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Abstract

We suggest that ensembles of self-replicating entities such as biological systems naturally evolve to a self-organized cn'tical
state in which fluctuations, as well as waiting times between phase transitions {“epochs”), are distributed according to a '1/ J
power law. Such distributions can explain observed frequency distributions in extinction events as well as fractal population
structures, and support the punctuated equilibrium picture of evolution. We demonstrate these concepts by analyzing a

population of coexisting self-replicating strings (segments of computer code) subject to mutation and survival of the fittest,

which constitutes an artificial living system.
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applied to systems that are driven to a critical state
which is robust to perturbations and whose macro-
scopic behavior is predictable to the extent that it fol-
lows power laws with exponents depending on geom-
etry and spatial structure. In general, the microscopic
processes giving rise to the self-organized critical state

are dissipative transport processes associated with a

threshold, or critical, variable. The paradigm for the
self-organized critical state is the sandpile: the critical
state is the self-similar and robust pile itself, the distri-
butions of sizes and duration of avalanches (resulting
from perturbations) follow distinct power laws, and
grains of sand are transported if the local slope of the

rn]_P exceeds a critical value, thus restoring the critical
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state.

It has been suggested [2-6] that biological popula-
tions are typically in a self-organized critical state, evi-
denced for example by a power-law distribution of ex-
tinction events. Furthermore, it was observed that pop-
ulation structures gleaned from taxonomic data [7]
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taxa within taxa is distinctly of the power-law type.
While this is a very appealing idea, especially in
view of the robustness of living systems, it has suffered
from being somewhat vague, mainly because of the
difficuity involved in modeling living systems. Specif-
ically, there is as yet neither a clear identification of

the self-aoroanized critical state of life or the agent that
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causes self-organization, nor a definition of a criti-
cal or threshold variable whose disturbance causes the
ubiquitous avalanches giving rise to power-law distri-
butions.

Here, we report the observation of seif-organized
criticality in an artificial living system, the tierra en-
vironment [8,9]. In thig system, strings of machine-
language-like instructions with the ability to self-
replicate in core memory “live” and co-evolve in an
environment subject to random mutation and selec-
tion of the fittest. As such, it is not a simulation of
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displays some of the uncanny hallmarks known from
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simple proto-cellular systems, such as growth of the

genome and increasing complexity. Most importantly,
this artificial environment offers the chance to control

the microscopic processes leading to complex behav-
ior, such as replication and mutation. Furthermore,
the macroscopic behavior is predictable via the usual
methods of statistical mechanics applied to an en-
semble of seif-replicating entities. As such, this is a
unique system to test the hypotheses of self-organized

criticalitv in Il\nng svstems

criticality systems.

Simple equations [9,10] reveal that in this system
the fitness of a string in the population is determined
by its replication rate, as measured by executing the
string’s instructions (its “genome”) and counting the
number of offspring per unit time. The principie of
“survival-of-the-fittest” boils down to a “survival-of-
the-most-populous”. Fitness is then a quantity that is
genotype specific, 1.e., each individual arrangement of
instructions in a string translates into a specific repli-
cation rate while the survival probability depends on
the fitness of the rest of the population. We can thus
think of fitness as a highly complicated function on
the space of all strings, while the population is char-
acterized by the current average value. Any popula-
tion, however, is metastable: a successful mutation can
create a new “best” genotype (or “master sequence”
[11]) with a higher replication rate that disrupts the
equilibrium and induces a phase transition to a new
“vacuum”, defined u_y the new dominant master se-
quence and its offspring. Note also that there is no
universal “best” string, as the system is in principle
infinite and open-ended.

The system of self-replicating strings can be treated
in a mean-field approximation that makes it amenable
to a statistical description in which the terms *‘vac-
uum” and “ puaac transition” arc pi'CCiSC information-
theoretic analogues of the respective quantities in con-
ventional statistical systems.

