Kholevo capacity when measured
prepared states are sent!, and ultimately to the Shannon ca
pacity if all quantum aspects of the channel are ignored~i.e.,
if orthogonal states are sent and measured!. Thus the von
Neumann capacity of a channel can only vanish when
classical capacity is also zero, but it can be excessive
entanglement allows for superdense coding. In order to t
advantage of this, however, both the quantum system
decoheresand the reference system it is entangled with ne
to be accessible. In practical quantum channels this app
to be impossible, and the rate of practical codes must the
considerably smaller than the von Neumann capacity. Y
because of the inseparability of entangled states, a consi
definition of channel capacityhas to take into account the
full Hilbert space of the state. Whether a capacity can
defined consistentlythat characterizes the purely quantu
component of a channel is still an open question.
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