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We thoroughly analyze isospin-violating effects in QCD sum rules for the masses of nucleons, X, and
:- hyperons. After comparing with experimental mass splittings in isotopic multiplets, we obtain for the
isospin breaking in the quark condensate (0~uu —dd ~0) /(0~uu ~0) =(2+1)X 10 ', a value significantly
smaller than the one usually adopted. We present arguments in favor of our result and critically analyze
previous estimates. The value of the quark mass difference md —m„=3.0+1.0 MeV (at normalization
point P =0.5 GeV) is also determined.
PACS number(s): 11.50.Li, 11.30.Hv, 14.20.Dh

I. INTRODUCTION

The pioneering work of Gasser and Leutwyler [1] has
made it clear that the difference of u and d quark masses
is nonzero even in the absence of electromagnetic interac-
tions, and is of the order of the quark masses themselves.
Weinberg [2] in his famous paper demonstrated that the
values of u and d quark masses can be determined from
the masses in the pseudoscalar nonet in a model-
independent way and found m„=4.2 MeV, md=7. 5
MeV, and

p=md —m„=3.3 MeV .

The nonzero value of p causes the difference between the
values of the QCD condensate of u and d quarks. The
parameter

& oIdd Io &

(O~uu 0) (1.2)

characterizes the isospin violation in quark condensates.
The knowledge of the numerical value of y is impor-

tant as it enters along with the mass difference p in the
determination of the value of isospin splitting in hadronic
multiplets, the violation of isospin in various decays, etc.
The magnitude of y is also interesting from the viewpoint
of nuclear physics. Indeed, it enters in recent attempts to
explain the discrepancy between the theoretical and ex-
perimental results on the difference of mirror nuclei
masses, known as the Nolen-Schiff'er (NS) anomaly [3].
The idea behind the explanations put forward recently
[4,5] is based on the reasonable assumption that quark
condensates in nuclei are suppressed compared to their
vacuum values and as a consequence the neutron-proton
mass difference in nuclei, entering in the formula for the
mass difference of mirror nuclei, is smaller than that for
free protons and neutrons.

The parameter y was calculated in a number of papers
using different approaches. Gasser and Leutwyler [6]
carried out the calculations in the framework of chiral
perturbation theory. Paver, Riazzudin, and Scadron [7]
considered the constituent quark model, whereas the
Nambu —Jona-Lasinio model was used in Refs. [4,5]. In
several papers y' was obtained from the mass splittings in
the framework of QCD sum rules [8—13], with results
ranging from —3X 10 to —1 X 10
We see certain shortcomings in at least part of the

above-mentioned calculations. For this reason we made a
new attempt at extracting the parameter y from the
values of the mass splittings in the baryonic octet based
on the QCD sum-rule technique (for a discussion of pre-
vious calculations and a comparison with ours, see Sec.
V).
From our point of view, this technique appears to be

the most promising to extract the y parameter. The
reasons are the following. Experimentally, the isospin
mass splitting in the baryon octet is known with good ac-
curacy. The electromagnetic contributions to the mass
splittings are reliably estimated [14] and are rather small,
especially for hyperons. The QCD sum-rule method of
mass determination works well in the case of the baryonic
octet: three terms of the operator product expansion
(OPE) are calculated and all the self-consistency checks
are satisfied. Using this method the baryonic masses
[15—17], magnetic moments [18,19], and other static pa-
rameters were calculated, all in good agreement with ex-
periment. In the baryon octet there are three values of
isospin mass splittings which can be used for the deter-
mination of y: n —p, X —X+ and:- —:- . (The
X —X splitting is not suitable for this goal due to the
mixing of the X with the A via isospin-violating interac-
tions. ) In the QCD sum-rule approach there are two
equations for each mass splitting, corresponding to
chirality-conserving and chirality-violating parts of the
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polarization operator. Therefore, there are six equations
in which y enters and many checks for self-consistency
can be made. An essential feature of these equations is
that y appears with opposite signs in the n —p (or
X —X ) and:- —:- splitting, while the n —p splitting
is more sensitive to p than to y. This permits us to ob-
tain reliable upper and lower bounds on y, while deter-
mining p in an independent way and allowing for a check
of Weinberg's prediction (1.1).

