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Abstract:

We study scenarios for chiral symmetry restoration and deconfinement at finite temperature and/or density, based on
assuming universal scaling relations for some hadron masses. We explore and discuss consequences of this scaling assumption
in nuclear structure and show that most experiments support the scaling. The relevance of soft and hard scales as pertaining
to chiral symmetry restoration and deconfinement is emphasized, and scaling relations for nonstrange and strange Goldstone
bosons are presented. Theoretical support for the scaling relations is found from the analysis of effective Lagrangians in hot
and dense matter, as well as finite-temperature and finite-density QCD sum rules. Both approaches suggest the validity of
approximate scaling relations and identify sources of violation of the latter.

Finite-temperature hadron masses can be compared to the results of QCD lattice gauge calculations. We show that large
screening masses above 7, merging into chiral multiplets are consistent with thermal, rather then dynamically generated,
quark masses on the lattice. The results are consistent with vanishing dynamically generated masses above T, where T is
interpreted as the chiral symmetry restoration temperature.

We review the “dynamical confinement” scenario of hot quarks and show that the hadronic wavefunctions obtained
above T; are consistent with those obtained from recent measurements of the latter in lattice QCD. This suggests that there
are strong quark/antiquark correlations in the vector meson channels.

We conclude that for finite-temperature QCD, chiral symmetry above T is realized in terms of essentially massless
multiplets of chiral partners, and that chiral symmetry restoration is the only phase transition.
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1. Introduction

Progress in the understanding of hot and dense matter seems to be impeded mainly on two
accounts: On the one hand, experiments recreating the hot and dense environment are very difficult,
and data, while abundant, are hard to analyze and quantify. On the other hand, the underlying
theory, QCD, is nonperturbative. Historically, most of the attention was brought to the investigation
of the high-temperature phase, where new physics was most likely to be found. The main tools
in this undertaking turned out to be relativistic quantum field theory in an attempt to describe
the thermodynamics of the plasma phase microscopically, and hydrodynamic models focusing on
dynamics and global aspects of the phase. While yielding important insights, both approaches are
limited: the quantum field theoretic one because of persistent nonperturbative effects even at high
temperatures, the hydrodynamic one because in the relativistic heavy-ion collision environment
thermodynamic equilibrium does not seem to be achieved. The low temperature and density
phase (“low” in this context meaning below the respective critical values), on the other hand,
was considered uninteresting in the sense that the global properties, and in particular the mass
spectrum, were assumed not to differ from the zero temperature and density ones. On the whole,
this attitude seems more and more surprising. Indeed, it is generally believed that all dimensionful
parameters in QCD are related to the one true scale of the theory, Aqcp (as the quark masses
are believed to arise from the symmetry breaking mechanism of the electroweak sector). One such
dimensionful parameter, the quark condensate, was shown to change with temperature already in
early-eighties lattice QCD calculations, from which it might have been straightforward to surmise
that, if (gg) ~ AéCD, then since e.g. mn ~ Agcp we should conclude that all hadron masses should
change accordingly. In retrospect, we recognize that this conclusion was not drawn due to our
ignorance of just how to relate the dynamically generated scales to the fundamental one. No matter
how complicated these unknown coefficients are, however, in the absence of a symmetry principle
it would seem surprising if a change in Agcp would be exactly counterbalanced by a commensurate
change in the said coefficient.

As a consequence of these severe constraints, two very useful tools, lattice gauge calculations, and
effective model building, have gained prominence complementing the standard approach sketched
above. We attempt in this report to use these tools to outline a general picture of hot and
dense matter that reflects the qualitative features that have emerged from experiments and lattice
calculations. While this scenario and some of its consequences have been proposed earlier [1-3], it
is really the recent “discovery”, in lattice gauge theory calculations, that the QCD transition is very
probably of second order, more akin to a smooth crossover of thermodynamic variables [4-7], that
has provided a serious shake-up of firmly held beliefs. Indeed, the notion of gradual restoration
of chiral symmetry seems to imply that physical hadron masses below 7, must be affected by
this “reordering” taking place in the QCD vacuum. Secondly, the notion of a deconfined phase of
quarks and gluons above a certain critical temperature is under serious reconsideration stemming
from the observation, again in lattice QCD, of hadronic modes above T, [8], area-law behaviour
of the Wilson loop above T, [9], and confined bound-state wave functions [10]. We will attempt
here to tie these observations together, and provide a rough framework in which these phenomena
can be understood. Naturally, as the framework relies mostly on effective models, not altogether
consistent with each other, we do not claim to have a theory of hot and dense matter. Rather, we
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hope to stir discussions, and provide a somewhat novel point of view.

In section 2 we will present the hypothesis of Brown-Rho scaling as developed in ref. [11],
and proceed with a description of the Campbell, Ellis, and Olive [12,13] effective theory that
provides a mechanism for several of these scaling relations. We also point out effects that lead
to a violation of Brown-Rho scaling. In the third section we address the apparent contradiction
between the emergence of two independent scales (the gluonic scale set by the trace anomaly
to one-loop order, and the quark scale set by the quark condensate), and the universal scaling
hypothesis. Indeed we find that there are two rather different scales in the problem, namely a
“soft” scale, related to the cube root of the quark condensate |(Gg)|!/3, which sets the scale for
chiral symmetry restoration (this is the quantity we believe should be associated with the average
background field %, introduced in section 2), and a “hard” scale, related to the fourth root of the
gluon condensate (GZ,)!/4, which should be associated with the order parameter of restoration of
conformal symmetry; equivalently, with the fourth root of the bag constant B!/4, which enters into
the hadron to quark/gluon transition. This plays a crucial role in the quark/gluon phase transition,
and will turn out to be BY/4 = 245 MeV for two flavors*). We shall also show, by calculating the
energy associated with chiral restoration, that we can define an effective bag constant Beléf which
sets the scale for chiral restoration. The fact that these scales are quite different will have important
consequences for the transition from hadrons to quarks and gluons.

In section 4 we analyze density effects on the Goldstone bosons in the effective Lagrangian
approach. We point out the origin of the weak density dependence of the pion mass, and obtain
the density dependence of strange meson masses in the framework set forth by Kaplan and Nelson
{14, 15]. This is an instance where scaling is obtained in a model dependent way (chiral perturbation
theory). Yet, the consequences, for e¢.g. kaon condensation, are striking. Section 5 is devoted to a
review of the experimental evidence for scaling in nuclei.

We show how the apparent contradiction between the emergence of two scales and universal
scaling relations can be resolved to a certain degree in the QCD sum rule formalism in section
6, where we discuss the temperature dependence of hadron masses and widths using as input
temperature dependent vacuum condensates. Section 7 then is devoted to a review of QCD sum
rule calculations at finite density, with applications to hadron masses and the nuclear binding
problem. In section 8 we explore the consequences of the scaling hypothesis for the hadron to
quark/gluon transition proper, and try to connect our predictions with those of lattice gauge theory.
Furthermore, we sketch a schematic model that reproduces the general features of dynamical
confinement as observed in recent lattice calculations. We offer some conclusionary comments in
the last section.

2. Universal scaling and scale invariance: its breaking and restoration

The hypothesis of universal scaling, or Brown-Rho scaling, can be put succinctly: We claim that
many discrepancies between theory and experiment in nuclear physics can be understood if meson
masses decrease with increasing density at about the same rate as the nucleon effective mass. We
denote this temperature and density dependent fraction by @, i.e.,

o= R _Mp_my _m & _ A (2.1)
mN m, My Mg Jfr A

*) There is a weak flavor dependence in B, as will be shown later on.
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Here, and in the following, “starred” quantities are to be taken “in medium”, meaning temperature
and/or density, depending on the context. This concept of a universal, single, scale, can be argued
for directly from QCD, as apart from quark masses the theory indeed only possesses one such scale,
usually taken to be Aqcp. While this might be true in general, it does not seem to be a useful
concept by itself, as we are as yet incapable of calculating any low-energy observables directly from
QCD armed with just the knowledge of Agcp. Also, violations must arise at temperatures and
densities where T, u ~ Aqcp.

Initially [16, 17] the argument for the scaling (2.1) as an, at least approximate, universal scaling,
was made in terms of a dynamical model, in which pions were viewed as basic building blocks
of the mesons. The scaling behavior was detached from this particular microscopic model in refs.
[18,19], where the need for a single scale in the broken symmetry regime of QCD was argued
for. The scaling of f}/f; was shown to follow [20,21], at least at low momentum scales, from the
Goldberger-Treiman relation. While Nambu-Jona-Lasinio (NJL)-type theories produce the scaling
my/mn = mjy/mg [22], they do not allow for decreases in the vector meson masses unless the
cutoff A is also allowed to scale [23]. Arguments for the latter were put forward by the present
authors recently in ref. [24]. There, we suggested that extending the zero-range interaction of the
NJL theory to finite range requires A*/A = m}/mg,, while obtaining a formula for the nucleon
mass very much similar to the well-known Ioffe formula [25], obtained from QCD sum rules. This
scaling of the Nambu-Jona-Lasinio cutoff does not appear to follow directly from an extension
of the model to finite temperature and density. This, however, can be traced back to the explicit
breaking of scale symmetry in the process of obtaining the effective theory from the QCD effective
action, as gluon masses have to be introduced in intermediate steps (see, e.g., ref. [26]). However,
it was also realized by Kusaka and Weise that it is unreasonable to restore scale invariance in the
NJL Lagrangian by the introduction of a hard (gluonic) scale only [27]. A re-investigation of the
NIJL Lagrangian systematically keeping track of the scaling properties of the operators and restoring
scale symmetry appropriately shows that it can be modified so as to yield results roughly compatible
with our scaling hypothesis [28].

Independently of these developments, it was realized [21] that finite-density QCD sum rules
would predict hadron masses that, at least approximately, would scale according to (2.1). This was
demonstrated convincingly by Hatsuda and Lee [29] and Hatsuda et al. [30].

On an entirely different level, Campbell, Ellis and Olive [12,13] analyzed the QCD phase
transition in an effective field theory. They point out that low-energy effective Lagrangians for
spontancously broken chiral symmetry do not correctly reflect the operator scaling properties of
QCD. Whereas massless QCD is scale invariant at the tree level, some terms in the low-energy
effective Lagrangian do not have the correct scale dimension to be invariant. We will in the
following repeat Campbell, Ellis, and Olive’s arguments in a slightly more general way, and draw
our own conclusions about the implications for the phase transition.

The low-energy Lagrangian for spontaneously broken chiral symmetry may be written as

L= LfATr(8,U0*UY) + L€2Tr[Ly, L1 — e Tr{M,(U + U")} + - (2.2)

in an expansion in derivatives and quark masses. Here
8

U(x) = exp (i Z )”('b}&) (2.3)

i=0

is the “order-parameter field”, or more precisely, the phase of an order-parameter field (this termi-
nology is argued for below), and M, = diag(m,, my, m;) is the quark mass matrix. Furthermore,
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¢ is a dimensionful constant to be determined later, and L, = U'9,U. We neglect the Up (1)
anomaly, but include the fourth-order “Skyrme term” not considered by Campbell et al. This will
lead to some interesting consequences.

Spontaneous breaking of chiral symmetry arises through a nonvanishing vacuum expectation
value for the order-parameter field U (x). This may be related to the global order parameter (gq)
through a suitable average

©Oldalo) = 37 [ &x (OTe(U + UM (2.4)
Vv

Skyrmions (nucleons) arise through topological defects in the order parameter (solitons), and fluc-
tuations of the order parameter may be associated with the Goldstone bosons of the spontaneously
broken symmetry. This explains the parameterization (2.3) by pseudoscalar meson fields.

Although each term in the Lagrangian (2.2) has mass dimension four so as to give a dimensionless
action [ d%x L£(x), they do not (except for the fourth-order Skyrme term) correctly reflect the
operator scaling properties of QCD. Under scale transformations, a field ¢ transforms as

P(x) — e*p(e’x), (2.5)

where d is in general a matrix. Its eigenvalue, which should be 1 for bosons, and % for fermions,
is called the scale dimension of the field. The infinitesimal form of (2.5) is

dp = (d + x,0")p(x), (2.6)

where we left out the infinitesimal parameter a. The operators G, (x)G* (x) and v (x) B w(x)
appearing in the QCD Lagrangian have scale dimension 4, so that

dSqcp = /d4x5LQCD = /d“x (4 + x,0*)Lqcp = 0, (2.7)

where dLqcp is the change in Locp due to dilatation and the final equation results from a partial
integration. Hence, massless QCD is scale invariant at the tree level, while quark mass terms
have scale dimension d =3 and thus break scale invariance explicitly. On the other hand, the two
terms in the effective Lagrangian (2.2) have scale dimension d =2 and d =0, respectively. Low
energy effective Lagrangians of the type (2.2) are usually obtained “from QCD” by integrating
out the quark fields on the path integral level and expanding the resulting fermion determinant in
terms of derivatives. The scaling properties of the original Lagrangian are not preserved by this
operation, as it requires the introduction of an ultraviolet cutoff parameter as a regulator, which
explicitly breaks scale invariance. In the usual lore this cutoff is then related to f; to represent the
dynamically generated scale. Indeed, it is precisely the dimensionful parameter f; that spoils the
scaling properties of the effective Lagrangian (2.2). In the following we shall take the stance that,
while (2.2) is a good starting point, there is nothing sacred about it, particularly as the concept of
an ultraviolet cutoff governing the low-energy behavior in the guise of a pion decay constant seems
suspect. More specifically, we strive to restore the scaling properties of the QCD Lagrangian which
were lost in the regularization procedure. In addition to that, we will mimic the breaking of scale
invariance at the quantum level in QCD, through the emergence of a trace anomaly, by adding an
effective potential term to (2.2) that breaks scale invariance explicitly, and can be thought of as
arising through the Coleman-Weinberg mechanism [31].
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The minimal possibility [32] for restoring scale symmetry is to introduce a flavor singlet field
x with scale dimension d = 1. The correct tree-level QCD scaling properties can be restored by
multiplying each of the terms in (2.2) by appropriate powers of (x/xo) and introducing a kinetic
term for the y-field:

L=Lf (x/x0) TroUd*Ut + L0,00%x
—c (/x0) Tr {My(U + UN} + 1e?Tr[L, L,]2. (2.8)

Here, xo is the expectation value of the y-field, at zero temperature and density. This should of
course be nonzero and arise dynamically as the minimum of the effective potential for y introduced
below, thus replacing the dimensionful coupling constants (dimensional transmutation).

