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We discuss the capacity of quantum channels for information transmission and storage. Quantum channels
have dual uses: they can be used to trangmiwnquantum states which code for classical information, and
they can be used in a purely quantum manner, for transmitting or storing quantum entanglement. We propose
here a definition of theon Neumanmrapacity of quantum channels, which is a quantum-mechaaitahsion
of the Shannon capacity and reverts to it in the classical limit. As such, the von Neumann capacity assumes the
role of a classical or quantum capacity depending on the usage of the channel. In analogy to the classical
construction, this capacity is defined as the maxinuam Neumann mutual entropyocessed by the channel,

a measure which reduces to the capacity for classical information transmission through quantum ¢trennels
“Kholevo capacity”) when known quantum states are sent. The quantum mutual entropy fulfills all basic
requirements for a measure of information, and observes quantum data-processing inequalities. We also derive
a quantum Fano inequality relating theantum losof the channel to the fidelity of the quantum code. The
guantities introduced are calculated explicitly for the quantum depolarizing channel. The von Neumann capac-
ity is interpreted within the context of superdense coding, and an extended Hamming bound is derived that is
consistent with that capacityS1050-294@7)04511-3

PACS numbegps): 03.65.Bz, 89.70tc

I. INTRODUCTION ity of a channel to transmit or else store, @mknownquan-
tum state in the presence of quantum noise. This mode is
The problem of transmission and storage of quantununlike any use of a channel we are accustomed to in classical
states has received a considerable amount of attention réieory as, strictly speaking, classical information is not trans-
cently, owing to the flurry of activity in the field of quantum mitted in such a uséno measurement is involvedRather,
computation[1] sparked by Shor's discovery of a quantum such a capacity appears to be a measure of how reaeh
algorithm for factoring[2]. In anticipation of physical real- tanglementcan be transmittedor maintainegl in the pres-
izations of such computefghich still face major conceptual ence of noise induced by the interaction of the quantum state
challenges it is necessary to extend to the quantum regimewith a “depolarizing” environment. On the other hand, a
the main results of Shannon’s information thep8}, which  quantum channel can be used for the transmissidmofvn
provides limits on how well information can be compressedquantum stategclassical informatiop) and the resulting ca-
transmitted, and preserved. In this spirit, the quantum analogacity (i.e., the classical information transmission capacity of
of the noiseless coding theorem was obtained recently bthe quantum channetepresents the usual bound on the rate
Schumachef4]. However, noisy quantum channels are lessof arbitrarily accurate information transmission. In this pa-
well understood, mainly because quantum noise is of a verper, we propose a definition for tven Neumancapacity of
different nature than classical noise, and the notion ofi quantum channel, which encompasses the capacity for pro-
“quantum information” is still under discussion. Yet, impor- cessing quantum as well as classical information. This defi-
tant results have been obtained concerning the correction a@iition is based on a quantum-mechanical extension of the
errors induced by the decoherence of quantum (ojtdbits usual Shannon mutual entropy to a von Neumann mutual
via suitable quantum codes. These error-correcting cides entropy, which measures quantum as well as classical corre-
12] work on the principle that quantum information can belations. Still, a natural separation of the von Neumann capac-
encoded in blocks of qubit€odewords such that the deco- ity into classical and purely quantum pieces does not appear
herence of any qubit can be corrected by an appropriatto be straightforward. This reflects the difficulty in separating
code, much like the classical error-correcting codes. Thereclassical correlation from quantum entanglemgme “quan-
fore, it is expected that a generalization of Shannon’s fundatum separability” problem, see, e.g., REI8] and references
mental theorem to the quantum regime should exist, and ethereir). It may be that there is no unambiguous way to
forts toward such a proof have appeared recefitB~15. separate classical from purely quantum capacity for all chan-
The capacity for the transmission ofassical information nels and all noise models. The von Neumann capacity we
through quantum channels was recently obtained by Haugpropose, as it does not involve such a separation, conforms
ladenet al. [16] for the transmission of pure states, and byto a number of “axioms” for such a measure among which
Kholevo[17] for the general case of mixed states. are positivity, subadditivity, concavitjconvexity in the in-
When discussing quantum channels, it is important tqout (outpud, and dual data-processing inequalities. We also
keep in mind that they can be used in two very differentshow that the von Neumann capacity naturally reverts to the
modes. On the one hand, one may be interested in the capamapacity for classical information transmission through noisy
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guantum channels of KholeJa 7] (the Kholevo capacityif

the unknown states are measured just before transmission

or, equivalently, if the quantum states gmeepared In such Y X
a use, thus, the purely quantum piece of the von Neumann

capacity vanishes. We stop short of proving that the von — = A“
Neumann capacity can be achieved by quantum coding, i.e.,

we do not prove the quantum equivalent of Shannon’s noisy
coding theorem for the total capacity. We do, however, pro-

vide an example where the von Neumann capacity appears
achievable: the case of noisy superdense coding.

In Sec. Il we recapitulate the treatment of tblassical
communication channel in a somewhat novel manner, by in
sisting on the deterministic nature of classical physics with
respect to the treatment of information. This treatment pavegonditions of the channeind the environmenwell enough.
the way for a formal discussion of quantum channels alond™rom this, he can calculate the trajectory of the coin, and, by
the lines of Schumachédd.3] in Sec. I, which results in a examining the face at the received side, infer the information
proposal for the definition of a von Neumann capacity forsent by the sender. Classical physics, therefore, demands that
transmission of entanglement and/or correlation that parallefd!/l conditional probability distributions can be made to be
the classical construction. We also prove a number of propPeaked if the environment, enlarged enough to cover all
erties of such a measure, such as subadditivity, concavity dpteracting systems, is monitored. In other worpg,=1 or
Convexity, forward and/or backward quantum data_o for all i,j: if the outcomej is known,i can be inferred
processing inequalities, and derive a quantum Fano inequalith certainty. As a consequencall conditional entropies
ity relating the loss of entanglement in the channel to thecan be made to vanish for a closed system.
fidelity of the code used to protect the quantum state. This According to this principle, let us then construct the clas-
proof uses an inequality of the Fano-type obtained recentlgical channel. Along with the ensemble of source symiols
by Schumachelr13]. In Sec. IV we demonstrate that the von (Symbolsx,... xy appearing with probabilitieg, ,...,py),
Neumann capacity reduces to the recently obtained Kholevignagine an ensemble of received symbolsThe usual noisy
capacity[17] if the quantum states ai@own i.e., measured channel is represented by the diagram on the left in Fig. 1:
and kept in memory, before sending them on. In Sec. V wéhe conditional entropyd(X|Y) represents the lods in the
then apply these results directly to a specific example, thehannel, i.e., the uncertainty of inferrringfrom Y, whereas
quantum depolarizing channgl9]. This generic example H(Y|X) stands for nois&\ in the output, which is unrelated
allows a direct calculation of all quantities involved. Specifi- to the error rate of the channel. A channel for whick 0 is
cally, we calculate the entanglement and/or correlation procalled alosslesschannel (no transmission errors ocour
cessed by the channel as a function of the entropy of thehereasN=0 characterizes deterministicchannel(the in-
input and the probability of error of the channel. We alsoput unambiguously determines the oudp@n the right-hand
show that this capacity reverts to the well-known capacityside in Fig. 1, we extend the channel to include the environ-
for classical information transmission in a depolarizing chan-nent. All conditional entropies are zero, and the noise and
nel if known quantum states are transmitted through thdoss are simply due to correlations of the source or received
channel. In Sec. VI, finally, we interpret the von Neumannensembles with an environment, i.e.=H(X:E|Y) and
capacity in the context of superdense coding, and derive B=H(Y:E|X). The capacity of the classical channel is ob-
guantum Hamming bound consistent with it. tained by maximizing the mutual entropy between source

and received symbo[she informationl =H(X:Y) processed
by the channdlover all input distributions:

E

FIG. 1. Entropy Venn diagram for the classical charx¥| and
its “physical” extension including the environment.