II. THE METHOD

p, 2=A, (l, m)5(s —m )+P, 2(s)0(s —8'f 2) .
Here, A, denotes the overlap

(olgl» =x,v,

(2.5)

(2.6)

between the vacuum and the respective baryon, while U~
is the baryon spinor. The functions P, z in the second
term of (2.5) are determined as the discontinuities of II& 2
at large s:

In the QCD sum-rule method for baryons we consider
the polarization operator

II(q)=i J d x(0 T[il(x)i)(0)] 0), (2.1)

P, 2(s)=—[II, 2(s +i@) II,—2(s —ie)] . (2.7)

where ri(x) is the current with the baryon quantum num-
bers. For the proton

il(x) =e' 'u'(x)Cy„u (x)ysy„d'(x) . (2.2)

Here, u'(x) and d'(x) stand for the u and d quark fields,
C is the charge conjugation matrix, and a, b, c are color
indices. In order to obtain the hyperon currents, the fol-
lowing substitutions must be done in (2.2):

11(q)=/II, (q )+II2(q ) (2.3)

and in good convergence of the OPE.
For each structure II, 2 we can write the dispersion re-

lation

1 P1,2(s)II, ,= J'—, d .s
7T 0 $ —q (2.4)

The left-hand side (LHS) of Eq. (2.4) is calculated in the
framework of the OPE at large negative values of q, i.e.,
q ~
))R, , where R, denotes the confinement radius.

In the OPE we keep terms up to dimension d =7. As
was shown in Refs. [16,17] (see also Appendix B of Ref.
[18]), operators of higher dimension (d =8 for Il„d=9
for II2) give small contributions to the sum rules. We
also neglect perturbative corrections of the order a, (as
can be shown using the results of Ref. [21] they mainly
affect the residue at the baryon pole, but not the baryon
masses).
The RHS of Eq. (2.4) is represented in terms of physi-

cal states, and modeled in such a way that the lowest-
energy baryon state is singled out while higher-energy
states are approximated by a continuum

9 ~s, d —+0
As discussed in Refs. [15,20], the current as defined in
(2.2) seems to be the most suitable one for the calculation
of baryon masses. It results in a relatively small contri-
bution of higher excited states in both chiral structures
II& and H2 of the polarization operator

(oiss io)
(oiuuio)

(2.8)

The best fit of hyperon masses to the QCD sum-rule cal-
culations is provided by the values m, =150 MeV and
P=—0.2 (see Ref. [19]).

III. SUM RULES FOR ISOSPIN SPLITTING
IN THE BARYON OCTET

In order to include isospin-violating effects, we need to
take into account the nonzero values of the quark masses
m„,md. In order to extract the isotopic mass differences,
it appears reasonable to consider the difference of the
sum rules for baryons that differ by isospin projection
only. Thus, we shall arrive at equations for the parame-
ters 5m, 5A, , 68, as well as y. Since we neglect elec-
tromagnetic effects, 6m represents a subtracted mass
difference

5m =(5m) „,—(5m)„, (3.1)

The continuum thresholds W& 2 (which may be unequal
in the general case), the pole position m, and the overlap

will be the variables to be determined from the sum
rules.
We apply the Borel transform with Borel mass M to

both sides of Eq. (2.4). This procedure is useful for
several reasons. It removes the subtraction terms from
the dispersion relation and suppresses the contribution of
excited states in the RHS of (2.4). It furthermore
suppresses the contribution of the next to leading terms
in the OPE of the LHS of (2.4), thus improving conver-
gence of the series. After the Borel transform, the sum
rules appear as equations that hold for a range of values
of M, the confidence interval, where the contributions of
higher-order terms in the OPE are small and the impact
of the parametrization of the excited states on the RHS,
which is model dependent, is minimal and does not
exceed the contribution of the pole term. This method
was used in Refs. [15—17] to determine octet baryon
masses in the absence of isospin violation. The parame-
ters m, X, and 8' were obtained with an accuracy of
about 10—15 %. There, it was shown that in the nucleon
case the quark condensate ( 0~ uu ~0) = (0 dd ~0) plays
the dominant role. When considering hyperons we must
include the strange quark mass m, which breaks the
SU(3) flavor symmetry, as well as the flavor symmetry
breaking in the strange condensate
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(m„—m ),&=—0.76+0.30 MeV,
(m —m + ),&=0. 17+0.30 MeV,