At the quantum level the QCD Lagrangian develops the well-known trace anomaly [33], which
breaks scale invariance explicitly. As we mentioned earlier, we mimic this by adding an effective
potential to (2.2). Such an effective potential breaks scale invariance much in the same way as the
trace anomaly does. We thus add* (b is a dimensionless constant)

Vet = %bx“{log x/x0) %~ %} (2.9)
to the Lagrangian such that
J/d“x (L + V) = /d“x (c (x/x0)’ Tr {My(U + UH} + bx“)
_ e, @.10)
where 6, is the energy-momentum tensor. In the chiral limit we obtain

(64 = bxg. (2.11)

In QCD, the expectation value of the trace anomaly is related to the bag constant, as the latter is
just the energy of the vacuum. Again in the chiral limit we have then

), (2.12)

where 8(g) is the QCD beta-function, g is the quark-gluon coupling constant, and G§, is the QCD
field strength tensor. The bag constant then is just

B = 1016410y = Lbxd. (2.13)

Comparing the energy-momentum tensors (2.10) and (2.12) we observe that the expectation value
(x* should be proportional to the gluon condensate (G?), as

a_ _B(g)
bx" = ST

At zero temperature, the effective potential for the y-field forces the field configuration to take
on the minimal configuration yo. This is a situation reminiscent of spontaneous magnetization,

G4)* . (2.14)

*) This parameterization of the trace anomaly is unique up to nonminimal terms (see ref. [34] for a thorough discussion
of this point).
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where the asymmetric vacuum has a lower energy than the symmetric one. Stability of the vacuum
requires that fluctuations around yo be small. These fluctuations are analogous to the spin waves
in a ferromagnet, and they are associated here with scalar glueball states, with a mass

M?E = Ve (X) /x| =10 = 402§ - (2.15)

The scale of these fluctuations is presumably M, > 1 GeV, and we do not expect to be able to
describe these accurately in this approach.

The instanton-liquid picture of the QCD vacuum (see ref. [35]) suggests to interpret yo as the
instanton background. Under the assumption that the trace anomaly is entirely due to instantons,
we would find

xt= %(11—§N,)(N+N), (2.16)

where N, N are the instanton and anti-instanton densities, respectively. While this (the saturation
of the gluon condensate by instantons) is an extreme point of view, it demonstrates that (x*) must
at least contain a piece that vanishes with chiral symmetry restoration, simply because it is known
that the long range instanton structure dissolves in that limit [36].

The precise form of yq is determined by solving the coupled equations of motion resulting from
Lest + Vegr. This was done some time ago by Gomm et al. [37] (in the absence of explicit chiral
symmetry breaking) and revealed the dual nature of yo, in the sense that it can describe bag
formation (chiral symmetry restoration inside the nucleon), or scale symmetry breaking, depending
on the magnitude of B = %bx(‘)‘. This duality will be discussed in more detail in sections 3 and
6. Here we shall organize our expansion in such a way that the averaged finite-temperature/density
expectation value of y is small, and therefore describes the approach to chiral restoration (see
below). Let us first discuss the separation of the classical from the quantum pieces of the field
at zero temperature/density. Specifically we shall treat y, as another order parameter (initially
associated with scale symmetry breaking), and denote fluctuations of the order parameter with x”:

X=xo+x'. (2.17)

At finite temperature and/or density, the equations of motion force y to develop an in medium
expectation value

Xs = (xlxl%) . (2.18)

There is an intricate interplay of temperature and density effects on the order-parameter fields,
which we would like to elucidate in the following. Let us first redefine the order-parameter field
associated with chiral symmetry breaking as

0, (x) = L+ Tr {U(x) + UT(x) }|%) (2.19)
and rewrite the explicit symmetry breaking term as
Ly = —Cc'y’0, (2.20)

which suggests that the quark mass term is the source of explicit chiral as well as scale symmetry
breaking. The o-field is not dynamical, and does not propagate. The constant ¢’ may be estimated
via the Gell-Mann-Oakes—Renner relation

' =mify/xd. (2.21)
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Fig. 2.1. Sketch of Skyrmion profile (solid line) and dilaton field (dashed line) in a Skyrmion crystal (estimated, arbitrary
units). (a) Low density, (b) high density.

In explicit Skyrme-model calculations at finite density (baryon number Nj) it can be shown [38, 39]
that the space average of g, tends to zero with increasing baryon number (in the absence of explicit
chiral symmetry breaking). In fact, this quantity is used as the order parameter for chiral symmetry
restoration in ref. [38]. The vanishing of the space average of o, (x), &,, is easily understood seeing
that for total winding number (baryon number) Np we find in a sphere with radius R

3

R
TR /rzdrcosﬁ(r), (2.22)

0

5= 5 [V LAGTIU + U = f;

where 6(r) is the Ng-Skyrmion solution with boundary conditions
g(r) =0 (r— o), 6(0) = Npm. (2.23)

Thus, for large Np the space average of the order parameter tends to zero although o, (x) does
not vanish everywhere. In ref. [37] the authors found that in the “small-bag-constant scenario” the
coupling between the order-parameter fields (at zero temperature in the one-baryon sector) force
Xo to vanish close to the nucleon center. Tentatively generalizing these results to the Skyrmion
crystal (this was done explicitly only on the hypersphere by Reinhardt and Dang [39]) we expect
X« to vanish almost everywhere except between nucleon sites (see fig. 2.1). This would suggest that
there are in fact two ways in which the quark condensate can vanish at finite density. Generalizing
eq. (2.4) we define

(@0 = —c [ @01 (/20 Tr (U + UDI). (2.24)
14

We now introduce a finite-density/temperature quantum field ' by
X=x+x' (2.25)
and insert into (2.24) such that

_ 1
(99)" = ‘07/ (ts/20)> (HITr(U + UT)x)d3x
Vv

~ —c (Fs/20) Gs (2.26)

obtained by neglecting the quantum fluctuations in the space average. Here, we introduced the
space average of the gluonic order parameter

_ 1
io= 5 / dxxa(x) . (2.27)
14
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Thus, the in medium quark condensate can vanish either because the average of the order-parameter
phase &, vanishes, or because ¥, does. We would like to stress again that this does not imply that
scale symmetry is restored inside the nucleon. Our choice of splitting the quantum field y (see
eq. (2.33) below) isolates the piece of y associated with chiral symmetry restoration, since this is
the piece we are interested in. Other choices (for example expanding around the unaveraged y.),
while possible, will result in effective Lagrangians that reliably describe the physics at a different
scale.

Let us now consider the case of vanishing baryon number. This case is in some respects more
tricky in this approach, as the behavior of ¢, with temperature has not yet been worked out
numerically. We might surmise, however, that at zero density and finite temperature

0. = Ll Te(U + UNx) = L A(0ITr(U + UD0) = f; (2.28)

as in the trivial (Np = 0) sector U ~ 1. With the above definition of bulk quark condensates, we
find

(39)*/(da) = (Te/x0)° s (2.29)

which leads to one of the scaling relations we are advertising. In case (2.28) is violated through
temperature effects on Tr(U + Ut), the detailed behavior of o, will change, but none of our
relations will be significantly altered.

The change in yx, is induced by finite-temperature corrections to the Coleman-Weinberg effective
potential. Very generally, these tend to shift the minimum of the effective potential towards y, = 0,
and the transition to a x. = O vacuum can occur either smoothly or by tunneling. While this
depends on the precise nature of the temperature corrections, it can be said in generality that
the vacuum with y, = 0 (melted instantons, vanishing gluon condensate) cannot support glueball
fluctuations, as the effective potential is odd in ¥ and an expansion of the form (2.25) around
%+ = 0 does not make sense. However, we expect this to happen only at temperatures well outside
of the range considered here.

In order to select a suitable order parameter for the expansion, let us return to the instanton-liquid
picture. Equation (2.16) suggests that x4 describes finite-temperature instanton, or caloron, fields.
This caloron background is highly nonlinear. As noted by Shuryak [35]

(G*GH)/(GH? ~ 8, (2.30)

which indicates strong spatial fluctuations in the gluon fields. However, quarks are only weakly
affected by the nonlinearity. Indeed, in the simple picture where quarks condense due to zero modes
in the energy spectrum of quarks propagating in the instanton background, the quark effective mass
is given by (neglecting current-quark masses) [40]

Mgy = —37%(4q)p*, (2.31)

where p is the instanton radius. Consequently, quark—-instanton interactions are governed by the
much smoother quark condensate for which [35]

(99d49)/{dq)* ~1.2. (2.32)

The smoothness of (7gqq) is due to its being composed chiefly of spatially constant fermionic zero
modes. In order to describe quark-background interactions we would therefore like to extract a
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piece from y for which the vacuum saturation hypothesis is approximately valid. This is clearly
the space averaged expectation value (2.27). Therefore, in the following, we would like to expand
around the order parameter %, and in this way include all long-wavelength fluctuations, while the
high-frequency ones (nonlinear pieces) will be lumped into the (redefined) quantum fluctuations
X' [11],

pa——— (2.33)

This procedure leads to scaling relations in the following manner. Substituting (2.33) into (2.8),
and neglecting the terms involving the fluctuations y' yields the following effective theory with
renormalized coefficients:

L= 312 Gux0) Tro U0 U — ¢ (1/x0)’ Tr{M (U + UM} + 1> Tr[L,, L, 1%, (2.34)

The neglected higher powers of y’ represent purely gluonic fluctuations which couple only weakly
to the quarks as noted earlier. These fluctuations are associated with true gluonic degrees of freedom,
the scale of which is not (x,)* but rather x4 The latter quantity sets a higher scale and should
be related to the gluon condensate (G?). We estimate that the neglected terms are of the order of
magnitude of the gluon condensate contribution to hadron masses in QCD sum rule calculations
(see section 6). These were shown to enter at the 15% level in the expressions for masses of
hadrons made up of light up and down quarks in ref. [41], and they lead in principle to violations
of Brown-Rho scaling due to the emergence of the glueball mass scale. Explicit calculations (see
sections 6 and 7), however, show that the coefficients of these corrections are themselves suppressed,
such that the overall effect is more akin to a renormalization of the quark condensate.

Let us return to the effective Lagrangian (2.34). The expansion and truncation leads to an
introduction of factors x,/xo, which assure that each dynamically generated scale is renormalized.
For example we find an in medium renormalized pion decay constant

2= G20 fr - (2.35)

At finite temperature and vanishing baryon density, this (in conjuction with (2.29)) leads to the
scaling law

(da)*/(aa) = (f711)°, (2.36)

which is the relation discussed in ref. [21].

Equations (2.35) and (2.36) are remarkable in several respects. Indeed, y,. plays the role of the
o in the linear sigma model, although it is not a dynamical field. In the nonlinear sigma model, the
“elementary” gq scalar field is eliminated and does not propagate, in contrast to, €.g., the Nambu-
Jona-Lasinio model, which is more akin to a linear sigma model and which has a scalar meson
below 1 GeV. The latter model can be bosonized by replacing the gq field by ¢(x)U(x), where
¢(x) is the modulus, and U (x) the phase of the order parameter. When the bosonized version
is made scale invariant by coupling to a dilaton field [28], an additional scalar is introduced and
one witnesses mixing between scalar meson and glueball states. In the nonlinear approach, the role
of the modulus ¢(x) is played by the gluonic field y,(x), and therefore encompasses the quark
and gluon scales at the same time. Once again, the space-averaged field y, describes the approach
towards chiral restoration via eq. (2.26), although it originated as a gluonic field.

Another scaling relation [11] can be obtained quite trivially by considering the scaling properties
of the so-called Skyrme term,

Loy = Y2Tr[L,, L] . (2.37)
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This term is the only possible fourth-order term quadratic in the time derivatives, is clearly scale
invariant from the outset and does not require powers of (x/x¢). It can be obtained in the hidden
local gauge symmetry scheme of Bando et al. [42] by integrating out the vector meson degrees of
freedom. In this approach, the arbitrary coefficient of the Skyrme term is identified as

€2 =1/(8g%), (2.38)

where g is the hidden vector-meson gauge coupling. Furthermore, analysis of the hidden-gauge
Lagrangian reveals that the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relation is
fulfilled, thus

md = 2g2f2 . (2.39)

Ignoring O(1/N,) corrections and setting my = m, = m, we can then rewrite the coefficient of
the Skyrme term,

oy = 2T Lo L] (240

This is another demonstration of the power of the effective Lagrangian approach, as the scale
invariance of the Skyrme term assures that there is no renormalization of the vector coupling at
finite temperature/density, a result that squares nicely with the well-known nonrenormalization of
the p-meson coupling (p-universality) observed at zero temperature/density (see, e.g., ref. [43]).
At the mean-field level (where g4 = 1) we thus obtain

my/my, = [/ fa. (2.41)

It has been known for some time that effective Lagrangians of the type (2.34) possess soliton
solutions, which can be identified with the nucleons [44]. The mass of the latter is of course
related to the pion decay constant, and scales like it: my ~ f;. As f; is renormalized at finite
temperature/density, we expect from a Skyrme-type model to find

mi ~ f . (2.42)

Whereas it appears that as a consequence the nucleon mass drops as f*, we should point out the
following. While indeed the effective mass my; scales with f},

my/mn = 7S, (2.43)

the energy of the nucleon also depends on the vector condensate (vector field), which develops as
a collective field of the nucleons at finite density. Thus, the chemical potential uy of the nucleon
does not obey a scaling law as in (2.1); in fact, it clearly increases as densities increase above
nuclear matter density pg. As a consequence, the nucleon energy does not obey the scaling law
(2.1); rather it stays approximately constant up to densities comparable with pg.

Finally, we would like to comment on the scaling of scalar excitations in this model. This issue
is somewhat obscured in this approach, as it does not allow for a dynamical scalar meson. The
“nuclear-physics scalar” of mass m, ~ 4m, is a substitute for correlated pairs of pions coupled to
angular momentum J = 0. These correlations may be thought of as arising from pairs of pions
scattering on each other chiefly via t-channel p-meson exchange. While the latter does scale, the
connection to the scaling of m, is not immediate. It does, however, arise in /inear sigma-model
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Lagrangians, and we therefore include it in the list (2.1). We shall return to a discussion of this
effect in section 7. The scaling of the scalar glue-ball states is even less clear, as from (2.15)

My /My = X./Xo- (2.44)

However, no averaging enters into (2.44), and as a consequence the scaling of glue-ball states is
not immediately connected to chiral restoration, and thus not accessible in this approach.

3. Two scales: chiral and conformal restoration

The idea that two scales effectively control low-energy strong interaction physics is by no means
new. Shuryak [45] pointed out over ten years ago that two fundamental scales emerge in the guise
of the confinement radius Ry, and the constituent quark size Rg. The disparity in these scales,
he concluded, should be reflected in different temperatures for deconfinement and chiral symmetry
restoration. We would like to pursue this idea in the light of more recent developments, and point
out the connection of the scales mentioned above, to the fundamental vacuum condensates of
QCD, the quark and the gluon condensates. As we would like to show, these give rise to two rather
different bag constants, one related to chiral symmetry restoration, the other to scale symmetry
restoration. Mainly, however, we would like to emphasize the duality inherent in this two-scale
picture. Indeed, it is clear that the two scales cannot be totally independent. For example, it seems
intuitively obvious that in order to have a quark condensate, condensed gluons must be present. A
condensate is, after all, just the expectation value of the relevant quantity in the vacuum. Quarks
must be held together, at a fundamental level, by gluons in order to condense in the vacuum. Thus,
a condensate of quarks has both an expectation value (§q) as well as ((as/m)G?). This is most
obvious for the heavy-quark condensate, for which the heavy-quark expansion yields [41]

(@q) = —5m5 ((as/m)G?) + O(m3?) . (3.1)
Q Q

As a model for the duality of descriptions (in terms of quarks or in terms of gluons), we would
like to present a simple scenario which shares some of the salient features that we would like to
elucidate. Instead of the “elementary” condensates, let us consider a hadronic one, e.g. the pion
condensate. The usual pion condensate is, in a simpler language, a spin-isospin ordered state of
nucleons. The criterion for forming such a state is that the small-amplitude spin-isospin sound
becomes unstable. Consider specifically a 7z~ condensate in a neutron star. The condensed pion
field can be described as a classical field, connected to its source by the equation

(U2 —m2 + V) (p(r)) = J(r), (3.2)

where J(r) is the nucleon source
10 = V1L v oy, (3.3)
n

and f the pseudovector coupling constant. The chemical potential u, is related to neutron and
proton chemical potentials by

Hn- = Un— HUp (3.4)
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Fig. 3.1. Instanton polymer model of the pion [46]. T denotes an instanton, 7 an anti-instanton.

and serves as the energy of the pion field. The density of (negatively charged) pions in the
condensate is

(Pr-)c = 2/‘n‘(¢(r)>|2 . (3.5)

In the above equations, the brackets indicate the expectation value in the condensate, which can
be thought of as describing the new vacuum, the one with a condensate present. The energy of the
new vacuum must, of course, be lower than that of the perturbative (bare) vacuum if it is to be
the true ground state. We have dealt with the charged 7~ condensate here, rather than the neutral
n° one, in order to have a nonvanishing charge density (3.5).