Il. CLASSICAL CHANNELS

The information theory of classical channels is well C=maxl. 2.9
known since Shannon’s seminal work on the maf&r In p(x)
this section, rather than deriving any new results, we expose
the information theory of classical channels in the light ofIf the output of the channéf is subjected t@notherchannel
the physicsof information, in preparation of the quantum (resulting in the outpuZ, say, it can be shown that the
treatment of channels that follows. Physicists are used tinformation processed by the combined chanh&X:Z),
classical laws of physics that ageterministic and therefore  cannot possibly be larger than the information processed in
do not consider noise to be an intrinsic property of channelsthe first leg, H(X:Y). In other words, any subsequent pro-
In other words, randomness, or a stochastic component, dogessing of the output cannot possibly increase the transmitted
not existper se but is a result of incomplete measurement.information. This is expressed in the data-processing in-
Thus, for a physicist there are no noisy channels, only inequality (see, e.g., Ref.20])
completely monitored ones. As an example, consider an in-
formation transmission channel where the sender’s informa-
tion is the face of a coin before it is flipped, and the
receiver’'s symbol is the face of the coin after it is flipped.
Information theory would classify this as a useless channeBy the same token, eeversedata-processing inequality can
but for a physicist it is just a question of knowing the initial be proven, which implies that the information processed

H(X:Z)<H(X:Y)<H(X). (2.2)
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in the secondleg of the channelH(Y:Z), must exceed the @ ®
information processed by the total chanrng(X:Z): S(4) S(B) 54) S(B)

H(X:Z)<H(Y:Z)<H(Z). (2.3 @ °
This inequality together with Eq2.2) reflects microscopic

time-reversal invariance: any channel used in a forward man-

ner can be Useq' In _a backward manner. .. FIG. 2. (& Entropy Venn diagram for a bipartite entangled

As far as qulng IS ancemed' Fhe troublesome quantity Iﬁuantum systenAB, depictingS(AB) (total areg, marginal entro-
the lossL, while the noiseN is unimportant. Indeed, for a pies[s(A) or S(B)], conditional[S(A|B) or S(B|A)] and mutual
message of length, the typical number of input sequences [s(a:B)] entropies(b) Entropy diagram for a fully entangled Bell
for every output sequence id'2 making decoding impos-  state.

sible. The principle of error correction is to embed the mes-
sages intacodewordsthat are chosen in such a way that the
conditional entropy of the ensemble of codewovdsishes

i.e., on the level of message transmission the channel is loss-
less. Not Surprising|y, there is then a re|ati0nship betweerYia a suitable definition of aonditional amplitude matrix
the channel losk and the probability of errop, of acode ¢~ pajs- The latter matrix can have eigenvalues larger than

S(A|B)=S(AB)—S(B), (3.1

that is composed of codewords: unity, revealing its nonclassical nature and allowing condi-
tional quantum entropies to beegative[22]. Similarly, we
L=<H,[p:]+pclog,(s—1), (2.9 can define anutual amplitude matripa.g, giving rise to a

mutual von Neumann entropy
whereH,[ p] is the dyadic Shannon entropy

HalP]=H{1-p]=—p log; p—(1~p)logz(1~p). SAB)ZSIA B~ SAB), (32

(2.5
which exceeds the usual bound obtained for mutual Shannon
Equation(2.4) is the Fano inequalitysee, e.g., Refl20]),  entropies by a factor of two:
which implies, for example, that the loss vanishes if the
probability of error of the code vanishes. Note that the noise
of the channel itself in general is not zero in this situation.
Let us now turn to quantum channels.

S(A:B)<2 mifS(A),S(B)]. (3.3

The latter equation demonstrates that quantum systems can

IIl. QUANTUM CHANNELS be more strongly correlated_ than classical ones: they can be
supercorrelated These relations can be conveniently sum-
A. Information theory of entanglement marized by entropy Venn diagrarfiBig. 2(a)], as is usual in

Quantum channels have properties fundamentally diﬁerglagsica_l inf_ormation theo_ry. The extension to the quantum
ent from the classical channel just described, owing to thé€gime implies that negative numbers can appear which are
superposition principle of quantum mechanics and the norclassically forb|ddeﬁ._As an example, we show in Fig(t9
cloning theorem that ensud@1]. First and foremost, the the quantum entropies of the Bell stateshich are fully
input quantum state, after interaction with an environment, i€ntangled states of two qubitsThese notions can be ex-
lost, having become the output state. Any attempt at copyinﬁ”ded to multipartite systems, and will be used throughout
the quantum state before decoherence will result in a classtn€ Paper. o
cal channel, as we will see later. Thus a joint probability for The degree of entanglement of a bipartite pure quantum
input and output symbols does not exist for quantum chanstate is custo_marlly indicated by the marginal entropy of one
nels. However, this is not essential, as the quantity of interetf itS parts, i.e., the von Neumann entropy of the density
in quantum communication igot the state of an isolated matrix obtained by tracing the joint density matrix over the
quantum systen(a product statg but the degree of en- degrees of freedom of the other p_étrte entropy of entangle-
tanglement between one quantum system and another, p&ent, see Ref[10]). However, since the parts of an en-
rametrized by their mutual entropy as shown below. A singld@ngled system do not possess a state on their own, it takes
nonentangled pure quantum systésuch as an isolated spin- UP t0 twice the marginal entropy of one of the parts to
! stat carries no entropy, and is of no interest for quantumSPecify (in bits) the state of entanglement. For example, it
communication as it can be arbitrarily recreated at any timel@keS Up to two bits to specify the entanglement between two
Entangled composite systengsuch as Bell statg¢son the qubits (there are four Bell-basis stajeJhus we propose to
other hand, are interesting because the entanglement can Bgasure the entanglement of pure states by the mutual en-
used for communication. Let us very briefly recapitulate thelTOPY between the two parts, which takes values between 0
quantum information theory of entanglem¢ap—25. (for npnentangled systemand 2S (for entgngled systems of