(3.2)

(3.3)

(m —m 0),&=0.86+0.30 MeV . (3.4)

Taking the experimental mass differences from Ref. [22],

(m„—m ) h, =1.29 MeV, (3.5)

(mz —mz+ )~„„,=8.09+0.09 MeV, (3.6)

(m —m 0)~h„,=6.4+0.6 MeV, (3.7)

we arrive at

5m& =2.05+0.30 MeV,
5m+ =7.9+0.33 MeV,

(3.8)

(3.9)

where (5m)~h„, denotes the physical (experimental) value
of the mass splitting, and (5m), ~ is the contribution due
to electromagnetic interactions. For the latter we use the
values given in [14]:

6m- =5.54+0.67 MeV . (3.10)
We shall take our calculations to linear order in the

isospin symmetry violating quantities, i.e., p, y, and m, .
The polarization operators for X+ and:- were calculated
in Ref. [17] to linear order in the strange quark mass. It
is then trivial to obtain the proton polarization operator
including the contribution from the light quark masses
mz „bysimply replacing m, by m~(m„) in the polariza-
tion operator for X+(:- ). The neutron result is then ar-
rived at by further substituting m„~m&. The appear-
ance of the y factor is also easily understood. In the
lowest-order diagram for the OPE of the polarization
operator of the proton (neutron), it is the u (d) quarks
that form a loop. Therefore, for the chosen form of the
source current (2.2) for the proton (neutron), the u (d)
condensate appears in the chirality-conserving structure
while the d (u) condensate appears in the chirality-
violating one (see also Ref. [5]). The polarization opera-
tors for X and:" can be obtained from the corresponding
formulas in Ref. [17] in a similar manner.
Thus, using Eqs. (14) and (17) of Ref. [17]' we obtain

the sum rules for the nucleon:

I2p[aM Eo(W~/M )L '—
—,'moaL ]+ ,'ya L Ie—

8'~—m~ L '( W~+ —'b)5 W (3.11)

m /M
[2@[ME2( W&/M )L —4a ]+2yaM E, (W&/M )]e

2 8'~—m~=5m 2 —1 A,~—6A,~m~+2a exp —,&~58»,M M
(3.12)

where 5f =f (n) f (p). —
The functions

Eo(x) =1—e
E,(x)=1—(1+x)e

(3.13)

(3.14)

XEz(x) =1— 1+x + (3.15)

take into account the continuum. The parameters a, b,
and m o are connected with the condensates

values used here see Ref. [23].)
The factor

4/9
ln(M /A )

In(P /A )
(3.19)

accounts for the anomalous dimensions (p is the normali-
zation point). In what follows we use the numerical
values A=150 MeV and p=0. 5 GeV. Also, we take the
value for the residue at the nucleon pole and the continu-
um threshold 8' obtained from the best fit for the sum
rule in the nucleon channel (isospin symmetric case, see
Appendix B of Ref. [18]):

a =—(2~) (O~uu~0) =0.55 GeV

h =(2m)'(0 G',G,"' 0)=0.5 GeV

(3.16)

(3.17)

=32m A. =2. 1 CJev
8~=2.3 GeV

(3.20)

(3.21)

—g p ~~. 6'.~ 0 =~,' 0~~02
(3.18)

with mo =0.8 GeV . (For a discussion of the numerical

We take this opportunity to correct a misprint in Ref. [17].
The factor 2 in front of the first term of Eq. (17) for 6&= should
be replaced by 3.
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For the sake of generality we have assumed that the
values for the continuum threshold differences 5W, 2& in
Eqs. (3.11) and (3.12) may be different although it is a
simple and plausible assumption to take them to be equal.
The sum rules (3.11) and (3.12) must hold in the Borel

confidence interval [16]