We now have equivalent order parameters for the condensate, either the classical condensed pion
field (¢(r)) or the condensed source function V - (t/lgm//,,). Both of these are pseudoscalars, so in
order for either of these operators to develop a vacuum expectation value, the symmetry of the
bare vacuum must be broken. We can, then, equivalently talk about a pion condensate, or about a
wgav/n condensate, the two being linked by the classical field equation (3.3).

A possible, more microscopic, description of the pion condensate is to consider [46] the pion as
an instanton polymer, composed of a quark and an antiquark rescattering through instantons and
anti-instantons. Clearly, in the graph of fig. 3.1, it is possible to cut the quark and antiquark lines
so as to determine the gg content of the pion, or to cut the instanton and anti-instanton, in order
to determine the gluon content, much like in the pion-condensate picture presented above.

Incidentally, rather than coupling the § and ¢ to an isospin / = 1,J = 0~ state, in order to
represent the pion, we can also couple them to I = 0,J = 0% giving rise to a scalar excitation,
part of the g-meson. In order to have a complete description of the problem of interacting pions
and nucleons, or of scalar particles ¢ and nucleons, we should also give the nucleons a description
in terms of quarks and gluons, as well as the interaction between nucleon and pion or o.

Roughly, we can think of the two scales in this problem as the energies associated with the
restoration of two (approximate) symmetries of the perturbative QCD Lagrangian: The energy
associated with scale-symmetry restoration (which we shall denote by the bag constant B), and the
energy associated with chiral symmetry restoration (denoted by B,sg). As noted earlier, the true
bag constant for the QCD transition from hadronic matter to perturbative quark/gluon matter is
given by the trace (conformal) anomaly as [47]

B = —}(0|[B(g)/281(G5,)?0), (3.6)
where
g3
B(8)=—1—6?(11—%Nf) (3.7)

is the beta function of QCD to one loop, and N is the number of flavors. The value of the gluon
condensate

2
f—n2(0|(Gz,,)2|O) ~ (330 MeV)* (3.8)
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is well pinned down from the states of charmonium using the QCD sum rules [41]. For N, flavors
we then find

N\ 14

Bl/4 = 165 (33—6._f) MeV, (3.9)
which, for two flavors, becomes

B4 = 245 MeV (two flavors). (3.10)

This is the “hard” scale, the scale for conformal restoration or, equivalently, the decondensation of
gluons. Up until this decondensation, matter is not perturbative, even though with chiral restoration
it may be more convenient to use the language of quarks and antiquarks rather than that of mesons.
These quarks and antiquarks must, however, be connected by line integrals of the gauge potential if
the description is to be gauge invariant, in the sector of broken conformal invariance. Consequently,
they do not make up a perturbative quark gas. We will return to this question in section 8.3, when
we sketch a schematic model for dynamical confinement.

In order to obtain an estimate for the energy associated with chiral symmetry restoration, we
have to make use of a model description. An interesting and instructive hadronic model that is
easily extended to finite temperature and density is the model of Nambu and Jona-Lasinio [48]. It
naturally incorporates a chiral symmetry restoring transition, and can be used to predict the finite-
temperature and/or density dependence of hadron parameters [23,22,49]. In the sense discussed
in the previous section, this model is more akin to a linear sigma model, and as such the pole in
the scalar propagator turns out to be rather low. In other aspects, the model predicts a more or less
linearly decreasing constituent quark mass as the density is increased, and a mean-field type decrease
of the quark mass with temperature (see ref. [50] for a rather complete analysis, and references
therein). As mentioned earlier, however, these calculations are performed with a fixed cutoff in
order not to perturb the fragile fitting of parameters. Since the cutoff of the Nambu-Jona-Lasinio
model should be thought of as mimicking a physical (dimensionful) parameter of the theory, the
former procedure appears to be arbitrary in the light of the scaling relations. Scaling the cutoff 4 of
the NJL model with the glue-ball mass leads to the restoration of scale invariance together with that
of chiral invariance [27,28], which is not supported empirically. However, the NJL Lagrangian
can be modified in such a way [28] that Brown-Rho scaling [11] results. In the following, we
take a much simpler approach by just assuming a scaling behavior for the cutoff as dictated by
(2.1). In this scenario we would like to calculate the vacuum-energy difference between the (chiral)
symmetry-restored vacuum inside the nucleon, and the broken phase outside, and associate this
energy with the soft scale, the bag constant as it appears in the MIT bag model, which we denote
by BxSR-

In the Nambu-Jona-Lasinio model, the vacuum develops an expectation value for the scalar field.
A simple model for this is to consider a system of fermions in negative-energy states, cut off at
some momentum A, held together by the scalar field [51]. Since we wish to calculate the quark
condensate, it is convenient here to consider the fermions to be constituent quarks. The vacuum
develops an expectation value of the scalar field because the vacuum energy is lowered by the
quarks developing masses. Specifically, it is lowered by [51]

A A 2
“Bysg = Evac = —12 /d3k s mz— L [ kMo 34°

—_— +m JE— +__.
J (2n)] ¢ 2] ) fia g 20

(3.11)
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Here, mg is the constituent quark mass,
mg ~ 313 MeV . (3.12)

The term 34*/27? subtracts off the energy of the sea of massless quarks; i.e., Evyc is the lowering
in energy by the constituent quarks developing masses, or in other words the energy difference
between the Wigner and Goldstone vacuum. The quark mass mg is determined by solving the
self-consistent equation in the Goldstone phase, and is related to the quark condensate. The cutoff
A is set to reproduce the value

(0]i2u)0) ~ — (240 MeV)3, (3.13)
which follows from the Gell-Mann-Oakes-Renner relation

fim? = —m(0luu + dd|0), (3.14)
where m ~ 6 MeV is the isospin-averaged quark mass. The cutoff is then

A ~550 MeV . (3.15)
Performing the integrals, one finds

Bysr ~ (140 MeV)* ~ 50 MeV/fm?, (3.16)

just the typical value employed in the MIT bag model. For the cutoff (3.15) a similar value was
obtained in refs. [52] and [53].

Note that, while the quark condensate in this model depends strongly on the cutoff, B,sg depends
on it only logarithmically. In fact, it is easy to show that to lowest order in the quark mass

Bysg ~ mj (3.17)

and therefore with our assumption (2.1) we see that at finite temperature/density, Bysr — Bjsg;
where

B;SR = BxSR ¢4 . (3.18)

B;SR denotes the value of Bysr at finite temperature or density, and @ is our common scaling
(2.1); e.g., @ = mj/mn. Incidentally, this scaling is also obtained from our arguments in section
2. Continuing (2.13) to finite temperature/density and averaging over space yields

Bjsg ~ (1)*, (3.19)

which obviously scales as (3.18). This scaling of B;é{: was noted in ref. [52]. As is clear from refs.

[52] and [53], this quantity is simply the energy of the vacuum per fm>. As such, it is analogous
to the energy from nucleon loops obtained by extending Walecka mean field calculations. Although
Bysr is small compared to the bag constant B, it is still significant. At nuclear matter density
of 1/6 nucleon per fm3, it would contribute ~ 300 MeV/nucleon to the energy, as follows from
(3.16). It is this value that renormalizes the nucleon energy, and the changes with density of the
subtraction are substantial compared with the 16 MeV/nucleon binding energy of nuclear matter.
As a consequence, caution is required in applying these results. Furthermore, the justification of
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nucleon

Fig. 3.2. Graphical representation of the mean-field relation giving rise to the nucleon mass in the NJL model.

eq. (3.11) for so large a number is in terms of an effective field theory. Whereas the general picture
should be correct, we do not know whether it is also correct quantitatively.

A more satisfactory approach is in terms of effective chiral Lagrangians. Brown-Rho scaling
is applied to these at the mean-field level. Loop calculations are then carried out in the heavy-
fermion modification of chiral perturbation theory [54,55]. In this formulation, effects of the
negative-energy sea are suppressed by factors of p/mn.

Of course, the Nambu-Jona-Lasinio model can be used equally successfully to predict hadron
masses. In a simplified approach, the nucleon mass can be written as

mn = -G{4qq), (3.20)

where the quark condensate is

A
Gq) = —g [ 2K ___mo
| @ it

with g the degeneracy and G a dimensionful constant. As previously, 4 can be determined in order
to give the condensate its known value from the Gell-Mann-Oakes—Renner relation.

In the light of the NJL model, it is convenient [21] to consider my to result from the mean field
relation

(3.21)

(q9), (3.22)

which is shown graphically in fig. 3.2. In fact, this can be thought of as an extended-range version
of the model. The 2/3 arises because there are only up and down quarks for the nucleon to couple
to in the negative-energy sea, although there are three quarks in the nucleon. Now in the Nambu-
Jona-Lasinio model [23] myj; scales like my;, as shown in (2.1). This results rather trivially, because
the nucleon mass is made out of three constituent quarks, and the ¢ out of a constituent quark and
antiquark. In both cases the interactions can be neglected.

Thus, in continuing (3.22) to finite density or temperature we have

2 &nn

my = 3(m;)2

(qq)* . (3.23)

Let us interpret (gq)* as meaning that we not only replace mp by mj, but also 4 by A* on the
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right hand side of (3.21), choosing A*/A to obey the scaling (2.1). Then we can rewrite (3.23) as

o _ 2 gny _ (a9)

my = 352 sy )2 (3.24)
{(ga)*
=-G———"—, 3.25
(m3/my)? (3:25)
where we have equated (3.20) and (3.22) in order to replace %ggNN/ m? by G.
In practice, 4 > my, so that to a good approximation
(@q) =~ —CA*myg (3.26)
with some constant C, and similarly {(gg)* ~ —CA*Zm’é. Thus
~ o\ * *2 m*
(aq)* A Mg (3.27)

(gq) = A* mg’

and, assuming the scaling (2.1) we can cancel the (A*/A4)? against the (m:;/mc,)‘2 in (3.25),
arriving at

my = —G{@g)nL » (3.28)

where we defined

A
d3k mg

g = -8 .
] Q0 et mg

We therefore see that, although in our extension of NJL to finite range as shown in (3.22), all masses
mn, mg and mg as well as A scale when extending the formula to finite density or temperature,
it is equivalent to consider 4 to be constant when a zero range interaction is used, as shown in
eqs. (3.28) and (3.29).

The quark condensate does not appear, however, only in the Nambu-Jona-Lasinio formula, but,
especially in the QCD sum rules, often in other contexts. It should be clear from our preceding
discussion that the correct quark condensate at finite temperature or density is the one in which
A — A* and mgy — my,, following the scaling in (2.1). It is interesting to note that a formula quite
similar to (3.23) appears in the QCD sum-rule formalism, applied to the nucleon channel, at zero
density/temperature. Dropping higher-order terms we obtain [25]

(3.29)

mn ~ —2(27)%(gq)/M?, (3.30)

where M is the Borel mass (see ref. [25], or section 6). The usual procedure is to choose M ~ my,
which results in the Ioffe formula

_q1/3
my = [—2(2n)2(qq>] . (3.31)
This formula, however, does not have a consistent N, dependence, as both my and {Gq) are linear

in N.. It was suggested by the present authors [24] that M could be thought of as simulating the
mass of the scalar m,, which has no N, dependence. The numerics of (3.31) are unchanged because
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[21] my ~ mn. In QCD sum rule calculations m, turns out to be [56] (see also the appendix in
ref. [21])

my~1GeV, (3.32)

so the interpretation put forward in ref. [24], besides having some interesting consequences, at
least seems to be consistent.

Let us now tie together our discussion of the glue-ball mean field y. and the fluctuation field x’,
with the concept of two scales: those of chiral and conformal restoration. From the structure of
the effective Lagrangian (2.34), and especially the rewritten coupling term (2.20), one can see that
%+ is coupled to the chiral field U. As discussed earlier, . governs the rate of chiral restoration,
although it is made up of the (highly nonlinear) glue field. In fact, it can vanish, restoring the “soft”
symmetry breaking (vanishing of B,sr), and yet gluon condensates (“hard” symmetry breaking)
can remain, since (x|x*+) can be large even if ([ d3x (x|x|*))* is small. Indeed, we would like to
associate (*|y*/+) with the trace anomaly (2.12), while x¢ should be identified with B,sg.

Another aspect of the interplay of scales is evident from QCD sum rule calculations, which we
will cover in considerable detail in sections 6 and 7. However, we would like to mention some key
results here as far as they apply to the concept of two scales.

To a reasonable (~ 15%) approximation, the nucleon mass is determined by the quark condensate
(Gq) as in eq. (3.30), the Ioffe formula*). Both continuum corrections and gluon condensates, as
well as a (gq)? correction in the OPE are neglected here. Using perturbation theory, one finds that
the correction to (3.30) from the gluon condensate is [using the value of the gluon condensate
given in eq. (3.8)]

mn ~ —2(27)?

(9q) {1 2 (Ol(as/n)GZIO)} _(_ 012 Gev* (3.33)

M2 M? S —

where the Borel mass A is usually taken to lie in the vicinity of mn. Consequently, the gluon
term gives an ~ 15% correction, and violations of the scaling law (2.1) should appear at the same
order of magnitude. Incidentally, this correction is of similar size for the p-meson mass. The above
arguments, however, do not take into account changes in the Wilson coefficients brought about by
chiral restoration at finite temperature. The Wilson coefficient of the gluonic correction tends to
zero as the mass drops, such that chiral restoration occurs at nearly the same temperature as the one
where hadrons go massless, while opposite parity states become nearly degenerate slightly before.
As a result, scaling is observed to a much better degree than the previous estimate, simply because
the gluon condensate contribution that inherently violates scaling is suppressed. This mechanism is
discussed in detail in the case of the p meson in section 6.