For a composite quantum systekB, we can write rela- marginal entropyS each. In order to avoid confusion with
tions between von Neumann entropies that precisely parallel
those written by Shannon for classical entropies. Specifi-
cally, we can define the conditional entropy/fconditional !In classical entropy Venn diagrams, negative numbers can only
on the knowledge oB), appear in the mutual entropy of three or more systems.
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FIG. 3. Quantum network representation of a noisy quantum
channel R purifies the mixed stat®; the corresponding entangle-
E

ment is indicated by a dashed line. E’

R’

the previously defined entropy of entanglement, we propose FIQ. 4. Unitary transformation entangling the pure enyironment
to call this quantity thenutual entanglemer(or simply the  |E) with the pure systemiQR). The reference systerR is not

von Neumann mutual entropyand denote it by the symbol touched by this transformation, which implies that no entropy can
be exchanged across the double solid lines in the diagram on the

lo:
Q left.
lg=S(AB). (3.4 . . . | .
operation entanglin@ R with the environmeng, which is
initially in a pure state. This construction is summarized in

For pure entangled states, the mutual entanglemeist just 9. 3

twice the entropy of entanglement, demonstrating that eithef . . . . .

is a good measure for thdegreeof entanglement, but not __ The evolution of entropies in such a channel is d(_aplcted in

necessarily for the absolute amount. Estimating the entanglé-9- 4. Where the entropy of the reference sfathich is the

ment ofmixedstates, on the other hand, is more complicatedS@Me as the entropy &f beforeentanglement3(Q) = S(R)]

and no satisfying definition is availableee Ref[10] for the S denoted bys,

most established onesThe quantum mutual entropy for

mixed states doesot represent pure quantum entanglement, S=-2, p; log; p;, (3.8

but rather classicaind quantum correlation that is difficult i

to separate consistently. For reasons that become more clear

in the following, we believe that the mutual entanglemient ~ While the entropy of the quantum sta@¢ after entanglement

between two systems is the most straightforward generalize5(Q')=S', and the entropy of the environme®&(E) =S,.

tion of the mutual information of classical information The latter was termed “exchange entropy” by Schumacher

theory, and will serve as the vehicle to define a quantuni13].

(including classical von Neumanncapacity for quantum Note that, as for any tripartite pure state, the entropy dia-

channels. gram of the entangled sta@’R’E’ is uniquely fixed by

three parameters, the marginal entropie€Q06f R’, andE’

respectively, i.e., the numbe& S', andS,. Also, in any

) pure entangled diagram involving three systems, the ternary
In constructing a general quantum channel formally, wemytual entropy [the center of the ternary diagram,

follow Schumachef13]. A quantum mixed stat€® suffers S(Q':R’:E’)] is always zerd23—25.

entanglement with an environmefitso as to lead to anew T make contact with the classical channel of Sec. I, let

mixed stateQ’ with possibly increased or decreased entropy.ys define theguantum loss b;Z

In order to monitor the entanglement transmission, the initial

mixed stateQ is purified by considering its entanglement LQ=S(R’:E’|Q’)=Se+ S—9. (3.9

with a referencesystemR,

B. Explicit model

This represents the difference between the entropy acquired

— AP by the environmentS,, and the entropy change &f, that

IRQ) 2.: Vi, 39 is, (S'—9S), and thus stands for the loss of entanglement in

the quantum transmission. It plays a central role in error

where|r;) are theR eigenstates. Indeed, this can always becorrection as shown below and in Sec. Ill D. The entropy
achieved via a Schmidt decomposition. Then the mixed statdiagram in terms ofS, S, andLq is depicted in Fig. 5.

Q is simply obtained as a partial trace of the pure s@E From this diagram we can immediately read off inequalities
relating the loss. o and the entropie$ and S, by consider-
ing triangle inequalities for quantum entropi&§], namely,

po=Trelporl= 25 piliXil. (36
O0=<Lg=2S, (3.10
Also, the interaction with the environment,
Yoeelr 2Here we follow the nomenclature that “quantum’ always means
QRE—— Q'R'E’, 3.7 “quantum including classical,” rather than “purely quantum,” in

] . the same sense as the von Neumann entropy is not just a purely
now can be viewed as a channel to transmit the entanglemegtiantum entropy. This nomenclature is motivated by the difficulty
betweenQR to the systenQ'R’. Here,Uqg is the unitary  to separate classical from quantum entanglement.
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i/ ﬁa

E E’

FIG. 5. Entropy diagram summarizing the entropy relations be- FIG. 6. Entanglement betwedd’, R’, andE’ in the lossless

tween the entangled syster@s, R’, andE’. guantum channel.
O<Lg=2S,, (3.1) quantum statgand thus the initial entanglementSP can
. _ only be successful wheln,=0. From Fig. 5 we can see that
which can be combined to whenLo=0, Q' is entangledseparatelywith the reference

state and the environment, leading to the diagram repre-
) sented in Fig. 6. For this reason alone it is possible to recover
0<Lo=2min(S,S,). 312 the initial entanglement betwee@ and R via interaction
with an ancillaA (that can be viewed as secondenviron-
ment in a chained channelhe latter effects a transfer of the
entanglement betwe@’ andE’ to entanglement betwedti
andA. This operation can be viewed as imgompletemea-
surement ofQ’ by A which only measures the environment
E’, while keeping intact the entanglement@f with R. It
was shown in[14] that Lo=0 is in fact a necessargnd
S(R":Q")+S(R":E'|Q")=S(R":E'Q")=S(R:Q), sufficient condition for this to be feasible. Such_a transfer of
entanglement corresponds to the quantum equivalent of error
(3.13 correction, and will be discussed with reference to the quan-
or, equivalently, tum Fano inequality in Sec. Il D.

We find therefore that the initial mutual entanglemestig
split, through the action of the environment, into a piece
shared withQ' [i.e., S(Q":R")=2S—Lg], and a piece
shared with the environmefthe remaining los& o) accord-
ing to the relation

lo+ LQIZS' (3.19 C. Axioms for quantum information
Finally, we are ready to propose a definition for the von In the following, we present a number of reasonabte
Neumann capacity. Again, in analogy with the classical conomsfor a quantum mutual information, and show that
struction, the von Neumann capaciBg would be the mu- defined above has the required properties. Thesdiareon-
tual entanglement processed by the chanmelitual von negativity, (ii) concavity inpq (for a fixed channe) (iii)
Neumann entropy maximized over the density matrix of the convexity inpg (for fixed pg), and(iv) subadditivity. These
input channel, i.e., requirements for a quantum mutual entrof@ntanglement
and/or correlation processed by the channate very natu-
ral, and reflect the kind of requirements that are put on clas-
Co=maxlg, (3.19  sical channels. The non-negativity bf is simply a conse-
PQ guence of the subadditivity of quantum entropighust like
the mutual Shannon entropy, the mutual quantum entropy is
a non-negative quantity
Concavity of quantum information ipg [axiom (ii)] re-
flects that the information processed by a channel with a
| n=2S— L. (3.16 mixture of quantum statestEiwip'Q (with =Z;w;=1) as
Q Q input should be larger than the average information pro-
From the bound3.10, we find that the entanglement pro- cessed by channels that each have sigt@s input, i.e.,
cessed by the channel is non-negative, and bounded from
above by the initial entanglementS2 An interesting situa-
tion arises when the entanglement processed by the channel - . i
saturates this upper bound. This is the case ofldkssless lQ(pQ)/Ei Wila(po). (317
quantum channel, wheileg=0.
It was shown recently by Schumacher and Nielg#]  This is the quantum analog of the concavity of the Shannon
that an error-correction procedure meant to restore the initiahutual informationH(X:Y) in the input probability dis-