Let €; stand for the replication rate of genotype i,
and (€) for its average over the population. In the
mean-field approximation, for strings of length / sub-
ject to a mutation rate R (we are considering here
only external “cosmic-ray” mutations, which have an
etfect similar to copy-errors), the critical (self-tuned)
variable is the growth factor,
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In the equilibrium situation, the master sequence and
its e-degenerate offspring and mutants have y; = 0,

while inferiar ¢necies have /. < 0. This prevents ex-
Wie INTEror species nave y; V. inis prevents X

ponential growth of the most successful species in the
long run. An advantageous mutation, however, can
make y; > 0 for the new master sequence. Such a
disturbance causes the information contained in the
master sequence to be transmitted throughout the sys-
tem via the offspring, giving rise to avalanches that

are scale-indenendent. Gradually, all genotypes w /1ith
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a subcritical replication rate will become extinct and
be replaced: the system returns to its critical state.
Clearly, the normal state of such a population of self-
replicating entities is a superposition of a very large
number of metastabie states, with transitions between
them induced by mutation and copy-errors It under-

goes cnnntanpmm nh;\cp transitions if a mutation cre-

ates a genotype w1th v; > 0, ushering in a new “epoch”
of domination by a new species. In fact, in such a sys-
tem there is no scale that would set the average time
between avalanches, nor is there a scale setting the
size of the avalanche. The latier is determined by the
amount of information gained by the new master se-
quence. In a system with an infinite “supply” of infor-
mation (complex fitness landscape), we thus expect
both distributions to be given by power laws.

To test this hypothesis, we have analyzed the evo-
lution of an ensemble of strings subject to Poisson-
random mutations at a rate of R = 0.5 x 107® muta-
tions per site per unit time ( the unit of time is the ex-
ecution of one instruction). The strings are segments
of computer code of a specially developed instruction
set with only 32 instructions running on a virtual com-
puter. A mutated instruction most likely will cause
the program to “break”, yet occasionally may improve
it. The strings live in a strip of memory with a total
number of 131072 sites that can represent one instruc-
tion each, with periodic boundary condition (i.e., the
strip wraps on itself). It is typically inhabited by 600~
1400 strings of length 60~150, all offspring of a single
(handwritten) progenitor that is able to self-replicate
and used to “inoculate” the strip. For purposes of re-

f\r{\(‘l""l]’\!]lf\l we used the r\runnal ‘ancestor’’ written
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by Ray [8], who created the tierra system. As de-
scribed elsewhere {91, this ancestor is well-suited for
evolutionary experiments due to the amount of redun-
dancy in its code. The fitness landscape that this pop-
ujaiion explores is determined b, all possible ways io
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Fig. i. Fiiness curve for a iypical run. The fiiness parameier a
of the most successful (i.e., most populous) genotype is plotted
as a function of time, measured every million instructions for a
mutation rate R =0.5 x 1078,

ICUULC l lC tilllc to gt‘mmu: a blllglc Ullbplllls \l. (< BUS-
tation time) and the opportunity to trigger bonus CPU
time by developing the “genetic code” necessary to
perform certain user-specified tasks (see Ref. [9] for
details on this environment). In other words, we pro-
vide an environment containing information that the
strings can discover (through adaptive mutation) and
exploit.

The population adapts to this environment through
discontinuous jumps, as evidenced in Fig. 1. There,
we have plotted the “fitness-of-the-best” a versus total
number of instructions executed (i.e., time elapsed)
every million instructions for a typical run. For tech-
nical reasons, the measured quantity « is the replica-

tion rate € multiplied by the total number of instruc-

tions allocated to the strings in one “sweep” through
the population, with 0 < a < 1. The latter bound is
imposed only to maintain parallelism: in order to em-
ulate parallel coexistence, each string is allocated a

certain slice of CPU time and executed seriaily (see,
e.g., Ref. [8] for details). The visible noise in Fig. 1

is. main ]y due to mutations and finite-size effects. This

noise, of course, drives the fitness jumps that adapt the
population to the environment.

We have plotted in Fig. 2 the power spectral den-
sity of a typical fitness history, which reveals a clear
power-law distribution with P(f) ~ f~# and 8 =
2.0+0.05. Scaling exponents from other runs are com-
patible within the error bars quoted.