This scenario is different from the one advocated by De Tar and Kunihiro {58], who describe the
chiral restoration and concomitant parity doubling in terms of an extension of the Gell-Mann-Levy
o-model. The latter extension involves for the opposite parity hadrons a “nonscaling” mass m,,
which is the mass of the parity doublet after chiral restoration. De Tar and Kunihiro determine
mp to be ~ 270 MeV. While this is not particularly large, it is not supported by the present QCD
sum rule analysis, which suggests that the nonscaling mass vanishes (see section 6). However, this
conclusion is based on the approximation of neglecting all higher-order condensates. It is entirely
conceivable, though hard to quantify, that the nonscaling mass is set by these neglected condensates.
Lattice gauge calculations which we will discuss later on do not seem to be accurate enough to
determine mg and thus to distinguish between the proposed scenarios.

*) The Ioffe formula [25] is summarized conveniently by Reinders [57].
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4. Effective restoration of explicit chiral symmetry breaking

There is an intricate interplay between the role of the density and temperature dependence in
pion and kaon effective masses, which signals an effective restoration of explicit chiral symmetry
breaking, and the restoration of spontaneously broken chiral symmetry.

4.1. Density dependence of n and K-masses

Kaplan and Nelson [14,15], in their description of strangeness condensation in the many-body
system, noted that kaon effective masses were surprisingly density dependent. We begin, however,
with discussing [59,51] the behavior of the pion effective mass mj, along the lines suggested
in refs. [14,15]. The same argument will apply later for my, the kaon effective mass, but it is
instructive to discuss the pion first. The latter will be shown to be insensitive to changes in density
due to a loop correction that cancels the attractive interaction that would otherwise cause the
effective pion mass to drop. The situation is different with respect to the kaon, however.

It is well known that there is an attractive interaction in pion-nucleon scattering that is due to
vector-meson exchange. We want to focus here, however, on a contribution that is relevant at the
so-called Cheng-Dashen point, and which involves the explicit chiral symmetry breaking term only.
In the chiral Lagrangian language it can be written as [see eq. (2.2)]

0L = —c Tr{M,(U + U")} . (4.1)

In the SU(2) x SU(2) case we can take M, to be the diagonal matrix M,; = diag(m, m), where
m = (m, + my)/2, since we will neglect isospin breaking at the moment.

This correction is of scalar nature, and may be thought of as arising from a scalar interaction,
an effective scalar-meson exchange between the pion and the nucleon. In the Jenkins—-Manohar
effective Lagrangian [54, 55] this is written as

8L =—C(NNYm Tr{;(U + U)'}, (4.2)

which can be extended to finite density straightforwardly. In the vacuum, in the single-nucleon
channel we should obtain the well-known pion-nucleon sigma term from the expectation value of
(4.2), which sets our constant C,

(NIGH|N) = Z,x = 2m(N|gq|N) = Cr1. (4.3)

Consequently, we write

0L = ~Zun(NN)Tr{1 (U + U)'} = ~Z;n(NN) cos(n/ f) . (4.4)
Expanding,
0L~ —-Z.n(NN)Y(1 —n%/2£2). (4.5)

This gives a density-dependent attractive interaction between nucleon scalar density and pion field
of

OH = —(Z.n/2f3) (NN)at. (4.6)
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The interaction (4.6) gives the pion an effective mass

2 —
n; 2an (NN)
Tn) VM 4.7
(mn) fEomk’ @D
which goes to zero as (NN) — ney with
Aerit = f,,zmﬁ/Z,,N . (4.8)

Using linear chiral perturbation theory, the critical density was found [59] to be (for heavy nucleons
we ignore the difference between scalar and vector densities)

Perit = 2.2 pp - (4.9)

The X,y has recently been recalculated [60] and shown to be ~ 45 MeV with a 15% error.
Replacing f; in eq. (4.8) by f* brings perir down to [59]

Porit = 1.6 pg . (4.10)

As mentioned earlier, this scaling in the pion mass is equivalent to an attractive scalar potential
acting on the pion. Consider the nucleons as giving rise to an attractive effective scalar field

S~ NN/f? (4.11)
coupled to the pion with a “coupling constant” A = —X,x/2,
0L~ —AST?. (4.12)

This scalar field renormalizes (through its “vacuum” expectation value) m2 in the medium to an
effective one m?? = m2 — A(S). No such attractive potential is seen, however, in pionic atoms.
This situation has been clarified recently by Delorme et al. [61], who show that the range term in
pion-nucleon scattering (in the following denoted by f#) cancels the attraction found above. More
precisely, they find for the on-shell isospin symmetric pion-nucleon scattering length

a't) = Zyn/4nfr - pm2, (4.13)

where the range term f is obtained from Fubini and Furlan [62],

(4.14)

3 (+) _ R+

| (+)2 (-)2 I
B=my (a + 2a )+4n2 Y m———

4am?

and B*) is determined by the imaginary part of the isospin-symmetric s-wave mN-scattering
amplitude TO(”,

Im T
(+) _ 0
BY) = (4.15)
The range term should bring a(*) back to the very small empirical value a‘*) = —0.01m;! [61].

In chiral perturbation theory, the range term f must come from loop corrections (as is obvious
from its form).
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For the kaon scattering length, the correction due to the range term is the object of ongoing
work. Indeed, the form of the range term, with coefficient # in the case of pion scattering [see egs.
(4.13) and (4.14)] is precisely that arising from higher-order corrections in chiral perturbation
theory [63]. In calculating the s-wave scattering lengths the relevant higher-order terms can be
written as

Lint = ZL;V(WN) {(EK) - i)z-a,fa,K} (4.16)
I¢ mx

with an unknown constant D' that can in principle be determined by including all counterterms,
but in practice is obtained by comparing to experimental phase shifts. The second term in (4.16)
turns out to be ~ D'(w%/m%)KK and ensures that at threshold, where wgx = mg, the correction
to the iscoscalar scattering length obtained from Liy; is cut down by a factor (1 — D’). In the case of
the pion it turns out that D’ ~ 1 to fit the measured quantity, or in other words there is no remnant
scalar attractive interaction. The scattering length for the kaon, however, is less well determined
experimentally, and it is thus harder to quantify D’ in this case. Calculations of D’ in heavy fermion
chiral perturbation theory [63] give D’ somewhat less than unity. Let us try instead to understand
the kaon scattering length in a mean-field language.

The most complete analysis of KN scattering has been carried out in the boson-exchange model
by Miiller-Groeling et al. [64]. These authors include vector meson exchanges with essentially the
same couplings as in chiral Lagrangians while omitting explicit chiral symmetry breaking. Instead,
they include the exchange of a scalar meson between kaon and nucleon, a vertex that is absent in the
chiral Lagrangian. As mentioned [see egs. (4.11) and (4.12)], the explicit chiral symmetry breaking
term (4.16) emulates precisely such an interaction, an effective attractive scalar interaction. The
effective coupling turns out to be roughly the same as that of the explicit scalar interaction in ref.
[64]. We shall return to the mean-field picture in the context of kaon condensation in neutron
stars.

Of course, the same term should be used in the K+ N sector [65]. The situation here is more
complicated, as a very strong short-range repulsion from the fictitious scalar exchange of mass 1200
MeV is needed. This strong repulsion is of the same nature as that of the very strong repulsion in
the nucleon-nucleon interaction which exists on top of the repulsion from w-meson exchange. It
has been suggested that such a repulsion results from the topological nature of the nucleon [66,67].
In topological models such as the chiral bag model, a meson with a nonstrange quark encounters a
nucleon with a filled grand-spin X = 0 level. In the composite system, the nonstrange quark has to
fill the next higher level, which costs a considerable amount of energy. Indeed, this would happen in
either NN or K+ N scattering, but not for K~ N as these mesons do not contain nonstrange quarks
and the repulsion would therefore be absent. This is in accordance with ref. [64]. K~ condensation,
which can happen as a consequence of the attractive interaction, turns out to be rather insensitive
to the precise value of D’, as we discuss in the next section.

4.2. Kaon condensation and neutron stars

As the kaon energy is lowered by the attractive interaction, at high enough density it may become
favorable for the kaon to condense [68]. Equations (4.6)-(4.8) are immediately adaptable to kaon
condensation by changing the pion to a kaon field, f; to fx and XZ,n to Zxn, where

EKN= %(mu+ms)(N|L_tu+§S|N) (4.17)
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Note that Xy is large, due to my, even if (N|5s|N) = 0. Strangeness condensation does not require
a large strangeness content of the nucleon. With (N|ss|N} assumed zero,

Zxn 2 (ms/4m) 2N, (4.18)

giving a lower limit x5 = 2m;,. Thus, naively,

meK 5 flgm%(
- - . 4.19
Pt kN (ms/4m) 2N ( )

Calculations to date in dense matter [69,70] obtain a critical density g ~ 3po for K~ condensation
in dense matter. These do not include loop corrections, which tend to increase the critical density
pe, nor do they include the Brown-Rho scaling of eq. (2.1), which also tends to lower p.. Inclusion
of all these effects [63] does not seem to considerably affect the earlier estimates of ref. [70].

In the neutron star environment, a lower critical density is achieved by the presence of a chemical
potential. For a negative charge, the m% in the numerator of (4.19) is replaced by m% — u2, which
can substantially lower the critical density. K~ condensation is also helped by the attractive K-
neutron interaction from vector meson exchange (see below). Note that the mass terms involved
in calculating the critical density for a negative kaon condensate to form are slightly different from
those for the neutral one; indeed, the Xxx must be replaced by a quantity that is ~ 15% less
than the one used above. Explicit formulae are given in ref. [69], where it is shown that this K~
condensate is extremely robust.

Let us explore the equivalent (to the chiral Langrangian description) but more physical description

of kaon condensation in the mean-field language, beginning with the concept of kaon effective mass,
*2 Zxn NN
A= (4.20)
my & mg

obtained in a way completely analogous to the pion effective mass, eq. (4.7). In the presence of
vector-meson exchange interactions, the inverse kaon propagator in neutron matter is (we set the
proton fraction to zero)

D (w) = k2 + m + 20V (p) - 0?, (4.21)

where V' (p) is the self-energy which arises from the vector-meson exchange interactions in matter.
[We neglect the higher-order term ©(V'?).] We may write it quite generally as

V(p) - ngN’: + ngNn{:z . (422)
(<] 4

Using the approximate SU(3) relations g2gy = 3ga,NN, ngN = 1g2xn and glyy = 9gpNN to

relate these couphngs to the universal p coupling g,,/47r =~ 2.74 [note that in the nuclear physics
convention gp NN = 3 gp] we can use the KSFR relation

=282/ (4.23)

to relate the mean-field interaction (4.22) to

Vip) = —p/4f,,2, (4.24)
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as is obtained from the Jenkins-Manohar chiral Lagrangian to lowest order. Note that this effective
potential only describes the interaction due to p and w mesons, not the attraction in the scalar
channel. This is buried in the kaon effective mass.

The general condition for a condensate is that [71]

Dl (@) = 0lpey; (4.25)

i.e., that the propagator develops a pole under the constraint that the kaon energy equals the chemical
potential. From (4.21) and (4.25) we can see why the negative condensate can be achieved at
lower densities. Suppose that the g_ is established by the electron chemical potential in neutron
stars. Then (4.21) and (4.25) say that for kaon condensation, the in medium kaon energy

wk(p) = \[k? + m¢ + V(p) (4.26)

has to come down to the electron energy ., not to zero as in the case of a neutral condensate,
before condensation can take place. When wg(p) = u- = u,.-, electrons can change into kaons
(and vice versa). From equilibrium, one has

Un — Hp = He— = Hik- (4.27)
because the weak interactions

n—-p+e 4+v, p+e —n+v,
e K +v, K e +v, (4.28)

all have time to equilibrate the system even though the interactions are weak. The low-energy
neutrinos of thermal energies in these reactions simply escape from the star. The critical density for
kaon condensation as derived from (4.25) turns out to be p, = (3-4)pg for Zxy = (2-3)m, [63].

Let us now briefly discuss why the kaon condensation scenario appears to be so robust. While the
size of the factor D' multiplying the counter term in (4.16) significantly affects the KN scattering
lengths (a D’ of unity resulting in vanishing scattering lengths as in the pion case), it does not
seem to significantly affect the threshold for kaon condensation [63]. This is to a large extent due
to the time derivatives in the counter term, which result in a factor wf( / mﬁ (as noted above). As
the density increases, the kaon energy drops rapidly and the counter term becomes less and less
important. Kaon condensation thus appears through a bootstrap mechanism: Kaons can condense
because the kaon energy is lowered, and this lowering of the kaon energy at finite density makes
kaon condensation possible in the first place (by suppressing higher-order corrections that could
spoil the strong attraction). There is thus no contradiction between little attraction found in KN
scattering lengths and considerable attraction in the same channel at higher densities.

In earlier work with conventional equations of state, Bethe et al. [72] found that only with
a stiff nuclear equation of state could a smooth transition from conventional nuclear matter to
strange quark matter be made. With K~ condensation, the situation changes. Hadronic matter
becomes strange through strangeness condensation. The equation of state is sufficiently soft that the
transition to strange quark matter is not made, at least not until very high densities of the order
p ~ 10pg [73]. Indeed, the equation of state is so soft that the maximum mass for neutron stars
drops to

Mimax ~ 1.5 M . (4.29)
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This implies the possibility that Supernova 1987a went into a black hole affer the explosion [74].
Evidently, K~ condensation in dense matter has startling and important consequences.

4.3. Relativistic heavy ion collisions

We would like to point out in this section that restoration of explicit chiral symmetry breaking
can also occur at finite temperature, and indeed in the pion channel.

With increase in temperature, as in relativistic heavy ion reactions, an effective scalar interaction
(4.12) arises from the original explicit chiral symmetry breaking at the Higgs scale, magnified by the
vacuum condensate that is produced by scalar interactions. As noted, the effective nuclear physics
scale is that of the scalar g, of mass ~ 600 MeV. The effective scalar interaction (4.12) should,
therefore, survive temperatures of 7 ~ 150-200 MeV. In other words, it is relatively robust. This
would not be expected to be so for the higher-order many-body effects, the evaluation of which
involves integration over intermediate states. As the initial states become distributed more and
more widely with increasing temperature, the principal value integral over intermediate energy for
the higher-order effect receives both positive and negative contributions and the net effect becomes
small. We can talk about the many-body effects being “boiled off”. Thus, for high temperatures
there is nothing to cancel the attractive interaction (4.12) and the pion mass mass is substantially
decreased for (NN) > po. In ref. [59] evidence from the CERN relativistic heavy ion collisions is
adduced to suggest that, when the pions are emitted at high temperature and densities p ~ 1.5 pg,
they behave as if they were massless. The basic experimental evidence is the excess of soft pions at
low pt, as shown in a NA35 [75] result for 10 on '°’Au in fig. 4.1. As pt goes to zero, free pions
would have a Boltzmann factor ~ ¢e~™/T ~ e~! where the approximate equality results because
T ~ my. If, however, the thermal distribution of the pions is determined when they are essentially
massless, this factor would be missing, so there would be an apparent excess of pions of ~ e as
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pr — 0. Because some pions come from resonance decay, the excess is even greater; this and how
to handle off-shell effects is discussed in ref. [59].