0.8&M &1.4 GeV

For the X hyperons we find, in a similar way,

(3.22)

( ', pm—oa—L '+ ,'ya L—)e =5hz —2iz5mz ——exp — L ' Wz+ — 4—m, a(l+P) 5Wiz,

(3.23)

m /M
—", a (p+ym, )e =—5m~ —1 A,~+5k,~m~ ——exp Wx [4a (1+P)+m, Wx ]5W~x,M

where 5f =f(X )—f(X+).
The constants Xz and Wz were determined in Ref. [19]:

3.7 GeV
=3 2 GeV

(3.24)

(3.25)

(3.26)

Equations (3.23) and (3.24) must be satisfied in the interval

1.2&M 1.8 Gev (3.27)

Note that in this case the isospin-violating effects manifest themselves only in the higher-order terms of the OPE; they
disappear at high q and do not contribute to the discontinuity; i.e. [cf. Eq. (2.7)],

5W' =5W' =0. (3.28)

The sum rules for the = hyperons read

2 /M2—2@a [M Eo(W-/M )L '+ —,'moL ]e = =5X=—2X-5m- ——exp W- —m—2 2

M
L '( W=+ ,'b)5W, =—,

(3.29)
m /M

I2p[M Ez(W-/M )L +—', a (I+P) ]+2ya [M"E,(W-/M )+—', am, (1+P)]je

=5k.-m ——5m— 2m -„2 —1
M

2a exp
W——m-2 2

W-5W2-, (3.30)

where 5f =f (:- )—f(:- ) and (see Ref. [19])
A,-=5.0 GeV (3.31)

=3.6 GeV (3.32)

The sum rules (3.29) and (3.30) are expected to be satisfied for Borel masses:

1.2&M &1 8 GeV (3.33)

It is instructive to also consider the linear combinations of Eqs. (3.11) and (3.12), (3.23) and (3.24), and (3.29) and (3.30)
which do not contain the unknown constants 5A, . We present them here under the assumption 5W& =5Wz for each
baryon. Putting the baryon mass splittings on the LHS of the sum-rule equations, we obtain, for the nucleon,

5m~=e X~ [ p[ 2M E~L + ', a —2m&EoaM L—'+—,'mzmoaL ]——2ya(M"E,+ ', am~L)—
—5W~exp( —W„'/M')[ ,' W~m~L '+ ,'bm„—L '—2a W&]] .—

For X hyperons (assuming again that we can neglect the isospin-violating effects in the continuum) we have

(3.34)

5m+ =e Xz I —",pa [a+—,'momzL ']——', ya (m&L —2m, )] (3.35)
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The analogous sum rule for =-hyperons takes the form
m —/M-5m-=e = X: I 2p[M E2L +~4a (1+P) +am (M-EOL '+—'moL )]

+2ya [M E, +—', m, a ( 1+P)]—5W- exp( —W- /M )[—,' m -( W- + ,' b)L—'—2aW- ] ] . (3.36)

IV. ANALYSIS OF THE SUM RULES

Each of the equations (3.34)—(3.36) can be written in
the form

5m =A(M )p+B(M )y+C(M )5W (4.1)

Of these equations, (3.35) is the simplest as 5Wz =0—see
Eq. (3.28). For this case straightforward evaluation
yields A@=1.4(1.7) and Bz=—0.85 GeV (—0.75 GeV)
for a Borel mass M =1.2 GeV (1.4 GeV ). Substituting
the values for the quark mass difference and the isotopic
mass difference p =3.3 MeV [Eq. (1.1)] and 5m z [see
(3.9)] we obtain, from (4.1),

y= —2.7X10 (—4.2X10 ) . (4.2)