Fluctuations distributed according to a power law
are the telltale sign of a self-organized critical state
[ 1]. However, since there certainly are systems (such
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Fig. 2. Power spectrum P(f) of a typical fitness curve a(r)
(Fig. 1). The dashed line is a fit to P(f) ~ f~8 with
B=20+0.05.

as random walks) with identical power-law spectra
which are not self-organized, we have also measured
the distribution of waiting times between phase tran-
sitions, or length of epochs, in 50 runs under identical
conditions (save the random number seed), resulting
in 512 measured waiting times.

Tn ghtain tha waiting timac wo dotarminad that
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phase transition occurred if the fitness jumps discon-
tinually to a new level with a fitness increase of a min-
imum of 7.5%. As the resulting plot strongly suggests
that the fitness curves are fractal, this condition can-
not change the power law. Rather, fitness curves like
the one in Fig. 1 are expected to look similar at al!

srales {Hpv:] < etaircage [1 2] ), Plparl\; as we cannot
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measure waiting times ! ¢ > 500 with good statisti-
cal accuracy due to the finite lengths of our runs, the
distribution function shows finite-size effects that we
model with a cutoff parameter 7,

o
a

N(1)y ~77%e /T, (2)

Statistically more reliable is the integrated distribution
function

U'Waiting times are measured in units of millions of instructions
executed. Most runs where stopped after between 500 and 2000
million instructions where executed.
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E‘-n 2. Inteorated distriburion of times between nhage transitions 7
3. Integrateg gistribunior fimes detween pnase t f10ns

(length of epoch). The solid line is a fit to the incomplete gamma
function with a = 0.6 £ 0.1 and a cutoff parameter T = 540 £+ 40
modeling finite-size effects.
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tion, which is distributed with the same power-law
exponent as N(7). Indeed the resulting fit (shown in
Fig. 3) yields @ = 0.6 £ 0.1 and T = 540 £ 40 which
agrees with the fit obtained from N(7) within error
bars, but is more accurate. While we expect the co-
efﬁciem « to be universal, the cutoff depends on the

averace leneth of runs
verage length of runs.

A power-law distribution in waiting times has a
number of significant consequences. First, the distri-
bution of waiting times between events of a certain
size in a random walk model is exponential rather
than of the power-law type, as is the distribution in
all percolation-type systems not tuned to the critical

variable. It anpnears thus that temporal correlations are
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very sensitive to the level of self-organization and the
criticality of the model. Further, a power-law distri-
bution of epochs in a model of evolution may solve
a puzzling problem in biology, namely why there is
a fractal structure in taxonomic systems [7]. Indeed,
if the number of subspecies that a species generates

is pronortional to the time it dominates the nnr\ula-

proponioiiar W0 e Uil C 1L QONNNALS LT

tion, a power-law distribution of waiting times implies
a power-law distribution in the number of species N
with n subspecies, as measured by Burlando [7].
We have suggested that the normal state of an en-
sembie of seif-replicating entities is self-organized
criticality, the agent of self-organization being infor-
mation. We identified the growth factor v; as the crit-

ical variable and described avalanches of “invention™

lete camma func-
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that drive the adaptation of the population. We tested
these hypotheses in the artificial life system tierra and
found power-iaw distributions in the power spectrum
of fitness fluctuations, as well as in the distribution
of waiting times. Qplf—nrcﬂnnpd cr r‘ali[y in !iving
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systems has Wlde—ranglng consequences for theories
of evolution. On the one hand, gradualism is incom-
patible with criticality, and a punctuated equilibrium
picture is favoured (see, e.g., Ref. [ 13]). On the other
hand, the fractal nature of the fitness history (Fig. 1)
would account for fitness improvements on all scales

driven onlv by microsconic mutations. Furthermore
Grven only 3y mICrgsCopic mutations. urinermeore,

SOC in living systems may explain the fractal struc-
ture in the taxonomic system as measured recently.

Note added. After completion of this manuscript,
we became aware of Ref. [ 14], in which conclusions
similar to ours are drawn from a simple evolutionary
model.
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