In ref. [76], Schukraft plotted the number of low pr excess pions as a function of rapidity,
finding that at target rapidity in the 'O + '%7Au collisions, there were about four times more low
pr pions than at central rapidity. This strongly suggests that the higher density provided by the
target nucleus favors soft pions. It is estimated [59] that the pions are emitted from the hot fire
cylinder into the target rapidity region at a density p ~ 1.5 pg, whereas it would be closer to 0.5 pg
in the central rapidity region. That the high density as well as the high temperature is needed is
supported by the fact that in the central 200 GeV/nucleon S on S experiments at CERN, where
the decay of the fire cylinder occurs without the “casing” afforded by the Au in the case of the
160 + 197Au collisions, there is essentially no excess of low pr pions.

Let us now consider the case of strangeness. In relativistic heavy-ion collisions there is insufficient
time to develop strangeness through the weak interactions, but K*K~ pairs can be produced
(14,15]. The scenario for this has been worked out in some detail for the Brookhaven AGS
collaboration of 14.6 GeV/nucleon 28Si on ®7Au [77]. Also, n-condensation is nearly as favorable
as kaon condensation [68] for chemical potential zero, so if the latter is hindered, #-condensation
may occur. Our scenario bodes ill for the use [78] of enhanced strangeness in relativistic heavy-ion
collisions as a signal for the formation of a quark—gluon plasma. The argument was that strangeness
production is much easier in the quark-gluon plasma, where one has only to pay for the strange
quark masses, than in the broken symmetry sector, where strange hadrons are much more massive
than nonstrange ones. This argument fails, however, if kaons lose most of their mass at densities
already achieved in the Brookhaven AGS collisions of 12 GeV/nucleon Au on Au collisions. The
scenario of a smooth transition between hadronic and partonic phase suggests that at the transition
a strange baryon may either be described by its quark content or as a hadron, with no change in
mass. To estimate the strangeness in baryons formed at higher densities, we should, however, take
into account the production rate of KK or K+ K~ pairs at finite density. This depends sensitively
on the kaon energy (4.26). The vector potential V' (p) in eq. (4.26) is repulsive for K+ and
attractive for K, and thus their effect cancels. As a consequence, the driving term for enhanced
kaon pair production is the interaction (4.16) together with the enhanced phase space due to the
lower mass. Then, however, the precise value of the strength of the counterterm D’ is important as
the interaction is reduced by its presence. Calculations to date [63] give (after isospin averaging)
D' ~ 0.4. Thus, the enhancement for kaon pair production due to the dropping kaon mass is
somewhat reduced by the presence of the counterterm.

The K*/nt ratio in the Brookhaven E802 experiment [79] is enhanced to 0.2 from the 0.05
found in pp collisions. Although the freeze-out temperature in this experiment was determined
10 be T;, ~ 150 MeV [80], initial temperatures are probably not much higher, so that it seems
unlikely that a quark-gluon plasma is formed at Brookhaven energies. Given, however, that kaons
can become massless at the high densities p > 3py formed in the collision, it is relatively easy [77]
to produce KK pairs, the K’s then mostly combining with nucleons to form strange baryons. In
200 GeV/nucleon S on S collisions at CERN [81], the Kg’/ 7~ ratio is found to be about 0.11. This
can be related by isospin symmetry to a K+ /z* ratio of 0.22. Thus, the strangeness production in
the heavy-ion collision hardly increases from Brookhaven to CERN energies, even though it does
somewhat in pp collisions. This is indicative of the system formed at higher energies going through
a similar freeze-out stage to that at lower temperatures. We will come back later to a discussion
of effects of temperature dependence which further aid kaon condensation (although most of the
empirical information comes from the pions). Here we note that the density dependent effects seem
to be substantially larger than the temperature dependent ones.
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Kaons formed in a massless state, or in the kaon condensed state, will of course go back on-shell
on the way to the detector, as the effective scalar field (4.12) which suppresses their mass decreases
as the system expands. In fact, using this effect, Lissauer and Shuryak [82] obtain an important
temperature dependent decrease in the kaon mass, which is due to the pion density n, = 0.37 T3.

It is amusing that in present relativistic heavy-ion experiments, the effective restoration of
explicit chiral symmetry breaking may be as important as the movement towards restoration of the
spontaneously broken chiral symmetry.

5. Evidence for scaling in nuclei

The nuclear many-body problem has been handled quite successfully in the conventional picture
in which hadron masses are taken to be constant, independent of density. Because of the many past
successes of the conventional scenario, we shall first give arguments why our scenario of scaling
masses preserves these, and then later see what our scaling masses do for discrepancies between
theory and experiment. Of course, historically, the development came the other way around: first
the discrepancies were noted.

The reason why in most quantities the changes induced by scaling masses is not large is easily
understood. When all masses scale equally, there is no net effect in dimensionless quantities. In the
nuclear or neutron matter problem, the masses can be scaled out [18, 19] of the Hamiltonian:

H(mj,r)y = AH(mj;,x), (5.1)
where H (m},r) denotes the Hamiltonian with effective masses,
'l=m}‘/m,-, X =Ar. (52)

Thus, one can transform back to the Hamiltonian with the bare masses and a new scale x. In terms
of r, r = A~ x and since A < 1, one can talk of a “swelling” in this transformation. The change
introduced in (5.1) by the factor A is small.

In a rather complete calculation [83], Brown, Miither and Prakash showed that the nuclear
matter problem could be reasonably well described in such a scenario with scaling meson masses.
This scaling eliminated the mechanism for saturation found in relativistic mean-field theories (and,
more generally, in the relativistic many-body problem). Saturation had to be enforced by a two-loop
term, which, however, worked equivalently to the virtual pair term [84] which is responsible for
saturation in relativistic theories, and for which there is substantial empirical support in the fits
to spin observables in Dirac phenomenology. However, use of such a two-loop term from such an
effective theory is unsatisfactory, and nuclear saturation must be properly embedded in QCD. We
return to this problem in the context of finite-density QCD sum rules in section 7.

5.1. K*-nucleus scattering

Strong empirical support for scaling meson masses is found in the ratio of K+ scattering off
carbon to that off deuterium [1,85]. The ratio

o(K*C)/6c(K*D) > 1 (5.3)

has been studied experimentaily [86,87] and theoretically (see ref. [88] for a recent analysis, and
references therein), yielding a significant discrepancy.
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Fig. 5.1. Total cross section for K+ !2C scattering as a function of the K+ laboratory momentum. The data are from
ref. [88]. The solid line is the theoretical prediction using density independent vector meson masses.

The K+ interaction with nucleons is weak due to the absence of S = 1 resonances, so that
many-body corrections are well under control. Therefore, because of the large mean free path of
the K+ in the nucleus, the K+ -nucleus interaction can fairly accurately be viewed as being K+ N
scattering, with small corrections. An optical potential model using measured free KX+ N scattering
phase shifts surprisingly fails to reproduce the data. An earlier successful remedy assumed a nucleon
swelling effect to reconcile with the data [85]. It was later shown [1] how the effective nucleon
radius swells if the masses of the vector mesons that make up the nucleon cloud are allowed to scale
with density. Indeed, assuming vector dominance, the K+ interaction is mediated mainly through
p and @ mesons, giving the nucleon a vector radius of the order

(r’y ~1/m% . (5.4)

Again due to its large mean free path, the K+ can dive deep into the nucleus, where the density
is largest, as opposed to the K~, which is largely absorbed at the surface. As a consequence the
K+ samples on the average “swollen” nucleons whereas the K~ does not, the rate of swelling being
dictated by the scaling of the vector meson masses. Indeed, the cross section ratio (5.3) is nearly one
for K~ nucleus scattering. We want to reiterate that although the K* nucleon scattering phase shifts
are not well known, conventional calculations using optical model potentials are well outside the
error bars [89], and taking the ratio of cross sections as in (5.3) eliminates some of the uncertainties
to first order. Recent experimental results on the ratio (5.3) with K+ beams with lower momenta
(and thus even larger mean free path) on the nuclei 6Li, 12C, 28Si and “8Ca strongly emphasize the
need for “nonconventional” nuclear matter effects to explain the discrepancy [90]. This conclusion
was also drawn by Chen and Ernst in their thorough analysis of the available experimental data.
Their prediction (solid line) from standard scattering theory and density-independent vector meson
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masses is shown in fig. 5.1. As can be seen, an ~ 20% enhancement is required to fit the experimental
points. Very roughly, following eq. (5.4), this implies an ~ 10% decrease in my (p). This seems
reasonable, since the average density in '2C is low, p ~ 0.5p9, where pq is nuclear matter density.

In our opinion, the strongest point made in ref. [1] is that the density of nucleons in '2C needed
to fit the K+ scattering can be made consistent with that obtained from electron scattering off 12C
if, and only if, meson masses are scaled. This point was made by one of the referees [91] of the
paper, ref. [1], and the argument goes as follows.

In a local density approximation, the validity of which we discuss later, the free K+ N t-matrix
is modified by the factor (in the linear approximation)

F=[1-4p(r)/pol™", (5.5)

which for small scattering angles (the total cross section is given by the imaginary part of the
zero-angle scattering amplitude) takes into account the density dependence of the meson masses in
the meson propagator. Here

A =201—m(po)/mn] . (5.6)

Using an idea of Gibbs et al. [92], F can be transformed away to the extent that the nucleon
density can be represented by a two-parameter Fermi (2pF) function. The result is that the optical
model strength is increased by the factor (1 —2)~! (just the factor [mn/mj(p(R = 0))]? from
the inverse meson propagator) and the half-density radius R is replaced by the effective radius

R' =R-Ja, (5.7)
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Fig. 5.2. Results of the Tjon-Wallace [95] calculations for Fig. 5.3. Spin observables (from Tjon and Wallace [95]).
the differential cross section for 500 MeV protons scattered See caption of fig. 5.2 for definition of the lines.

off ¥0Ca. The dotted line refers to IA2 (impulse approxima-
tion 2). For the solid line the masses of all mesons except
for the pion are scaled as mj/my = 1 —0.15(p/py), the
same parameterization as used for X+ 12C scattering [1].
For the dashed line the p-meson mass, as well as the pion
mass, are kept constant.
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where a is the surface thickness of the Fermi function. Basically, the product of two Fermi
functions, one representing the optical model potential and the other representing p(r) in (5.5),
when expanded as [1 —Ap(r)/po]~" ~ 1 4+ Ap(r)/po has a thinner surface thickness than a single
Fermi function; hence the foreshortening (5.7) in R results from the effectively contracted surface
thickness. It is surprising that the small change R = —Aa is substantially more decisive in bringing
agreement between theory and experiment in the K+-!2C scattering than the much larger change
(1-2)~"! in the optical model strength. However, the frequency in angle 8 of the diffraction pattern
can be determined very accurately, whereas there seems to be considerable ambiguity in the overall
magnitude of optical model potentials.

Hintz noticed that the same change in radius could remove a longstanding nuclear radius
discrepancy [93] in several hundred MeV proton scattering off nuclei. This has been worked out
by Brown, Sethi and Hintz [94], and the resulting cross section for proton scattering on 40Ca is
shown in fig. 5.2. There were worries that scaling masses would upset the spectacularly good fits
to spin observables, but preliminary results by Tjon and Wallace [95] show that these fits do not
deteriorate with the introduction of density dependent masses. An example is shown in fig. 5.3.

5.2. Missing longitudinal strength

One of the most interesting applications [2] of scaling meson masses was to the problem of
the missing longitudinal strength in the quasi-elastic scattering of electrons from nuclei. Whereas
the missing strength had been used to motivate an in medium swelling of the nucleon, so that its
electromagnetic form factor would be cut down, y-scaling [96] shows no increase in the size of
the nucleon with density. The strength in the longitudinal form factors is missing at momentum
transfers ~ 300-500 MeV /¢, whereas y-scaling can first be compared with theory only for higher
momentum transfers, ¢ 2 1 GeV. Thus, quasi-elastic electron scattering probes larger distances
than y-scaling. In the chiral bag model with chiral angle 8 (R) = =/2, which gives a 50/50 division
of charge between quarks in the bag and meson cloud, the latter is chiefly responsible for the long
range part of the charge. Contributions to the proton form factor from ref. [97] are shown in
fig. 5.4.

Brown and Rho [2] point out that whereas vector dominance works well for a y-ray with
kinematics near the vector-meson pole, space-like y-rays are relatively far off-shell, and the y-ray
couples only ~ 50% of the time through the vector meson. In all, the y-ray arriving at the nucleon
is about half vector meson and half y-ray. Thus, the isoscalar form factor is taken to be

2 2 2
A4 —my, mg

=004y _
F'=(t) = —5— =y

+ 1 Foag (1) . (5.8)

This can be modified to take into account the momentum dependence of the splitting, as for
instance for g ~ 0 the nucleon appears entirely as a soliton, and for ¢ > | GeV the quark part
dominates. In the above, A is a cutoff taken to be 4 = 2m,, and Fy,,(¢) is the form factor from
the quarks in the chiral bag for chiral angle 8 (R) = ©/2. As can be seen from fig. 5.4, the fit to the
empirical form factor is reasonably good. We define [98] the transverse or longitudinal response
to be

(T.L)* = /d3rp(r)FZ,r0i,T(p), (5.9)
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Fig. 5.4. Contributions from the quark core and the meson cloud to the proton charge form factor in a chiral bag model
(from ref. [97]).

where F} ;- are the longitudinal/transverse form factors in medium, and Oj 7 the pertinent operators,

1, 1,3 _ & loxd] 5.10
OL=5+57, Or = uy TTEEE (5.10)
where up is the i1sovector magnetic moment given by

py =Ly — pa) = 2.353 (5.11)

and € is the photon polarization vector. In medium, the form factors are modified, as m, — n,
and similarly for the cutoff A4, so that the first term on the right hand side of (5.8) becomes
A —m?2 m? 1 1 1
4 o L - )
A2—t m2 —t 21—t/2m2 1 —t/m?

(5.12)

In the experiments ¢ is space-like: to a good approximation ¢ = —¢2. Thus, the change from m,, to
my;, produces a reduction in strength. Detailed fits to the Saclay data, where separated longitudinal
and transverse responses are available, have been carried out by Soyeur et al. [98], and reproduce
reasonably well the missing longitudinal strength, while the effect is small for the transverse response.
This is due to the additional factor of my' — (m¥)~! in the transverse operator (5.10), which
largely cancels the decrease coming from the form factor. Thus, in the intermediate range of |g|
considered, where the decomposition (5.8) seems adequate, the agreement of the prediction and
the data is encouraging [98].
In the previous arguments we have assumed a simple scaling relation for the bag form factor,

Foag(q?) = 1/(1 - ¢?/4?) , (5.13)
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where 42 is related to the bag radius R by
6/A* = 3R?. (5.14)

This is not true in a purely solitonic description, and an investigation of the density dependence of
the Skyrmion radius leads to some interesting details, which we cover in the next section.