However, because of the fact that only one term of the
OPE contributes to the X sum rules in this case, we can-
not attach too much significance to this result. Including
the uncertainties in (3.9) and an uncertainty of, say, 1
MeV to the quark mass difference, the only safe con-
clusion we can reach from the X-hyperon sum rules is
that y is negative, and lies somewhere in the interval—6X10 '&y&0.
Let us now turn to the nucleons and:- hyperons. In

this case we need an estimate for the difference in the
continuum thresholds for the particles differing only in
isospin projection. In the nucleon case, for example, we
expect a difference in the continuum threshold for the
neutron and the proton. It seems a priori reasonable to
assume that 68' is positive, and that for each baryon

6W' 6m
+72 m

(4.3)

A- =2.64 (2.75),
B-=1.15 (1.16) GeV,
C==—0. 174 (—0.277) GeV

(4.4)

for M =1.6 (1.2) GeV . The weak dependence of the
coefficients on the Borel parameter indicates a certain
amount of self-consistency in the sum rules. Using the
numerical values of p and 5m- as given by Eqs. (1.1) and
(3.10) we obtain

y ~ —3.5X10 (4.5)

Larger values of ~y~ are only possible at the expense of
larger values of the quark mass difference; e.g.,

The equation for the = hyperons (3.36) yields an impor-
tant piece of information as y enters with a positive sign
while C(M ) is negative. Thus, we are able to obtain an
upper bound on y~ by putting 5W- =0. The numerical
values for the coefficients A —C are

y= —5X10 requires @~4.5 MeV.
For the nucleon, Eq. (4.1) is satisfied with the

coefficients

A~= —0.46 (—0.61),
B&=—1.92 (—1.84) GeV,
C~=0.046 (0.065) GeV

(4.6)

at M =1.0 (1.2) GeV . From (4.3) we can estimate
68'& & 10 GeV, and therefore

C~(M )5W~ &&5m~—A~(M )p, . (4.7)

Thus, clearly we need a nonzero and negative value of y
to satisfy (4.1). Again, since negative values of y and pos-
itive ones for 68' contribute with the same sign to
5m&—A~(M )p, we obtain an upper bound for ~y~ by
setting 5W~=O. This turns out to be ~y~=2X10 for
p=3. 3 MeV. More precisely, with 6m&=2. 05 MeV,
@=3.3 MeV, and 5W~= 8 X 10 GeV, Eq. (4.1) yields

y =—( l. 5—2.0)X 10 (4.8)

for 0.8 M &1.2 GeV . The nucleon sum rule provides
a much stronger upper bound on y ~

than the = sum rule
for the case of large p: even for p=5 MeV we find that
~ y ~

is restricted to y ~
& 3 X 10 . However, it is clear

that there is a dependence on the Borel parameter M in
these sum rules, which indicates that higher-order terms
in the OPE are non-negligible and deteriorate the accura-
cy of the result. Therefore, our conservative conclusion
from the consideration of the sum rules (3.34)—(3.36) with
respect to y is

y=( —2+1)X10 (4.9)

Let us now study the sum rules (3.11), (3.12), (3.23),
(3.24), (3.29), and (3.30) which contain more information,
as it is possible to extract 6X in two ways from each of
the pairs of sum rules, and check if they coincide and de-
pend weakly on M . We have plotted in Fig. 1(a) the re-
sult for 5X& as calculated from (3.11) [curves labeled (1)]
and (3.12) [curves labeled (2)] for p =3.3 MeV,
y= —2X10, and 5Wf =5Wz= 1.0X10 GeV (solid
curves). The agreement is satisfactory and the M depen-
dence is weak. In fact, the agreement tends to be more
pronounced for slightly smaller values of ~y~. On the
other hand, we also find that the sum rules cannot be
made consistent for larger values of

~ y ~, such as the value
~y~ )6X 10 which was used in [6,7, 12]. A closer look
at the linear combination of the sum rules (3.11) and
(3.12) that eliminates 5X&, with the condition 5W& =5Wz
removed, reveals that it can only be satisfied for
5W, ))5W~. This being favored in the case of large ~y~,
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FIG. 1. (a) The values of 5X& calculated from the nucleon
sum rules (3.11) (labeled 1) and (3.12) (labeled 2) for p=3.3
MeV. The solid curves correspond to y= —2X10 ' while the
dashed ones were obtained with y= —6X10 '. (b) 6k& calcu-
lated from the X-hyperon sum rules (3.23) (labeled 1) and (3.24)
(labeled 2) for p =3.3 MeV. y as in (a).