where |o=8(R":Q")=S(R:Q’) is the entanglement pro-
cessed by the channel,
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tribution p(x) for a fixed channel, i.e., fixe(y|x). The R R
proof uses the fact that, if the quantum operation achieved by 0 ; )
the channel is fixed, we have 17 Uy —<
5 0>—_"—E;
p(,gE:UQE<E Wip‘®|0><0l>UBE % U%_QZ
: 10> — — E;
_ [ T
- Z WiUQE(PI®|0><O|)UQE FIG. 7. Parallel channels as quantum network, in the derivation

of the subadditivity of mutual von Neumann entropies. The en-
tanglement betweef,, Q,, and the reference is indicated by a

:Ei wip' Qe (318 gashed line.
Therefore, using The subadditivity of von Neumann mutual entropies for

such a channel can be written as
lo(pe) =S(RIQ) =S(R)+S(Q") ~S(RQ) Ol S ROAON 4 S RO (22
—S(Q'E')+S(Q")—S(E") S(R:Q1Q7)=S(RQ,:Q1)+S(RQ::1Qy), (3.29

=S(Q'|EN+S(Q") (3.19 which can be read as

the concavity of the quantum information in the input results
from the concavity ofS(Q’|E’) in p('gE and from the con-

lo=<Il;+1,, (3.29

with the corresponding identifications, and mirrors the clas-

cavity of S(Q') in pq [27] sical inequality
Convexity of the processed information m’g [axiom
(iii )] states that, if the superoperator that takes a fpxgthto H(X1X5:Y,Yo)<H(X:Y)+H(X5:Y,) (3.2

pg is such that
for two independent channels takidg—Y; andX,—Y,.

To prove inequality(3.24), we rewrite the quantum infor-

r_ g
pQ_; Wip qQ, (320 mation of each channel using E®.19 and the fact thak;
andE, are initially in aproductstate. Equatiori3.24) then
then becomes
, /. S ! IE!E! + ! ! $ !E/ +S ! +S !EI
o(pgp)=S Wiglpgop'hy. (320 SIQUQAEIED+S(QIQ)) =S(QIE) +S(Q)) +S(Q;IEY)
‘ +5(Q)). (3.27)

Thus the processed information of a channel that is a supeg badditivity ofconditional entropies. |
position of channelseach used with probabilitw;) that re- ubadditivity ofconditionalentropies, 1.e.,
sult in pb cannot exceed the average of the information for

each channel. There is a similar property for classical chan- S(Q1Q1|E(Ep)=S(Q||E|E;)+S(Q3|EE))
nels: the mutual informatioki (X:Y) is a convex function of —S(Q!:Q4|E!E))

p(y|x) for a fixed input distributiorp(x). The proof follows R

from noting that, if the input is fixed, we have =0

<S(Q|EIE;)+S(Q;|E|E;)

P, ZZW'P,j . (322 ’ ' Ay
RO 4 TP RQ <S(Q}|E})—~S(Q}:E}|E})
—_  ——

Then, expressing the quantum information as =0
, / , +S(Q4|E)) —S(Q4:E}|ES)
lo(pe—pe)=S(RQ)=S(R)-S(RIQ"), (3.23 SRRt
=0
and noting thaS(R) is constant, the concavity &(R|Q’) <S(O'|ENV+S(O|E!
in ng implies the convexity of the quantum information in (QIED+S(Q3E2), (3.29
the output.

Finally, the subadditivity of quantum informatidaxiom  tegether with the subadditivity property of ordinafmar-
(iv)] is a condition which ensures that the information pro-9in@) von Neumann entropies, proves Eg.24). The terms
cessed by a joint channel with inppg o, is smaller than or that are ignored in the above inequality are positive due to

| to the information or 4 in rallel by tw strong subadditivity. This property of subadditivity of the
equal 1o the Information processe parallel by W0, tormation processed by quantum channels can be straight-
channels with input le=TrQ2(leQ2) and PQ,

) 2\P forwardly extended to channels.

=Trq,(pq,q,). respectively. Thus, iR is the reference sys-  An alternative definition for the quantum information pro-
tem purifying the joint inpuQ,Q,, Q, is purified byRQ,  cessed by a channel, called “coherent information,” was
while Q, is purified byRQ, (see Fig. 7. proposed by Schumacher and Nield§éd] and Lloyd[15].
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Plugging Eqs(3.31) and(3.32 into the positivity condition

R R (3.30, we obtain the quantum data processing inequality,
N Ve " E, Eq. (3.29, as claimed.
0 — bl o Q, The reversequantum data-processing inequality implies
0> Al | E, that the entanglement processed by the second leg of the

channel, S(RE;:Q,), must be larger than the entanglement
processed by the entire channel:

S(R:Q2)<=S(RE;:Q2)<=S(REE;:Q2)=25(Q,).
(3.33

The proof relies on strong subadditivity applied@gE/E,:

FIG. 8. Chaining of channels in the derivation of the data-
processing inequality. The outpQ, is subjected to a second chan-
nel by entangling with an environmeBt, independent fronfe,, to
give outputQ,.

This quantityl=S(R’|E")=S—Lg is not positive[axiom

(i)], and violates axiomsii) and (iv), which leads to aio- S(Q5:E4|E) =S(Q4:E1E») —S(Q5:E5)=0. (3.39
lation of the reverse data-processing inequality, while the

forward one is respectefd4] (as opposed to the von Neu- For treating the channéd;—Q; (i.e., the second legwe
mann mutual entropy which observes both, see beldlve  have to purify the input state @, that is consideRE; as
coherent information attempts to capture the purely quanturihe reference. Thus we have

piece of the processed information while separating out any

classical components. This separation appears to be at the S(Q2:RE)) =2S(Q2) ~S(Q2:E2). (339

origin of the shortcomings mentioned above. For the overall channeD—Q,, we have

D. Inequalities for quantum channels S(Q2:R)=2S5(Q,) — S(Q,:E4E,). (3.36

~ From the properties of the mutual entanglemegtde-  These two last equations, together with E834), result in
rived above, we can prove data-processing inequalitiekfor the reverse quantum data-processing inequality(E83.
which reflect probability conservation, as well as the Fano  From Eq.(3.29 we immediately obtain an inequality re-
of a code. drop the indexQ that indicated the quantum nature of the
: loss in this discussignwith the overall losd 5:
1. Data processing

Assume that starting with the entangled st@®, en- O<L;=<Ly. (3.37
tanglement with environmeri, produces the mixed state

Q.. This output is used again as an input to another channe ,hyS|c_aIIy, this .'”.‘p"es that thg Iostslzl cannot deg:rease
this time entangling, with E, to obtainQ, (see Fig. 8 rom simply chaining channels, just as in the classical case.