5.3. Axial charge renormalization at finite density

In the case of the Skyrmion, the radius goes as

R = const. x /g4/ fz - (5.15)

Now, it is known [99] that g% ~ 1 in light nuclei, where y-scaling has been most accurately
investigated. The average density is ~ % Po, S0 using [100]

mi/my = 1/(1 + 0.25p/po) (5.16)

we can take my/my = f7/f, =~ 0.9 . Consequently, the ratio \/g,4/f; remains essentially constant
in going to light nuclei. This is, without exaggeration, quite surprising, as the density in these light
nuclei surely is only a fraction of nuclear matter density. Yet, it seems as if g4 is quenched already
there. However, we should be careful here. In the vacuum, g4 is defined as the value of the axial
form factor at vanishing momentum transfer. For the f-decay of the neutron

/d“xeiqx(plAu(x)ln) ~ UpuVs84(0)uy . (5.17)

At finite temperature and/or density, however, Lorentz invariance is lost, and the zero component
of the axial current can be renormalized differently from the space component. This would be
reflected in different axial form factors for the zero and the space components of the axial current,
and consequently different g4’s. A systematic approach to the density dependence of g9 has been
developed by Rho and collaborators, as we shall outline below.

Kubodera and Rho [101] made the first attempt in this direction considering experiments by
Warburton [102]. In these experiments, the first forbidden f-decays in 4=205-212 nuclei were
analyzed, with intriguing results. The conclusion was that the axial charge matrix element in heavy
nuclei is enhanced over the impulse approximation by about 100%, with the extracted enhancement
factor being

emec = 2.01 £0.05, (5.18)

where MEC denotes “meson exchange currents”. This enhancement is considerably stronger than
anticipated from calculations in light nuclei [103] and calculated more recently [104]. Note that
this phenomenon is related to the axial charge, i.e. the zero component of the axial current.

Using the universal scaling (2.1) with @ (p) = 0.8, Kubodera and Rho [101] obtain an estimate
for emgc in agreement with the new experiments. It should be stressed here that this effect is due
to a change in the vacuum, rather than loop effects. In fact, in ref. [101] the stance is taken
that effective Lagrangians should be adequate at tree level, otherwise they simply would not be
effective. Loop effects can be taken into account systematically as higher-order terms in a chiral
perturbation theory, but should turn out to be small. An attempt at calculating loop effects has
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Fig. 5.5. (a) The axial-vector coupling to the nucleon (b) is renormalized in the medium by A-particle-nucleon-hole
excitations. The blacked-in area at the top of the bubble represents vertex, or local-field, corrections.

been made by Park, Min, and Rho [105]. A number of technical developments, especially the use
of heavy-fermion perturbation theory to handle baryons, are outlined there. The net result is that,
to one-loop order, the corrections indeed appear to be small. This need not always be the case; in
particular, the density dependent loop corrections for the axial form factor as obtained from the
space part of the axial current appear to be large. Let us denote this by the usual symbol g4, and
describe a simple model which accounts for the observed quenching of this quantity.

The fact that g4 goes to unity so rapidly is often termed “precocious chiral restoration in g,”.
While as we have seen this statement has to be taken with a grain of salt, let us proceed here with
this notion. The chiral restoration in g4 has been understood [106, 107], at least semiquantitatively,
for many years in terms of medium effects consisting of isobar-particle, nucleon-hole insertions (see
fig. 5.5).

The calculations of refs. [106,107] gave a density dependence to g5 and f,

-1
8i_ 148 (M)z P8a (5.19)
84 9\ m, /] “or ’ '
* 8 2
f_n =1— §8(f;tNA/mn) P/wR , (520)
Jr 1+ §5(fana/mz)?2pgha/ @R

where f*,, ~ 2 is the 7 NA coupling constant and wgr = mu — mn =~ 300 MeV. The gy, is the
Ericson-Ericson Lorentz—Lorenz (EELL) vertex correction.

Whereas this accomplishes the decrease in g4 = 1.25 to g4 ~ | as seemed to be needed for
s,d-shell nuclei [99], Cohen and Kisslinger [108] have recently called this argument into question.
However, the density dependence (5.19) is supported by QCD sum rule calculations [109]. g%
should decrease to unity with increasing density as chiral symmetry is restored.

In the Skyrmion description of the nucleon, the A(33) resonance is an excited rotational state,
built on the nucleon ground state. Its energy should go inversely with the moment of inertia, which
is proportional to the squared radius (5.15). Since g4 goes from 1.25 at p = 0 to ~ 1 at p = py,
and f}/fx scales as m};/my, using (5.16) we find

A Ea=~ (Rg)/(Rsk)? ~ 0.8 forp = pg, (5.21)

1.e., a 20% decrease, or a decrease of 60 MeV, in going from zero density to nuclear matter density
po. This is not seen [110,111]. However, Brown et al. [112] point out that the EELL correction
will move up the A(33) excitations in nuclear matter by

SE = (8))na (P/p0) M . (5.22)
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Hence, for nuclear matter density p = p, this many-body effect almost cancels that of the dropping
Skyrmion mass (5.21). Beyond pg we expect E} to decrease with increasing density. This will, of
course, affect the dispersion curves for densities p > py.

Through the above examples we see that, although the scaling (2.1) may govern the general
situation, in specific instances different scales, such as that given by the density dependence of g%,
can retard the change with density that would follow from the scaling (2.1). This complicates the
description of the effects in finite nuclei, not only by the application of rules deduced for infinite
systems to finite ones, but also because of the detailed special scales which develop for limited
ranges of densities.

There may well be more surprises in heavy nuclei. In 232Th and 38U, the effective parity non-
conserving interaction as it enters into low-energy neutron scattering has recently been found to be
two orders of magnitude larger than the estimate based on standard meson-exchange models [113].
Scaling meson masses are found to increase the latter estimates by a factor 3-5, thus decreasing the
discrepancy. It would be interesting to include loop corrections to this calculation.

6. Hadronic properties and scaling from QCD sum rules at finite temperature

In this section we investigate the changes in hadron properties such as mass and width of a
resonance, as well as continuum thresholds, induced by finite temperature, using the powerful
method of QCD sum rules [41]. The changes can be traced back to two effects: On the one hand
the source is exposed to a heat bath of pions (in the broken-symmetry regime) or of quarks and
gluons (in the perturbative regime), which are continually absorbed and emitted. On the other hand
finite temperature changes the nonperturbative QCD vacuum, which is characterized by a coupling
strength g (7, A4), A being the renormalization scale. As the temperature increases, the coupling gets
weaker and matrix elements of gauge invariant operators such as g¢ and G? change owing to the
change taking place in the ground state. In other words: the condensates start to melt. As there
is as yet no method to construct the true nonperturbative QCD vacuum, and while the function
g(T, A) can only be calculated in the perturbative regime, we have to content ourselves with using
phenomenological estimates for the temperature behavior of the condensates, or to take the results
from lattice calculations at face value.

We will not here review the application of QCD sum rules at zero temperature. This is done
in refs. [56,57], the latter article serving as a worthwhile introduction while the former provides a
wealth of details.

The main ideas connected with the use of finite temperature QCD sum rules were expounded
in an article by Bochkarev and Shaposhnikov [114], who first investigated the 1=~ channel of the
p-meson. A more thorough investigation coming to different conclusions is that of Adami, Hatsuda,
and Zahed [115]. We shall follow this treatment, and go on to describe the changes to the nucleon
properties using essentially the same technique [116].

The central idea behind the sum-rule method is to use the analyticity properties of a correlator
of currents in a selected channel to relate the real and imaginary parts of this quantity via Cauchy’s
theorem. For a structure function I7(qo,|q|) this relation is expressed by the fixed-momentum
dispersion relation

(0. la)) = Iig—i%’olﬂdw. (6.1)

The imaginary part, being related to a total cross section (measurable or not), is then parametrized
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either using input from experiment or by knowledge gained from low-energy effective theories.
This treatment of the “right-hand-side” (r.h.s.) of the sum rule (6.1) therefore introduces some
uncertainty into the results, which, however, can be minimized by use of the Borel transform as we
shall see below. The “left-hand-side” (L.h.s.), i.e. the real part of the correlator, is on the contrary
calculated in perturbative QCD at large space-like momentum transfer. The nonperturbative nature
of the QCD vacuum introduces power corrections to the leading perturbative result through the
occurrence of nonvanishing condensates which summarize the low-frequency aspects of quark and
gluon dynamics, inaccessible to perturbation theory. The coefficients of these condensates in turn
carry the ultraviolet information. This division, which is implemented by the use of the operator
product expansion (OPE) [117] for the Lh.s., shall be maintained at finite temperature in the
sense that all temperature dependent pieces which are of perturbative origin should reside in the
Wilson coefficients, whereas all nonperturbative effects should be buried in the condensates. This
is a nontrivial requirement at finite temperature, as we shall see below.

6.1. The p-meson at finite temperature

As is well known [118], 1t is not the causal correlator that has the required analytic properties
in a heat bath, but rather the retarded one. Let us therefore consider the retarded correlator of
currents with photon quantum numbers,

IR () =i / d*x €959 (x0) ([ (x), o (O)])), (6.2)

where ((O)) denotes the usual temperature average of an operator O:

(0)) = Z7' Y (n|o[n)e~Fer (6.3)

B being the inverse temperature and w, the energy of the state |n). Z is the partition function,

Z = (nle #|n). (6.4)

We shall refer to this definition as the “Gibbs” vacuum.
For simplicity the currents will be restricted to the p%-channel:

Ju(x) = 5 (u(x)yu(x) —d(x)yd(x)) . (6.5)

For use with the Lh.s. of the sum rule we write down the OPE for the operator [J#(x),Jy(O)],
which is valid at small x and which includes non-Lorentz-invariant operators due to the presence
of a heat bath:

[7.(6), 4 (0)] = €1 (X)1 + Caq(x)dq + Cp2 (x)E? + Cpa(x)B? + --- . (6.6)

Due to the increasing dimensionality of the operators appearing in the infinite sum in (6.6), the
Wilson coefficients C; must carry increasingly high powers of x such that the series converges at
small x. Taking the vacuum expectation value using the Gibbs vacuum defined above, however,
reveals that, due to the fact that al/l the temperature dependence, perturbative and nonperturbative,
is buried in the state |0)), the Wilson coefficients C; (x), being c-numbers, acquire no temperature
dependence whatsoever. In turn, the condensates carry perturbative information, as e.g.

((B*)) = const. - T* + (B, . (6.7)
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The first piece is the perturbative (Stefan-Boltzmann) contribution and represents the pressure
associated with the thermal (black-body) gluons rather than any nonperturbative information. The
latter is contained in the second term of (6.7), and only this piece should be termed “condensate™.
While it is not explicitly temperature dependent, it is implicitly so, as the matrix element depends
on the coupling strength g (7T, A). In order to extract the black-body piece from al/ the condensates
appearing in the OPE and to shuffle these into the Wilson coefficients we will use the well
known Matsubara approach, in which the temperature dependence is introduced by restricting the
integration along the Euclidean time axis over a finite interval. The vacuum in this approach carries
no explicit temperature dependence and may be identified with the |0),, defined above. That this
approach achieves the stated purpose will be verified a posteriori. At this point one might wonder
about the relevance of an approach where the perturbative contributions to the “pressure” in a
condensate are derived using quark and gluonic degrees of freedom, rather than hadronic ones.
We would like to point out, however, that the Matsubara approach described below manages to
sum up all perturbative contributions, which should in principle add up to a result similar to one
obtained from summing up all hadronic “perturbative” contributions. The latter, however, has yet
to be attempted. Taking into account only the lowest order corrections to the condensates stemming
from pions [30] has revealed similarities in the results, but also important differences, which we
discuss below.
The Matsubara correlator is defined in Euclidean space-time by

B
ITE (g0 = iwn,q) = i/dxo/d3x (0| T¢ (Ju(x)J,(0))|0)np (6.8)
0

and coincides with the Gibbs one at the (discrete) Matsubara frequencies w, = 2rnn/f (see,
e.g., ref. [119]). T; denotes the operator ordering along the time-like Euclidean axis. However, the
Wilson coefficients obtained from the Matsubara approach are temperature dependent, unlike the
ones obtained from the Gibbs approach, as discussed above. In fact, they contain the black-body
pieces arising from the condensates used in the Gibbs approach, while the condensates of the
Matsubara approach should be identical with the (O),p contribution in the Gibbs approach. While
technically it does not matter which approach is used, the results will differ as soon as the OPE is
truncated, as of course is inevitable. The truncation in the Matsubara approach neglects terms of the
form (O)np/ (%)™ x (T2/q?)" and retains all purely temperature dependent pieces and those powers
of temperature multiplying a condensate kept in the expansion. This seems to be a reasonable
approximation in the case (O)np/(g?)™ is small, which is probable at high temperatures. This is
not the case for the factor ((0))/(g%)™ appearing in neglected terms in the Gibbs approach, as it
contains perturbative pieces ~ (T2 /qz)m which grow with temperature. In the spirit of Shifman,
Vainshtein, and Zakharov [41] (SVZ) we therefore proceed with the Matsubara approach. One
might now be tempted to expand the temperature dependent Wilson coefficients in such a way that
only terms up to a certain order in g2 are retained. For example, we might insist that if terms of
the order (Gq)%/q® are retained, the temperature expansion is carried only to order (72/¢?%)? etc.
While this seems to be the consistent procedure, it is only reliable for very low temperatures as the
temperature expansion is an asymptotic one, with ever growing terms alternating in sign. Whether
this reflects the behavior of the underlying OPE is presently unknown.

Most approaches to finite-temperature QCD sum rules [30, 120] neglect the perturbative black-
body terms ~ (72/g%)" altogether on the grounds that g2 > T2. However, as the expansion is
really in powers of (2n7)2/q?, and g2 is ultimately used for values as low as g ~ m%, where my
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Fig. 6.1. (a) Leading perturbative contribution in the OPE, coefficient C;; (b) contribution of the gluon condensates Cp,
and Cp; (c) contribution of the square of the quark condensate C ia)?

is the relevant hadron mass, the perturbative terms of higher order soon dominate, and cannot
be neglected. The recent pion-gas calculations [30] mentioned earlier obtain some of the low
temperature behavior seen in the calculations described below. Since the p-meson couples strongly
to two pions, the pion-gas approximation at low temperatures leads smoothly into the perturbative
one at higher temperatures. The properties of the w-meson, which couples only to three or more
pions, are essentially unchanged in the pion-gas model [30]; however, it is expected to follow the
behavior of the p-meson at higher temperatures.

Lattice gauge calculations [6] confirm directly that energy production in the region of temperatures
T ~ T, is at least approximatively black-body in terms of both quarks and gluons (as these are the
variables used in the lattice calculations). To the extent that the gluon energy is black-body, this
confirms that the matrix element ((O]walO)) must contain the black-body 7* term [see eq. (6.7)],
which is not present in the pion-gas description of Hatsuda et al. [30].