we plot in Fig. 1(a) 5X& as predicted by each of the equa-
tions (3.11) and (3.12) for y =—6X 10 and
5WI =25 X 10 3 GeV, 58'z =0 (dashed lines). A
strong discrepancy between the sum rules is evident. We
would like to stress that the unreasonably large value for

25WI used serves to reduce the discrepancy between the
curves. Indeed, Eqs. (3.11) and (3.12) show that reducing

2 25WI or increasing 5Wz increases the discrepancy.
In the same way we can investigate the domain of

small ~y~. We find in a similar manner that a value of
y=0 can only be tolerated at the expense of a large
difference between 5WI and 6Wz, for instance, 6W =0
and 6W2 = 10X 10 GeV . This being unreasonable, we
can safely exclude y =0.
We present in Fig. 2(a) the results for the analogous in-

vestigation of the "-hyperon sum rules, Eqs. (3.29) and
(3.30). The solid lines correspond to y =—2X 10 7

6WI =5Wz =3X 10 GeV, whereas the dashed lines
were produced with y =—6X 10 and 6W =6WI
=15X10 GeV . Again, the values of $W were
chosen such as to maximize the agreement between the
curves. As before, good agreement is achieved for the
first case, disagreement for the second.
Figure 1(b) shows the result of evaluating Eqs. (3.23)

and (3.24) for the X-hyperon, with y =—2 X10,p =3.3

Fig. 2

FIG. 2. (a) The values of 6A.= calculated from the =-hyperon
sum rules (3.29) (labeled 1) and (3.30) (labeled 2) for p=3. 3
MeV. The solid curves correspond to y =—2X 10 while the
dashed ones were obtained with y= —6X10 . (b) Same as (a),
only for p=4. 3 MeV (solid lines) and p=2. 3 MeV (dashed
lines).

y =(—2+1)X 10
p =md —m„=(3.0+1.0) MeV .

(4.10)

(4.11)

MeV, and 6W, =5W =0
Finally, we would like to investigate the dependence of

the sum rules on the quark mass difference. As the =
sum rules are most sensitive to this parameter, we shall
focus on those. We have plotted in Fig. 2(b) the predic-
tion for 5X,—from Eqs. (3.29) and (3.30) [labeled (1) and
(2), respectively] for y= —2X10 and 5W =5W' =

—3 23X10 GeV for two additional values of p, namely,
p=2. 3 MeV (dashed lines) and p=4. 3 MeV (solid lines)
[see Fig. 2(a) for the intermediate value of p]. It is clear
that both choices lead to a serious disagreement between
the curves that can only be resolved assuming a large
difference between 6W, and 6Wz, which appears un-
reasonable. Comparing Figs. 2(a) and 2(b) we conclude
that p should be close to 3 MeV with an error (conserva-
tively) of about 1 MeV.
Our final results then for the quantities y and p as im-

plied by the sum rules (3.11), (3.12), (3.23), (3.24), (3.29),
and (3.30) are
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In order to put this result into perspective, let us corn-
ment on the approximations going into it. It is known
[16,18] that higher-order terms in the OPE neglected
here are small for the sum rule for the nucleon mass and
cannot change this value by more than 10%. In the sum
rules studied above, the contributions to the sum rule
coming from the highest dimension terms (d =6) in the
chirality-preserving structure (terms of the order
-pmoa) are always small, smaller than 15% of the main
term. We find that contributions of the type ya of di-
mension d =9 change the value of y only by a few per
cent.
Let us now discuss a, corrections. The a, corrections