The quantum analog of thgorward) data-processing in- As emphasized earlier, the lokg corresponds to the share

equality (2.2) that holds for mutual informations in classical of initial entanglem_ent that is'irretrievably lost to the envi-

channels involves the mutual entanglemeg(&:Q,) and ronment. .Ind.ee.d, if th? environment cannot be accessed

S(R:Q,), and asserts that the mutual entanglement betweeWVh'Ch. is implicit by calling it an environmethe decoher- .

reference and output cannot be increased by any further prf—nie mduced by the _channel Ca”r?Ot be re.versed.. iny if

cessing: 1=0 can this be achievedl4]. In view of this fact,.|t is
natural to seek for a quantum equivalent to the classical Fano

S(R:Q,)<S(R:Q,)<2S. (329 nequality(2.4).

2. Fano inequality

That such an inequality should hold is almost obvious from i ) . _ )

the definition of the mutual entanglement, but a short proofis 1 © investigate this issue, let us consider the chained chan-

given below. This proof essentially follows R¢L4], and is nel above, where error correction has taken place via transfer

based on the property of strona subadditivity applied to th&f entanglement with a second environment. Let us also re-
systemRE,E, :p pery g y app call the definition of theentanglement fidelitgf Schumacher

[13], which is a measure of how faithfully the dynamics of
(3.30 the channel has preserved the initial entangled quantum state

QR
For the channeQ— Q;, we see easilysee Fig. 5 that Fe(QR,Q'R)=<QR|pQrR|QR>EFSQ' . (339

S(R:E,|E;) = S(R:E;E,) — S(R:E;)=0.

S(R:E;)=S(R:QE;) — S(R:Q4|E;) =2S—S(R:Q,). Since this entanglement fidelity does not depend on the ref-
(3.31) erence systemil3], we dropR from F. from here on, as
indicated in Eq/(3.38.
Similarly, considering=, E, as the environment for the over-  Naturally, the entanglement fidelity can be related to the
all channelQ—Q;, we find probability of error of the channel. The quantum analog of
the classical Fano inequality should relate the fidelity of the
S(R:E{E;)=2S—-S(R:Q,). (3.32 code (in our example above the fidelity betwe€R and
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Q,R, the error-corrected systeno the loss of the error-

correcting channel ;,. The derivation of such an inequality Q R
is immediate using the Fano-type inequality derived by

Schumachef13], which relates the entropy of the environ-

ment of a channeB(E’) to the fidelity of entanglement,

S(E')=H,[FE¥]+(1-FZ?)logy(dodr—1), AA

(3.39

wheredg anddg are the Hilbert-space dimensions@fand

R, respectively, andi,[ F] is again the dyadic Shannon en- %

tropy. Let us apply this inequality to an error-correcting

channel(decoherence plus error correctiphe., the chained .

channel considered above. In that case, the environment is 7'C: 9: Entanglement betwedp, R, and the ancillalor pre-

E,E,, and the entanglement fidelity is now betwe@rand pare) X after measurement of the initial state@fby X, but prior
! S . to entanglement with the environment. The initial statQdbefore
Q,, i.e., the fidelity of thecode and we obtain

decoherencgeis kept in memory, as it were, bX via classical

correlation withQ.
S(E;E»)=H [FO%]+ (1—FO%)logy(d—1). Q

(3.40

Here,d=deQ2 can be viewed as the Hilbert space dimen-

sion of the codéthis is more apparent in superdense coding

discussed in Sec. YITo derive the required relationship, we with p;=|i)(i|, and similarly forprg.

simply note that Thus, X andQ areclassicallycorrelated: each state of the

preparetX represents a state Qf, or alternatively X reflects

S(E1Ez)=L1J2 (3.4)  (keeps in memonythe initial quantum state o®. If the

. . . . entropy of the quantum systef@ before transmission IS

[this is Eq.(3.11) applied to tgg composite chanheThis ;¢ ike in the previous sectionthe mutual entropy be-

relates the fidelity of the codg; ~* to the losd. ,5, yielding  tweenR and Q (as well as betweeiX and Q) is also S,

the Fano inequality for a quantum code unlike the value 3 found in the quantum use. Decoherence

now affectsQ by entangling it with the environment, just
Lip<2{H[FE¥]+(1-FZ®)In(d—1)}. (342 jike earlier. Thus

PXQ= Z pilxi){xil®pi, 4.2

As we noted throughout the construction of quantum chan-

nels, a factor of 2 also appears in the quantum Fano inequal- pr—>prr=2 pilxi ) {xi|®p] , 4.3
ity, commensurate with the fact that the loss can be twice the !

initial entropy. Inequality(3.42 puts an upper limit on the
fidelity of a code for any nonvanishing logs,. where

., = . T
IV. CLASSICAL USE OF QUANTUM CHANNEL pi =Tre{Uqe(pi®[0)(0))Ugeh, (4.9

In recent paperfl6,17], the capacity for the transmission and we assumed again that the environntens in a fixed
of classicalinformation through quantum channels has beeri'0” state before interacting withQ. Now our proof pro-
discussed. Essentially, this capacity is equal to the maximateeds as before, only that the loss in the classical channel
accessible informationy in the system, known as the obeys different inequalities. The requirement that the entan-

Kholevo bound28]. gling operationU g does not affecK or R now implies
What we show in the following is that the mutual en-
tanglement introduced in Sec. lll, i.e., the quantum mutual S(X":E'Q")=S(X:Q)=S(R:Q)=S (4.5

entropy S(R: Q') between the decohered quantum s@te

and the reference stale reduces toy if the quantum state is  (see Fig. 10

measured before it is transmitted, or, equivalentlyQifis Applying the chain rule to the left-hand side of E¢.5)
prepared by a classicareparer X Let the systenQR be leads to

purified again via a Schmidt decomposition as in &g5). If

we measurd in its eigenbasis, we can write S(X":E'Q")=S(X:Q")+S(X:E’'|Q"). (4.6)

B . The quantum mutual entropy between the preparer and the
|RXQ>_Z Vpilrixi), 4. quantum state after decoheren8€X:Q’), can be shown to
be equal to the Kholevo boung (see Ref.[29]). With
wherex; are the eigenstates &f (if X is in statex;, Qisin ~ L=S(X:E'|Q’) (the classical loss of the chanphale thus
statei, etc). (Figure 9 summarizes the relationship betweenconclude from Eqs(4.5) and(4.6) that
the respective entropigdNaturally then, tracing oveR, we
obtain S=x+L. 4.7
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where the basis states of the qubit can be taken to be spin-
1 states polarized in the direction, for example(Specifi-
cally, we use the conventiom,|1)=|1).) The depolarizing
channel is constructed in such a way that, due to an interac-