The correlator (6.8) may at finite temperature be decomposed into a longitudinal and a transverse
piece (we drop the superscript E which indicated the Euclidean correlator). Defining Q2 = —g¢2
we write [121]

o0, 0,
1I; = (5’7’ N Q*zj) fir+ Q2]Q(2)HL’ 69)
Hoo = QZHL . (6.10)

In the following, we shall put the source at rest in the heat bath, i.e. Q — 0. In this case I7r — Q*IT;
and the form factors are related. The dispersion relation for the longitudinal form factor is then
(with Q2 = Q} and not writing out subtractions)

1 7Im17L(s)

Re I (Q%) = p s+ 02

ds + subtr. (6.11)

The Lh.s. of (6.11) is calculated in perturbation theory at finite temperature retaining only the
contributions shown in fig. 6.1. Only the contribution fig. 6.1b gives a vanishing result as it
is proportional to the quark mass and we work in the chiral limit. Explicit expressions for the



38 C. Adami and G.E. Brown, Matter under extreme conditions

q T
W\< eri p ANNS==—
g P
(a)

(b) (e

Fig. 6.2. Absorptive processes contributing to the imaginary part of the correlator: (a) quark-antiquark pair formation, (b)
Landau damping (virtual pion absorption), (¢) p-resonance formation.

coefficients can be found in the appendix of ref. [115]. For the r.h.s. we use the “narrow-resonance
approximation” of single p-pole saturation and a continuum given by the p — gg amplitude-squared
at finite temperature. The latter is modelled by taking the imaginary part of the perturbative diagram
fig. 6.1a at real momentum transfers starting at an arbitrary threshold sy (see fig. 6.2a),

Im 77" = -g;c—ﬁ(s—so)tanh(\/EMT). (6.12)

This continuum may also be thought of as modelling the emergence of the (broad) A;-pole in
this channel at around sy, through the process 7p — A, enabled by pions from the heat bath,
and introducing a mixing of the p and 4, channels [120]. We shall ignore this mixing here for
simplicity, burying its effects in the continuum threshold s;. Furthermore, at finite temperatures
there is a contribution which is associated to the Landau-damping mechanism (fig. 6.2b) and which
contributes only at s — 0. This is adequately modelled by

ImIIP = ¢ nT?5(s) . (6.13)

Here, ¢, is a numerical coefficient, which turns out to be ¢, = —1/2 for Landau damping through
quarks in the heat bath, or ¢, = 1/3 for damping through pions. In the region s ~ 0, the latter
seems to be the physical choice, and is adopted throughout*).

Including the pole contribution (fig. 6.2¢)

ImITP% = f,m25(s — m3), (6.14)

with a resonance strength f, and a pole position m2, our expression for ImI7; is just the sum of
egs. (6.12), (6.13), (6.14).

The last ingredient needed here is a parametrization of the temperature dependence of the
condensates. In ref. [115] three qualitatively different models were used to probe the stability of
the results with respect to different ansdtze for the condensates. Here, we will be inspired by recent
lattice results, which indicate a weak second order transition for the quark condensate [5]. The
gluon condensate does not seem to vary appreciably below 7, [123,115]. Accordingly we take
(@9)(T) = (@a)o [1 - (T/T:)?1'2 (see fig. 6.3), and ((BY)) = —((E?) = §((G?)) = }(G?)o with
((as/m)GHY/4 = 331 MeV and (dq))> = —250 MeV.

*) The coefficients differ from the estimates in refs. [114,115,122], but are consistent with what is expected from the
quark number susceptibility y = — Re I7p(0,0).
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Fig. 6.3. Input temperature dependence of the quark con- Fig. 6.4. p-mass versus temperature as obtained from
densate. (6.23) for different continuum thresholds. The upper curve

has s = 1.7 GeV?, while the middle one was calculated for
sp = 1.5 GeV?2. For the lower one we used 55 = 1.3 GeV?
as an input (7 = 150 MeV).

The l.h.s. of the sum rule assumes the form

2y _ 1 2,2y , L Ji 2 P} g, {qg)?
ReML(Q%) = ~ 55 In(Q¥/u) + nzo/np(po)dpo——gz(p3+Q2/4) fpma, L0
Qs 2 [ ) p§— 3% 2 2, 1
+ T3 (1 + 30 /nF(po)dPo (p§0+ Q42/4)3) (2((B )N —(E ))) 0" (6.15)
0

where nr(x) denotes the fermionic distribution function (1 + e*/7)~ 1.
As was shown by SVZ [41], the convergence of the OPE may be improved by Borel transforming
each of the terms arising in the Fourier transform of the series (6.6) by applying the operator

4 _ : 1 2\n 2\"
L= lim 5@ (-a/00%)" . (6.16)
M*=Q?/n

This ensures that a contribution of order (1/Q2)” is multiplied by an additional factor 1/m! as is
easily checked. Furthermore the weight function 1/(s + Q%) appearing on the r.h.s. of the sum rule
[see eq. (6.11)] is replaced by

. 1 I /M2

LMs+ o = 72¢ . (6.17)
The arbitrary Borel parameter M? is used to match Lh.s. and r.h.s. It is determined in such a
way that the dependence of the physical parameters m,, sy and f, on M? is minimal (see below).
Applying Ly to the Lh.s. and the r.h.s. we obtain the sum rule

2
8ﬂ2ﬁ);n7’§e""f’/’”2 = R(M%,T?), (6.18)

where
3B - 3(EY) . (9
M4 (49) 6>

R(M?*,T?) = C(T?*, M?) + Ce (T, M?) (6.19)
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with the definitions

CLTE M) = 1 — e 4 822 (e, + )~ M? / 27 20 (po/2)e T (6.20)
Cor (TP, M?) =1 1 M2 2ng( 2)d”3 -pp/M? ’g _Po_ 1 6.21
G? ’ - 37[&5 - nF pO/ E € + M2 + 2M4 - ] ( . )
0
448
Claar = g7 70 (6.22)

In eq. (6.19), we notice a peculiar splitting of magnetic and electric contributions to the gluonic
coefficient, in a 2 : 1 ratio. This splitting, however, is entirely frame dependent.

While the parameters f,, m, and sy can be found from (6.18) by matching the Lh.s. to the
r.his. [115], it is more convenient to eliminate the parameter f, by obtaining a second sum rule
through differentiation of (6.18). This allows us to derive a formula for the p mass,

my(T*, M?) = —dIn M*R(T*, M?) /0 (1/M?) . (6.23)

This expression still depends on the Borel mass M and the continuum threshold sq. Fixing sy at 1.7
GeVz, the standard vacuum value, we obtain “Borel curves” for m, (the p-mass versus Borel mass)
at every temperature. The p-mass is then obtained by looking for the stability plateau in these
curves, i.e. choosing M? such that dm,(M?)/dM? = 0. In fact, this is equivalent to demanding
independence of the artificially introduced scale M? for observables, i.e., defining 7 = 1/M?2, we
demand

tOm}/ot =0 (6.24)

to determine M2. This was used implicitly in deriving (6.23).

We do not have a handle on possible changes to the continuum threshold in this approach.
However, we have checked that, as the resonance mass drops, it becomes more and more insensitive
to the value of s3. Generally, we expect s to drop. For simplicity, however, we have kept it constant
in this calculation. This procedure yields fig. 6.4, the p-mass as a function of temperature. The
smooth behavior of the p-mass, dropping with temperature, is the result of a delicate balancing
between the dropping quark condensate (gg)? on the one hand, and the gluon contribution on the
other. These two contributions enter in the expression for the p-mass with opposite signs. While
the gluon condensate itself does not change with temperature (as suggested by lattice calculations
mentioned earlier in this report), the Wilson coefficient of this contribution, Cg: (T2, M?) on the
contrary does change, vanishing as M — 0 (see ref. [124] for details). The decrease of the Borel
parameter with increasing temperature occurs as a consequence of eq. (6.23). As mentioned earlier,
the p mass is read off from (6.23) by looking for the minimum of the curve, at which point the
p mass is independent of the Borel parameter. This minimum shifts to lower Borel masses when
the quark condensate is reduced. This is consistent with the general idea [41] that the Borel mass
parameter should roughly coincide with the resonance mass. The Wilson coefficient of the quark
condensate contribution is unaffected by temperature. We thus encounter the interesting situation
where the dominance of the hard scale (G?), which because it contributes attractively could end
up governing the approach of m, to zero and force premature chiral restoration, is thwarted by its
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Wilson coefficient. Indeed, it is precisely chiral restoration that forces M2 to drop, and with it the
gluonic Wilson coefficient.

The final result, fig. 6.4, essentially validates one of the scaling assumptions in (2.1), as we
indeed find (compare fig. 6.3)

my(T)/m,(0) = (Gq)'*(T)/(dq)"*(0) . (6.25)

Thus, although the p mass depends intrinsically on the two independent scales {ggq)!/? and (G?)!/4,
the condensates and Wilson coefficients conspire in such a way that the scaling relation (2.1),
which reflects the assumption of a single scale, is approximately valid.

6.2. The nucleon at finite temperature

The extension of the finite-temperature QCD sum-rule approach to the nucleon [116] provides a
unique tool to investigate nucleon properties under extreme conditions. While finite-density effects
have been estimated earlier [21], care must be taken in the finite-temperature case to consistently
take into account the black-body (perturbative) contributions from the condensates. This is done in
the manner outlined in refs. [115,116] and the preceding section, using the Matsubara approach.
We probe the nucleon channel (neglecting quark masses, we do not differentiate between the proton
and the neutron) by considering the correlator of nucleon currents

B
m@) =i / dxq / d3x e95(0| Ty (v (x)7in (0)) 10), (6.26)
0

where ny(x) is the usual Ioffe current. If the source is at rest in the heat bath, ¢ — 0, the correlator
can be decomposed into two invariant structure functions,

11(¢%) = ¢11,(¢*) + M1(4?) , (6.27)
for each of which we can write fixed-|q| dispersion relations evaluated at ¢ = 0 with Q? = —¢2,
1 [ ImlIl 5 (w)
2y _ 1 (1,2) 2
MaQY) = — [ =542 2 do?. (6.28)

Again, we obtain an expression for the Lh.s. of the sum rules (6.28) by exploiting the short
distance expansion of the correlator and neglecting corrections of higher order in 1/Q%. We show
in fig. 6.5 the terms kept in the expansion of each structure function. As we shall see, a formula

D e e D

Fig. 6.5. (a) Leading perturbative contribution in the OPE for the nucleon channel, coefficient C;, (b) contribution of the
quark condensate Cgq4, (c) contribution of the square condensate C( a2
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for the nucleon mass is obtained by equating the ratios of the Lh.s. and the r.h.s. of the sum rules.
After Borel transformation we obtain for the ratio of Lh.s.’s

LI (QY) _ 2aM?[1 — 64(T*/M*) [ x3dx np (x)e*'T'/M"]
v (Q?) M4+ a2 /M2 + $r4T4f (T2/M?) ’

(6.29)

with @ = —2(27)%(qq). The function f(T?/M?) appearing in (6.29) is a slowly varying function
of temperature reflecting the contribution of the diagram in fig. 6.5a. Its explicit form can be found
in ref. [116]. At low temperatures

f(T?*M?) = 1 - 282272/ M2 4 O(T*/M*) . (6.30)

For the r.h.s. of the sum rule, we need information about the absorptive part of the correlator for
all ranges of momentum transfer, 0 < 5 < co. This, of course, is not available, neither through
perturbative techniques, nor from experiment. We therefore have to rely on established knowledge
of low-energy hadron dynamics to parametrize Im I7 (s). For instance, it is clear that to lowest
order the correlator is dominated by the propagation of a single nucleon, i.e.,

¢ + mn

If we denote by An the overlap between the nucleon state and the vacuum [u(p) is the nucleon
wavefunction],

(g% ~S(q? = (6.31)

{Olmn (x)IN(p)) = Anu(p)e™*, (6.32)
then

ImII(q*) = A% (¢ + mn)mo(g> = mR), (6.33)

Ly I (Q*)/LyITi(Q%) = mn, (6.34)

which together with (6.29) results in the formula for the nucleon mass (as in the zero temperature
case).

At very high momentum transfer, s — oo, we expect the correlator to be dominated by the
effects of the propagation of free quarks. However, we shall neglect this here as our use of the
Borel transform effectively cuts down the influence of the large momentum transfer region. We
would like to note however that the conventional approach to nucleon sum rules [25] makes use
of just this contribution to the nucleon correlator, introducing an additional parameter sp, which
is interpreted as the threshold value for the momentum transfer. As the nucleon mass depends
strongly on this parameter, and the optimal value /55 ~ 1.5 GeV signaling the onset of perturbative
dominance of the correlator seems rather low, we would like to propose a different approach that
seems to be more appropriate at temperatures below 7,. At intermediate momentum transfers we
expect corrections to the lowest order contribution (6.33) to arise through 7 N-dynamics. Indeed,
as the pion energy ¢, =~ 2.7 T, a pion at T = 100 MeV has just the right energy to excite the A
resonance. Thus, we believe that the dominant correction to the nucleon propagator is given by the
7A self-energy, fig. 6.6.

Dressing the nucleon propagator with this diagram introduces a continuum in the nucleon channel,
with a threshold given by s = (Ma + my)2. This describes nucleon “loss” through the process
N — mA. At finite temperature, a new channel opens up due to the presence of pions from the heat
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Fig. 6.6. nA-loop contribution to the nucleon self-energy.

bath: z*N — A (n* denoting a “hot” pion). This process generates a finite width for the nucleon.
As we shall see later on, this is the most important effect of the pionic heat bath, as to lowest order
the nucleon pole is not affected. If we denote by X (§) the contribution of the self-energy (fig. 6.6),
we can write the renormalized nucleon propagator as

i

W) = M) T e (635
while
Im I7(g%) = A4Im Sgr(q?) . (6.36)

The pole in the above propagator includes the renormalization at zero temperature and finite-
temperature effects due to the real part of the self-energy. It is precisely this change in the pole of
the propagator that we are attempting to extract with the sum-rule procedure.

In order to obtain the nA self-energy, we use an effective 7 VA interaction

g (=a
Lin = 5, (ZhaBunva + hoc.) (6.37)

with g2 = 4.68 (to reproduce I} = 115 MeV) and a Rarita-Schwinger field Zf,. Putting only the
pion at temperature and in the limit p — 0 we obtain

= ors MG (6.38)
with
2 —_%g_z [(p3_5+)(1?§—s_)]3/2
x {05 — 511+ n5(3zp0)]) + 00~ pdna(~}zp0)} 639

and the definitions

pi— MZ + m2

S+ = (MA:i:m,,)z, z = 02 =2(1-a). (6.40)
Also, ng(x) is the bosonic distribution function
ng(x) = 1/(1 +¢€*). (6.41)

Finally, defining

1
W= aPpf - Mi = — (p§ — s )(p§ —s-)
4p;
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allows us to write

ImI7,(s) = A4pi(s), ImIIy(s) = A} mn pa(s), (6.42)
with
als + my + p0?) + 2myM,
=- 4
pris) a(s)(S—mI%J+u202)2+4s02(amN+MA)2’ (6:43)
2 2.2
pa(s) = —0(s) (MA/mN) (s + mg — 1a°) + 2as (6.44)

(s —m§ + p?62)? + 4s02(amy + Mp)?
N

For T' — 0, the spectral distributions p;(;) are reduced to Dirac delta-functions at 5 = mﬁl and
a continuum starting at s = s,. For T # 0 the delta-function acquires a width, which increases
rapidly with temperature (see ref. [116]). With this continuum model as input for the r.h.s., we
can write

La1y(QY) _ 7 e™™ pa(s)ds
Ly (Q*) [y e~ pi(s)ds’

(6.45)

which now depends implicitly on myn. However, it turns out that, although the width can be sizable
near T, (6.45) does not differ significantly from my. This is due partially to the absolute size of
the self-energy correction (being small) and due to the fact that the integral over the resonance
is practically independent of the width. Therefore, the normalized integral below s_ can for all
purposes be approximated by 1, and we have

j 2 mn + [Ze=M p,(s)ds
€MH2(Q ). X fi ; 2 =Zmn. (6.46)
Lyl (QY) 1+ [ e/™pi(s)ds

Numerically, Z ~ 1 below T,. Thus, the continuum model presented here has a negligible effect
on the pole position, unlike the perturbative continuum model, which shifts the mass by several
percent [25]

An expression for the nucleon width can be obtained by defining

v = =2(ImSg(pp = mn)) ™" . (6.47)
Using (6.35), (6.38), (6.39) we obtain

_ 1<_§’1EN+mN
YN—?mm% Mx—

Here, wp = (M} —m}—m2)/(2mn), and |gx| is the pion momentum in the nucleon rest frame. Iy
is the width of the A (in the A rest frame!) calculated from (6.37) in the tree approximation. Indeed,
the width obtained using the nonrelativistic approximation (6.47) coincides with the nucleon width
obtained directly from (6.37) in the Born approximation. It differs by a kinematical factor of
(M) /my) from the one obtained by Leutwyler and Smilga [125], however.