to the terms proportional to y, ya, and ya can easily be
calculated using the results of Ref. [21]. They turn out to
be small ( 5 10%). The a, corrections to the main terms
of the OPE proportional to p are presently unknown. In
the (isospin-symmetric) sum rules for the proton mass the
a, corrections to the main term are relatively large.
However, as can be shown using the formulas of Ref.
[21], they mainly change the value of the residue X~ (in-
creasing it by about 25—30%) while only slightly chang-
ing the pole position (diminishing the proton mass by
about 5%). We believe that these conclusions carry over
to the sum rules including isospin violation presented
here. In any case we expect the corrections to y to fall
within the conservatively chosen error bars included in
the result (4.10). (The = sum rules imply that solely in-
creasing k is unreasonable as it leads to much smaller
values of y ~.)

V. DISCUSSION AND COMPARISON
WITH PREVIOUS WORK

In most instances of previous work, values of the order
y =—(6—10)X10, significantly different from ours,
were obtained. Let us therefore examine some of the ear-
lier results.
In the paper by Paver, Riazzudin, and Scadron [7], y

was calculated in a constituent quark model. Hatsuda,
Hdgaasen, and Prakash [4] and Adami and Brown [5]
(the latter in one of their approaches) used the
Nambu —Jona-Lasinio model. We believe that the values
for y obtained in these approaches are unreliable for the
following reasons. In QCD, as well as PCAC (partial
conservation of axial-vector current) type Lagrangians,
the value of the current quark masses can be obtained
with rather good accuracy. In QCD furthermore, it is
obvious that the value of y is strongly correlated with
p= md —m„. However, in the above-mentioned model
approaches, the relation of p to the other model parame-
ters is obscure. (E.g. , in QCD, p as well as the conden-
sates are renormalization-scale dependent. This concept

is absent in quark model and Nambu —Jona-Lasinio-type
approaches. )
In Refs. [9—12], y was obtained by calculating the po-

larization operators of the divergence of vector and axial-
vector currents in the framework of QCD sum rules. Ac-
cording to current algebra, y is related to IIV(0), the
vector-polarization operator at zero momentum transfer,
leading to y= —9X10 [12]. We are rather skeptical
towards this approach as it is well known [24] that the
QCD sum-rule method fails in the scalar and pseudosca-
lar channels. Indeed, it cannot explain the strong viola-
tion of the Okubo-Zweig-Iizuka rule in the pseudoscalar
channel [25]. Also, there are very serious problems relat-
ed to subtractions in this approach.
The analysis in Refs. [8,5] is more closely related to the

one presented here. In [8], y was determined from mass
splittings in the baryon octet via the QCD sum-rule
method, leading to a value y =—6X 10 . This ap-
proach differs from ours in several points: (i) a baryon
current different from the one adopted here was used, (ii)
the mixed condensate (3.18) as well as anomalous dimen-
sions were ignored, (iii) a different set of parameters was
used, namely, m, (0.5 GeV)=260 MeV, (ss) =0.5(uu )
as opposed to our m, (0.5 GeV) = 150 MeV,
(ss ) =0.8(uu ). We have serious doubts about the pro-
cedure to choose a mixing angle t adopted in Ref. [8]. On
the one hand, t is constrained to be the same for all
members of the octet, on the other hand it is chosen by
requiring that the continuum contributions in the
isospin-violating structures vanishes. Also, a vanishing
continuum leads to large higher-order terms in the OPE
side of the sum rule for baryons, since it is impossible to
approximate the functional dependence of the exponen-
tial exp( —m /M ) on the LHS with only a few terms
that have a power-law dependence on 1/M on the RHS.
In Ref. [5], the neutron-proton mass difference was

considered in the framework of QCD sum rules, and the
polarization operator was calculated, however, without
taking into account the continuum. Also, a systematic
analysis of the ensuing sum rules was not performed, as
its principal aim was to show the mechanism which made
the proton-neutron mass difference vary with density.
Nevertheless, moving the mass difference used by Adami
and Brown (@=4 MeV) towards the one adopted here
improves the agreement between the latter and the
present work.
We now turn to chiral perturbation theory, specifically

to the results obtained by Gasser and Leutwyler [6] for
the parameter y. Their equation contains an unknown
subtraction term, which, however, can be written in
terms of the fiavor SU(3)-breaking condensate parameter
P defined in (2.8). The final result from Ref. [6] is then

p
m, —(m„+md)/2 (5.1)