‘ l tion with an environment, the quantum state survives with
‘VA Upe 6‘ probability 1—p, but is depolarized with probabilitp/3 by
_ = either a pure bit flip, a pure phase error, or a combination of

both:
, 1-p
E E
(W) —— [¥),
FIG. 10. Unitary transformation entangling the “prepargor p/3

alternatively, the classical “memory”X with the pure environ- |‘I’> - 0X|\If)=a|1>+ﬂ|0>, (5.2)
mentE and the quantum syste@. Neither the referencB nor the oi3 ’
preparerX are affected by this operation. As the ternary Venn dia- |q,> O-Z|\P>: _ a|0> +ﬁ| 1),

gram betweerQ’, E’ and X’ is not pure in this case, mutual en-
tropy betweerQ” and X’ canbe shared b¥'. p/3
|\P> - a'xa'z|\P>: - a'|1>+,8|0>,

Note thatS(X:Q') is equal toS(R:Q’), the mutual en-
tanglement |5 introduced earlier, asS(X)=S(R) and

S(XQ')=S(RQ’). Thus

lo=S(R:Q") =y, (4.9

where theo’s are Pauli matrices. Such an arbitrary quantum
stateV can, without loss of generality, considered to be a
stateQ that is entangled with a reference st&esuch that
the marginal density matrix d@ can be written as

: Po=0a[0){0[+(1—q)[1)(1], (5.3

if known quantum states are sent through the channel, as

advertised. It was shown recently by Kholept7] that the — with entropy S(pg) = — Trpq log, po=H,[q] andq a prob-

maximum of the latter quantity indeed plays the role of chan-ability (O<qg=1). In other words, the coefficients and 8

nel capacity for classical information transmission, need not be complex numbers. Conversely, we can start with
such a mixed state at the input, and consiQd&t as apure

, ) quantum state that this mixed state obtains from. For ex-
C=max S(p )_EI PiS(p;) |=max x, 4.9 ample,
Pi Pi

. o |QR)=1—q|10)—g|0D). (5.4
where {p;} is a probability distribution of symbols at the _ _ _ .
source, angh/ are the(not necessarily orthogonafjuantum ~ Naturally then, the mixed state E(p.3) is obtained by sim-
states received at the output, with the probability distributionPly tracing over this reference state. Pure states with real
{pi} andp’ =3;p;p/ . Thus the quantitL, that we propose coefflments.s.uch as E@5.9 are not general, but suffice for
as a capacity for entanglement and/or correlation transmigh€ depolarizing channel a8 is always traced over.
sion reverts to the capacity for information transmissif Let us now construct a basis fQR that interpolates be-
the unknown quantum states areasurecbefore transmis- Ween completely independent and completely entangled
sion. This represents solid evidence in favor of our interpreStates, and allows us to choose the initial entropRakith
tation. Let us now calculate the quantities introduced here fo Single parameteq. We thus introduce the orthonormal
a specific simple model of quantum noise. g-basisstates
@~ (a))=1-0q|00) - Val11),
V. QUANTUM DEPOLARIZING CHANNEL
+(q)) = M=

The quantum depolarizing channel is an idealization of a @7 ()= \/a|00>+ 1-q[11), (5.5
guantum storage and transmission process in which the _ — A Al
stored quantum state can undergo bit-flip and phase errors. W7 (@) =+1-0|10) \/a|01>’

This is not the most general one-qubit charhielit appears ¥ _ P
to be sufficient to examine a number of interesting aspects of ¥ (@) \/al 10)+V1-q|0D).
quantum communication. Note that, forq=0 or 1, these states are product states, while

for q=3 they are completely entangled, and™(3) and

®=(3) are just the usual Bell basis states. The possibility of
Imagine a quantum state quantum decoherence of these states is introduced by entan-
gling them with an environment in a pure state, taken to be
[W)=al0)+B[1), 5.1 of the same Hilbert space dimension @R for simplicity,
i.e., a four-dimensional space for the case at hand. This is the
minimal realization of a depolarizing channel.
3A more general depolarizing channel could be constructed by Let us assume th&@R (for definiteneskis initially in the
allowing each of the possible errors a different probability. state| ¥ ~(q)), and the environment in a superposition

A. Quantum use
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[E) = V1=p[¥ (@) +\P/3[|® ™ (@) +|® " (@)+[¥ 7 (q)).  On account of the relations
(5.6

The environment an@R are then entangled by means of the x|V or(®)) =[P or(®)), 5.9
unitary operatolJ gre=Uqe® 1g, with
. (—ioy)|Vor(@)=]|Por(1-0)), (5.10
Uge=1®Py-(q)+0x®Pg-(q) +(—ioy)®Pg+(q) IV or(@) =[P or )
To2Py(a), ®.7 0o ¥ (D) =[P (1 -)), (5.1

whereP4(q) andPy(q) stand for projectors projecting onto

g-basis states. Note that the Pauli matrices act only on thand with obvious notation to distinguish the environment
first bit of theg-basis states, i.e., the entanglement operatioE) and quantum systemQR) basis states. Thépartially
only involvesQ andE. Depending on the entanglement be- depolarizedl density matrix for the quantum system is ob-
tweenQ andR, however, this operation also affects the en-tained by tracing over the environment:

tanglement betweeR andE. Thus we obtain the state

|Q"R'E")=Uqrd QR)|E) porr=Tre(|Q'R'E'YQ'R'E’])
=V1-p|¥or(@), Y& (q)) =(1-p)Py-(a)

+p/3Py-(Q) +Pg+(1-q)+Py+(1-0)].

+ P3| P r(A), P (9)) (5.12

+[®or(1-0),Pe (9) + [V or(1—-a), Pe(a))]
(5.9 Its eigenvalues can be obtained to calculate the entropy:

_cor=nl PP 2Patf, 20 |1 2P
Se(p,q)=S(QR)—H[3(1 a3 ,2(1 3+A),2(1 3 A”, (5.13

with H[ py, ... ,p4] the Shannon entropy, and The mutual entanglement is maximal when the entropy of

5 1 the source is maximdhs in the classical theoryi.e.,q=3
A=[(1-2p/3)*=16/3p(1—p)a(1—a)]"% (5.149  Then

By tracing over the reference state we obtain the density

matrix of the quantum system after the interactign , and _ o 1_o_ _
its respective entropy Co=maxlg=2-S(p.2)=2-Hp]-plog 3. (5.18

S'(p,q)=S(Q")=H, (5.19

2p

Together with the entropy of the reference statdich is
unchanged sincdk was not touched by the interaction
S(R")=S(R)=H,[q]; this is enough to fill in the ternary
entropy diagram reflecting the dynamics of the channel, Fig .5
5. We thus find the mutual entanglement processed by th $(@: R} P
channel,

lo=S(Q":R)=2H,[q]—Lo(p,q), (5.16

where the loss is

+S(p,q). (5.17

Lo(p,a)=Hy[q]—H, q+—(l 2q)