This is the case choosing the normalization point P=0.5 GeV adopted here (as in Refs. [15—19])rather than P =0.2 GeV as in Ref.
[21].
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where F„=93MeV and mz and m are the kaon and
pion masses. Numerically,

y=2. 3X 10 P—3X10 =—7.6X10 (5.2)

for P=—0.20. As we argued in Sec. IV, such a large
value of ~y~ is excluded in our QCD sum-rule analysis.
We do not see any loopholes in our arguments which
could possibly accommodate the result (5.2). We should
keep in mind, however, that (5.1) was obtained in first-
order chiral perturbation theory. The suspicion persists
that higher-order terms in the series could significantly
alter (5.2). Indeed, the second term in the square brack-
ets of Eq. (5.1) amounts to about 40%%uo of the total (5.2),
and arises as a loop correction in chiral perturbation
theory. It is nonanalytic in the quark mass (being pro-
portional to m Inm ) and of the same order of magnitude
as the first term in (5.1). Terms nonanalytic in the quark
mass are, however, absent in the polarization operator for
the baryon current (2.1). Should the result from chiral
perturbation theory prove to be stable, it would imply
that higher-order corrections to the OPE are unusually
large. We surmise that the calculation of higher-order
terms in chiral perturbation theory, as well as those re-
sulting from a, corrections to the isospin-violating QCD
sum rules for baryons, will help to resolve this discrepan-
cy.
Our final remark is connected with the proposed [4,5]

explanation of the Nolen-Schitfer anomaly. Using (3.34)
and our value for y it is easy to estimate how the
neutron-proton mass difference would behave if the value
of the quark condensate is reduced by some amount com-
pared to its vacuum value. We find that for y=—2X 10 a 10% reduction of the quark condensate in
the nucleus results in a decrease of the neutron-proton
mass difference by 1 MeV—just the value needed for a
resolution of the NS anomaly. A 10%%uo decrease of the
quark condensate inside the nucleus appears to be quite
reasonable.
Note added in proof In a recen.t paper [26] the

neutron-proton mass difference was calculated using
QCD sum rules. The authors claim that good agreement

with phenomenological data can be achieved for
y =—6.6X 10, in contradiction with the results
presented here. The main difference between the calcula-
tion in [6] and ours is that while we subtract the elec
tromagnetic mass difference from the experimental value
and construct the QCD sum rules for the remaining
(strong-interaction) piece, in Ref. [26] the electromagnet-
ic interaction was accounted for in the sum rules by in-
troducing a fitting parameter, thus calculating the entire
neutron-proton mass difference. Examination of the sum
rules presented in [26] shows that the electromagnetic
n —p mass difference as determined from the chirality
conserving sum rule (Eqs. (22) and (24) of Ref. [26]) is
equal to (m„—m ),&„=—0. 11 MeV while the sum rule
for the chirality-violating structure (Eqs. (23) and (25) of
Ref. [26]) yields (m„—m ),&„=—4.5 MeV. These num-
bers contradict each other as well as the phenomenologi-
cal value (3.2). The latter contradiction was noted by the
authors by observing strongly contradicting values for
the coupling constants for the two sum rules. In con-
clusion, we find that the agreement with the phenomeno-
logical value of the n —p mass difference obtained with a
value y =—6.6X 10 in Ref. [26] arises from a spurious
compensation of electromagnetic and strong interaction
efFects. In general, the standard QCD sum-rule method
cannot account for electromagnetic effects, as the contin-
uum model of pole+ continuum cannot reAect X+y ex-
cited states. As a consequence, factorization of the four-
quark condensate can no longer be assumed. Note that if
electromagnetic interactions are turned off in Eqs. (16)
and (17) and (20) and (21) of Ref. [26], they coincide with
the equations of this paper and lead to the same con-
clusions as presented here.
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