FIG. 11. Mutual entanglement between the depolarized §éate
and the reference systeRl =R, as a function of errop and pa-
The mutual entanglement is plotted in Fig. 11, as a functiortametery. Note that the channel is 100% depolarizingat§. The
of the error probabilityp of the channel and of the parameter concavity inq [according to axiontii)] as well as the convexity in
g which determines the initial entropy. p [axiom (iii)] are apparent.
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2.0 T T T |‘I’;(q))=\/a|110)+ Vl_q|001>’
L(p) where we used the indeX on the basis states to distinguish
15 - \C(P) 7 them from the two-qubit basis states introduced earlier. The

entanglement operation is as before, with a unitary operator
acting onQ andE only. Because of the additional trace over

wor i the ancillaX, however, we now find for the density matrix
pQrRr .
0.5 .
por=(1—2p/3)[(1—q)|10)(10 +q|01)(01]]
0.0 . L . +2p/3[(1-)|00)(00 +q|11)(11]. (5.2
0.0 0.2 0.4 0.6

Consequently, for the mutual information transmitted
through the channel, we find

I=S(Q":R)=H,[q]-L(p.q), (5.22

FIG. 12. Maximal entanglement transi&(p) and minimal loss
L(p) as a function of the error probabilify.

In that case, the maximal rate of entanglement transfer is two . ) )
bits (error-free transferp=0). The capacity only vanishes at With the (classical loss of information

p=3, i.e., the 100% depolarizing channel. This is analogous 2p 2p 2p 2p

to the vanishing of the classical capacity of the binary sym-L(p,q)=H ?(1—q), ?q,( 1- ?> (1—q),( 1- ?>q}
metric channel ap=31. As an example of such a channel, we

shall discuss the transmission of the entanglement present in 2p

a Bell state(one out of four fully entangled qubit pajrs —Ha q+?(1—2q)}. (523

through a superdense coding channel in Sec. VIA. The

maximal mutual entanglement and minimal loss implied bymaximizing over the input distribution as before, we obtain
Eq.(5.18 are plotted in Fig. 12 as a function pf This error

ratep can be related to the fidelity of the channel by C=maxS(Q":R)=1—H,[2p/3], (5.29
q
' p the result derived recently for the depolarizing channel sim-
QQ_1_pe " 1942
Fe "=1-p+3(1-20)% (519 5y from using the Kholevo theorefi6]. Note that Eq(5.24)

is just the Shannon capacity of a binary symmetric channel
whereF2'? is Schumacher's fidelity of entanglement intro- [20], with a bit-flip probability of 20/3 (of the three quantum
duced earlier. Note that this implies that the Fano inequalitg™r Syndromes, only two are classically detectable as bit

Eq. (3.39 is saturated afj= 3 for any p. flips).

VI. INTERPRETATION

B. Classical use . .
A. Quantum capacity and superdense coding

Now, instead of using the channel to transmit entangle- The interoretation of the capacity suggested here as a
ment (sending unknown quantum staktesne could equally P ; _capacily sugge -
guantum-mechanical extension of the classical construction

well use it to send classical informatioknown guantum can be illustrated in an intuitive manner with the example of
state$ as outlined in Sec. IV. Here we calculate the capacitythe depolarizing channel introduced above. The idea Fi)s that
for the transmission of classical information through the P 9 '

quantum depolarizing channel, and verify that the result iéQ reflects the capacity for transmission of quantum mutual

equal to the value obtained by Calderbank and $8pusing fhntropy(entta{lglerpentdar_1d/or claismlal mLormaDllcb:jmt tha(;
the Kholevo theorem. e amount transferred in a particular channel depends on

Before entanglement with the environment, let us measurgow this channel is used. A particularly elegant channel that

the mixed stat® via an ancillaX, after whichQ andX are usesl g to its full extent is the noisy superdense coding chan-
classically correlated, with mutu’al entropis[ q]. Note that nel. There, the entanglement between sender and receiver is

this operation leads to an entangled triglsR X at the outset used to transmit two bits of classical information by sending
as in Fig. 9, withS=H,[q]. We now proceed with the cai- justonequantum bif30,22. In a general superdense coding

. . scheme, the initial stal®R is one of a set of entangled states
culation as before. The basis states for the sy$@XR) are specified by classical bit€. This situation can be related to

then simply . X : . :
our previous discussion by noting that all entropies appear-
7 =/1—ql000 — 111), ing there are to be understood @mditionalon the classical
[x(@) 9/000) \/a| D bits C that are to be sent through the channel as shown in
Fig. 13. The von Neumann capacity introduced above is then
@5 (q))=1/q/000 + y1—q|111), 9 pactly
| @5 (a))=a|000 +1-q|111) (520 just

| ¥ (9))=+1-q|110 - Jg|001), lo=S(R:Q'|C). 6.1)



56 VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS 3481

pacity of this channel is not zero. While no information can
Q R be retrieved from the past in this case, the single qubit that is
sent through the channel still carries information, indeed, it
shares one bit of mutual entropy with the qubit stored by the
receiver. Clearly, this is still a quantum channel: if it were
w classical, the transmission of one bit could not take place
with unit rate and perfect reliability, due to the noise level
p=0.189. As the receiver possesses both this parti@Qld (
and the one that was shared earlig) (he can perform joint
measurementén the spaceQ’R) to retrieve at least one of
C the two classical bits.
An extreme example is thgephasingchannel, which is a
FIG. 13. Quantum Venn diagram for the noisy superdense coddepolarizing channel with only-,-type errors that affect the
ing channel before decoherence. Conditionally on the classical bitehase of the qubit. As is well known, classical bits are unaf-
C,QRis in a pure entangled state described by a Venn diagram ofected by this type of noise, while quantum superpositions
the form (—S,2S,—S). Note that no information abo is con-  are dephased. The channel becomes usélesshe storage
tained inR or Q alone i.e., S(C:R)=S(C:Q)=0. of superpositionsat p=0.5, yet measuring the qubit yields
one classical bit in an error-free manner. A calculation of
It is not immediately obvious that this von Neumann capacmax, SRQ’) for this channel indeed yields
ity is equal to theclassicalcapacity between prepar@isu-
ally termed Alice and the receive(Bob). However, it is lo(p)=2—H;[p]. (6.3
not difficult to prove [using the fact thatS(R:Q)
=S(R:C)=5(Q:C)=0] that Eq.(6.1) is in fact equal to the
maximal amount of classical information abdliextractable
from RQ’ (after Q decohereg which ig'

In this limiting case thus, it appears possible to separate the
classical (=1) from the purely quantum capacity. However,

it might well be possible that this cannot be achieved in
general. Below, we show that such an excessive von Neu-
mann capacityas in superdense coding consistent with a

x=S(RQ":C). 6.2 commensurate quantum Hamming bound.

Thus, in this example the amount of entanglement processed
in a channel can be viewed as the amountlagsicalinfor-
mation about the preparer of the entangled s@f This Classically, the Hamming bour|@0] is an upper bound
amount of information can readiwice the entropy ofQ (2  on the numbes of codewordg(bit strings of lengtim) for a
bits in standard superdense codinghich is classically im- code to correct errors:
possible.(The superdense coding and teleportation channels
will be discussed in detail elsewhére " /n

slzo ( i >$2”.

B. Quantum Hamming bounds

Having established this relation between superdense cod- (6.4)

ing and the general quantum channels treated here, let us

imagine that the qubit that is sent through the chartaetl  This is a necessarfbut not sufficient condition for error-
which is “loaded” with entanglementis subject to the de- free coding, which reflects the necessary space to accommo-
polarizing noise of Sec. V. Indeed, pf=0 the two classical date all the codewords and associated descendants for all
bits can be decoded perfectly, achieving the value of therror syndromes. Fa& codewords coding fok bits (s=2%),
capacity. It has been argued recer(t2] that this can be we can consider the asymptotics of E§.4) in the limit of

understood by realizing that besides the qubit that is senhfinitely long messagesn(—=), and find that the rate of
forwards in time in the channel, the entanglement betweegrror-free transmission is limited by

sender and receiver can be viewed as an antiqubithsekt-

wardsin time (which is equivalent to a qubit sent forwards in 1 L AWERY
time if the appropriate operations are performed on it in the R<-— n log, E ( i (5)
future). Thus, the quantum mechanics of superdense coding =0

allows for the time-delayederror-freg transmission of in-  \hare R=Kk/n is the transmission rate ami=t/n is the
formation, which shows up as excessive capacity of the ré3symptotic probability of error. Using

spective channel. On the other hand, it is known ffai

1) n—i
3] (6.9

unencoded qubiissuperdense coding becomes impossible if P _
p~0.189, which happens to be the precise point at which lim — - log, E i)r'(l—r)n—.
lo=1. This is related to the fact that at this point the purifi- n—e 1=0

cation of noisy pairs becomes impossible. However, the ca-

I P +(1 I !
=p 092; (1-p)log, 1—r
“That the quantum mutual entropy between a preparer and a quan- =H(p,1-plir,1-r), (6.6)

tum system is an upper bound to the amount of classical informa- . )
tion obtainable by measuring the quantum systéne Kholevo ~whereH(p,1—plir,1—r) is therelative entropy between the
bound is shown in Ref[29]. probability distributionsp andr, we can write
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R<H(p,1-pll1/2,1/2=1—H,(p). (6.7) ' In

2<> 3'( : )szzf‘. (6.11)

The relative entropy thus turns out to be just the classical =0

capacity of the binary symmetric channel, and measures theygceeding as before, the rate of such quantum codes is lim-

distanceof the error-probability of the channel relative to the jieq py

“worst case,” i.e., p=3. Note that relative entropies are

positive semidefinite. R<H(p,1-pl3/4,1/4=2—Sc(p), (6.12
For quantum channels, the standard quantum Hamming?1 _ o

bound for nondegeneraterthogonal codes is written ag8—  the von Neumann capacityq for the depolarizing channel

10] proposed in this paper, Eq.15 and(5.18. The latter is

always positive, and represents the distance between the er-
ror probability p of the channel and the worst-case error

t n p=13 (corresponding to a 100% depolarizing chapnéh
k i <on ; ; i
2 20 3 ( i )\2 , (6.8)  perfect analogy with the classical construction.
=

which expresses that the number of orthogonal states identi-
fying the error syndromes on thé ifferent messages must

be smaller than 2 the dimension of the Hilbert space of the VIl. CONCLUSIONS

quantum stateQ (n qubits. In the limit of largen, this We have shown that the classical concept of information
translates into an upper bound for the rate of nondegenerateansmission capacity can be extended to the quantum re-
guantum codes gime by defining a von Neumann capacity as the maximum

mutual von Neumann entropy between the decohered quan-
tum system and its reference. This mutual von Neumann
1 Ph 3\ i1\ entropy, that describes the amount of information—classical
Rs—— Iogz[z ( )(Z) (Z) ]—1 (6.9 and/or quantum—processed by the channel, obeys axioms
n =0 that any measure of information should conform to. As for
any guantum extension, the von Neumann capacity reverts to
which can(as in the classical casee written in terms of a  jts classical counterpart when the information is classicized
relative entropy (i.e., it reverts to the Kholevo capacity when measured or
prepared states are sgrdnd ultimately to the Shannon ca-
pacity if all quantum aspects of the channel are igndred,

R<H(p,1-pll3/4,1/4—1=1-S.(p) if orthogonal states are sent and measurd@thus the von
_ Neumann capacity of a channel can only vanish when the
=1-H[p]—plog 3. (610 classical capacity is also zero, but it can be excessive as

entanglement allows for superdense coding. In order to take
Thus the usual quantum Hamming bound limits the rate ofdvantage of this, however, both the quantum system that
nondegenerate quantum codes by the capacity based on Gfecoheresindthe reference system it is entangled with need
herent information proposed in Ref§l14,15, which is  to be accessible. In practical quantum channels this appears
thought of as the purely quantum piece of the capacity. Notgo be impossible, and the rate of practical codes must then be
that the positivity of the relative relative entropy doestin  considerably smaller than the von Neumann capacity. Yet,
this case guarantee such a capacity to be positive, which majecause of the inseparability of entangled states, a consistent
just be a reflection of the inseparability of the von Neumanrgefinition of channel capacitasto take into account the
capacity. full Hilbert space of the state. Whether a capacity can be

The quantum Hamming bound shown above relies oryefined consistentlythat characterizes the purely quantum

coding the error syndromes only into the quantum s@te component of a channel is still an open question.
that is processed, or, in the case of superdense coding, sent

through the noisy channel. As we noted earlier, however, a
guantum system that is entangled does not, as a matter of
principle, have a state on its own. Thus the entangled refer-
ence systenR necessarilypecomes part of the quantum sys-
tem, even if it is not subject to decoherence. Thus, the Hil- We would like to thank John Preskill for discussions on
bert space available for coding automatically becomes athe depolarizing channel, as well as Howard Barnum and
large as 2, the combined Hilbert space §f andR. Thisis  Michael Nielsen for discussions during the Quantum Com-
most obvious again in superdense coding, where the decogutation and Quantum Coherence Program at the ITP in
ing of the information explicitly involves joint measurements Santa Barbara, where most of this work was done. This re-
of the decohered)’ and the referenceR, shared between search was supported in part by NSF Grant Nos. PHY 94-
sender and receivefin a noise-free manngr The corre- 12818 and PHY 94-20470 at the Kellogg Radiation Labora-
spondingextendedquantum Hamming bound therefore cantory, and Grant No. PHY 94-07194 at the ITP in Santa
be written by remarking that while the coding space i 2 Barbara, as well as by a grant from DARPA/ARO through
only n qubits are sent through the channel, and thus the QUIC Program{Grant No. DAAH04-96-1-3086
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