We have plotted the nucleon mass for two extreme scenarios, namely for a quark condensate
independent of temperature (we call this scenario the “first order scenario”) and for a picture in
which the quark condensate drops smoothly with temperature as (Gg)(T) = (Gq) (0)[1—(T/T.)*1'/?

|a:>ng(wa/T) = 4Ta(Ma/mn)np(wa/T) . (6.48)
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Fig. 6.7. (a) Nucleon mass versus temperature for a temperature independent quark condensate. Solid line: without
continuum corrections, dashed line: including the zA continuum. (b) Same as (a) but with a condensate dropping as
[1 - (T/T:)2]'/2, with T, = 170 MeV.

(see fig. 6.3). The latter is dubbed the “second order scenario”. The full lines in fig. 6.7 show the
result of a calculation without continuum corrections, while the dashed lines include the above-
mentioned mA self-energy correction. Figure 6.7a illustrates the first-order scenario, fig. 6.7b the
second-order one.

We conclude this section by noting that these calculations support the general scaling idea
promulgated throughout this report: The relation m}/mn =~ ((4q)*)/3/({(gq))'/® is approximately
valid, even if taking into account finite temperature corrections to the perturbative contribution
(in the Lh.s.), or corrections due to the pionic heat bath (in the r.h.s.). We expect the inclusion
of gluonic condensates, such as ((G,,G*"})), or the mixed one ((¢(4%/2)0,,G},q)) not to affect
this conclusion significantly. For the former condensate we expect a similar mechanism as for
the p-meson to suppress its effect. The mixed condensate usually enters at the same level as the
ordinary quark condensate, and its value is often linked to it.

7. QCD sum rules at finite density and the nuclear many-body problem

QCD sum rules at finite density offer the opportunity to study nuclear matter and the problem
of nuclear binding from a conceptionally new perspective, to a certain order in an expansion in
terms of the chemical potential or the density. The finite-density case differs from the discussion
of finite temperature in that condensates other than those present in the vacuum become relevant
already at low densities, most prominent in this respect being, of course, the quark number density
(q*q), which increases with density. Also, it seems that in the discussion of finite-density effects,
the expectation values of the operators appearing in the expansion of the “left-hand side” should
be saturated with hadronic states, rather than quark and gluon ones as was done in the preceding
section. As always, the choice is one of convenience. While the result should be independent of
the basis chosen if the OPE is not truncated, truncation is necessary in any physical application.
Ultimately, a comparison of the two approaches should decide which is the most convenient, and
at what scale.
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7.1. Vector-meson masses

Finite-density sum rules were seriously considered first by Drukarev and Levin [126]. While
mainly concerned with the problem of nuclear matter, they obtained a convenient way of estimating
the decrease in the scalar condensate (gq)* with increasing density, which turns out to be quite
general. Starting with the pion-nucleon sigma term [see (4.3)]

Zan = (my + mg)(N|qq|N) (7.1)
the scalar condensate saturated with a single nucleon state can be expressed as
(Nlgq|N) = Zan/(my + mg) ~ 4, (7.2)

using X,y ~ 46 MeV and m, + my; = 11-12 MeV.

Up to nuclear matter density pg, nuclei or nuclear matter can be approximated by a dilute gas
of well separated nucleons. To linear order in the density then, the change in the scalar condensate
can be estimated via

ZﬂN

(99)" —(49) =~ (N|qq|N)p = e mn? (7.3)
which yields
(gaq)* ZaN P 2N
=1- =1-—=— 7.
G - T mamolan - Eme? 74)

where in the last step we have used the Gell-Mann-Oakes—Renner relation. We obtain for the
decrease of the quark condensate at nuclear matter density pg = 0.17 fm ™ ,

(qq)*/{qq) = 0.63 (7.5)

to within 10-15%. Universal scaling (2.1) in this case then predicts for the vector meson mass at
P =po

my /my = [(aq)*/(qq)]" = 0.86. (7.6)

This result of course is subject to corrections that violate scaling. In this case these corrections
come mainly from the gluon condensate contribution and leading- and higher-twist corrections,
the latter being essentially nonlocal corrections to the quark condensate. For the gluon condensate
Hatsuda and Lee [29] find

((as/m)GH)* = ((as/n)GP)o - §mn¥p (7.7)
from the trace anomaly in the chiral limit, where mﬁ? ) is the nucleon mass at zero density. The
gluon condensate is thus much less affected, dropping by about 8% at nuclear matter density.

Higher-twist corrections are potentially a much more important source of scaling violations. In the
common lore [29,126,127], these corrections, which typically appear from the Taylor expansion
of the bilinear (g (x)g(0)) in powers of x, are obtained either using measured quark distribution
functions or estimated using suitable models, and then used on the left-hand side (the “QCD
side”) of the sum rule. The terms arising from the twist expansion essentially depict processes
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where an increasing number of valence quarks are interacting with the source, leaving a hole in
the surrounding matter. Summed to all orders, terms of this nature build up the excitation of
particle-hole pairs in nuclear matter, each particle or hole consisting of three quarks or antiquarks.
On the hadronic side of the (transverse) sum rule, the absorption due to such processes is described
by the giant-dipole resonance (GDR) in nuclei, and as a consequence this should be included in the
spectrum at finite density [128]. It is conceivable that the contributions on the left- and right-hand
side of the sum rule are of similar magnitude, in which case higher-twist corrections would not play
an appreciable role in hadron masses, as the effects on the Lh.s. and the r.h.s would counterbalance.

The calculation of Hatsuda and Lee [29], which does not take into account absorption from the
GDR, reveals that the leading-twist correction comes in at about half the strength of the gluon
condensate. This accelerates the scaling [as opposed to (7.6)] and they find

my [my ~ 0.82 . (7.8)

This was obtained assuming factorization for the four-quark condensate at finite density, which
may be an ad hoc assumption. Indeed, this assumption is questioned in ref. [127]. There is to
date no reliable model calculation to check this; however, a simple estimate may be obtained from
the Skyrmion-crystal model [129]. In this case, {(Gq) is proportional to the expectation value of the
sigma field. Assuming [in rough agreement with (7.5)]

(d9)*/(dq) = (9)*/{0) ~ §, (7.9)
the Skyrmion crystal model gives
(6 = F(a)*?, (7.10)

which suggests only a modest violation of factorization. In fact, the violation appearing in the vector-
meson mass, which goes as the sixth root of (¢2)*, is only about 5% as compared to [(o)*/(5)]" 3
as implied by Brown-Rho scaling.

The shift in the nucleon mass (see below) cannot be derived from universal scaling in the above
naive manner, as the vector condensate is essential in this case. Appearance of the vector condensate
naturally breaks universal scaling. The density of nucleons is trivially (and to lowest order) related
to the quark number density as

pn = 3(Nlg'q|N). (7.11)
7.2. Nucleon mass and nuclear matter equation of state

The previous considerations set the stage for an investigation of the nuclear matter equation of
state and the binding problem in the context of QCD sum rules, as first considered by Drukarev
and Levin [126] and Drukarev and Ryskin {130]. This approach was recently taken up by Cohen
et al. [131].

In extending the analysis of the nucleon mass in the QCD sum-rule approach to finite density
we have to first observe that the matter provides for a preferred frame, and we can define the
four-velocity of the nuclear medium

u, = (1,0) (7.12)

in the rest-frame. The correlator of nucleon currents can then be written in terms of three invariant
structure functions,

I(q) = ¢IT(q% q-u) + IT)(q* q - u) + 1T, (g% q - u) . (7.13)
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The coordinate space propagator in the presence of condensates is
(OIT {42 (x)a? (0)}H0) = 55672 (7)1 — =6 (7,):;(01G1#|0)"
! J 2n2° x4 MY 4N, B4
1 abs. . ~ *
- md 0;(0lgq|0y* + ---, (7.14)

keeping only the most singular terms. In matter, the second term involves the vector condensate
(01gv*ql0) =~ (Nlg'q|N) = 3p. (7.15)
In this section, we neglect isospin breaking, i.e., we assume
(Olu]0)* = (0|dd|0)* = (0|q4|0)* (7.16)

and similarly for the vector condensates. Isospin breaking in finite-density QCD sum rules has been
considered in refs. [132,24], and more recently by Drukarev and Ryskin [133]

In the spirit of Landau Fermi liquid theory, we choose for the phenomenological (right-hand)
side of the sum rule a quasi-particle pole structure:

1

I7 ~ Ax2 s
() = 4N (g* — Z0)yu — (mn + Zs)

(7.17)

where A is the coupling strength of the source nn(x) to the nucleon quasi-particle im medium
[compare eq. (6.32)], and X} and X are the vector and scalar self-energies. We shall in the
following suppress the Lorentz index on the vector self-energy as we deal only with the time-
like component of the vector potential here (having gone to the nuclear-matter rest-frame). The
phenomenological representation of the invariant structure functions is then

1

T, (g2, = —A%} , 7.18
m*
(g2, = 22 N , 7.19
2(4%, q0) N 2%, + T mi (7.19)
Xy
I, (g% q0) = A% , 7.20
u(q qO) qu_quZV +2[2/_m*N2 ( )
where
m,I:I = MN +Zs. (7.21)
In the finite-density case, the invariant functions depend both on ¢? and on ¢ -u = ¢o. The
Borel transformation is carried out with respect to Q% = —q?, at constant ¢gg. Equating the Borel
transforms of the theoretical and phenomenological descriptions yields the relations
s2entimt _ L a6 _l_qoMqu)* (7.22)
N 32n4 372 ’
* — 2 1 = o\*
Rmye M = -5 MYgq)", (7.23)
I2T e M 2 arsiatay (7.24)

3n?
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where u?> = mi? — 2} + 2gpZy. The term involving go on the right-hand side of eq. (7.22) is of
the same order as the higher-twist corrections in deep inelastic scattering, and we neglect it in the
following considerations *). In detailed calculations [127], other terms involving corrections for the
nonlocality of the gluon condensate at finite density, which are of comparable size, enter. Neglecting
those, the scalar and vector fields decouple, as can be seen by dividing (7.23) and (7.24) by (7.22),
to yield

mi = —8n%(4q)* /M, (7.25)
Xy = 64n3(qtq)*/3M? ~ (327%/M?)p . (7.26)

The first of these equations is the well-known Ioffe formula (for M = my), while the second one
determines the vector self-energy. Note that with (7.21) we have to this order

2 2 27(
8"2 ({4q)o — (9q)") ~ Sm’__Zay (7.27)

2s =3 M2 (my, + m)

where we used (7.3). Together with our estimate (7.2) we come to the remarkable conclusion that,
to this order,

2y ~|Zs|. (7.28)

Taking X, n/(my, + my) = 4 and the Borel mass M ~ my in eqs. (7.26) and (7.27) we arrive at
the common value for 2 and | 2| at nuclear matter density

Ty = |Zs| ~ 490 MeV . (7.29)

Large scalar and vector mean fields are the main feature of Walecka mean field theories [134],
although in that context they are somewhat smaller than those of (7.29), i.e.,

2g~—-350 MeV, 2y ~ 275 MeV (7.30)

at nuclear matter density. Of course, we must have 2 smaller than |Xg| to bind nuclear matter
(see next section).

Even though Walecka theory is only a more or less ad hoc effective theory, Brockmann and
Toki [135], e.g., have shown that for p = po the mean fields emerging from a relativistic Brueckner~
Hartree-Fock calculation, starting from the Bonn potential for the nucleon-nucleon interaction
match those of Walecka theory closely. We would therefore like to understand the discrepancy in
the mean fields emerging from Walecka theory and from the sum-rule arguments.

In the Walecka theory, the mean fields are given by

Zs=—(g¥/md)ps, Zv=(gk/mi)p. (7.31)

Most of the difference between the fields (7.29) and (7.30) can be understood by letting ms — mj
and my — mj, in the Walecka theory. If we take for example following eq. (5.16)

my/mn = my/ms = my,/my = 08(p = po), (7.32)

then substituting the bare masses with in-medium ones increases the Walecka mean fields by > 50%.
It is in fact clear from our earlier arguments (based on ref. [126]) that the large mean fields emerge

*) For gy ~ M, it gives only ~ 1/6 of the first term on the right-hand side in (7.22).
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directly from QCD, yet it may appear problematical to have a scalar mean field of ~ 50% of my.
However, the work of Brown, Miither and Prakash [83] has shown that the effective mass my; is
not simply related to mn by my = mn + 25 as it is in the Walecka model, which in its usual
formulation only deals with valence particies. This is discussed more thoroughly in Brown and
Machleidt [136].

7.3. Saturation of nuclear matter

To linear order in the density, the calculation of Drukarev and Levin [126] yields scalar and
vector potentials of roughly equal order of magnitude, and to this order saturation cannot be
achieved. To higher order in the density p, saturation (i.e. nuclear binding) is then achieved by
incorporating p* effects. Indeed, the authors calculate the contribution of fig. 7.1, the one-pion
exchange process between the source nucleon, and a nucleon from the surrounding matter. In effect,
this process produces a deficit of pions in nuclei, simply because there is a Pauli blocking of part of
the lowest order self-energy in nuclei as opposed to free nucleons (see fig. 7.1b). The contribution
from the above process can be written in such a way that one obtains the pion-number deficit
multiplied by the (§g) content of the pion (n|gg|n). This latter number turns out to be rather large,

(mlgg|m) = 12, (7.33)

as can be obtained in a model-independent way, using chiral symmetry alone [126, 137]. Thus, this
“pionic Sigma-term” X is considerably larger than the nucleonic one, where we found (N|gg|N) ~ 4.
In effect, this contribution cuts down the gg content of nuclear matter, which decreases the scalar
mean field, and saturation is achieved.

The problem with this mechanism is that independent calculations [138, 139] give a pion excess
in nuclei, rather than a decrease, which would increase the gg content of nuclear matter, and, as
this leads to an increase in the scalar mean field, saturation would be lost. Moreover, higher order
diagrams (such as, e.g., the two-pion exchange graph) are likely to contribute at the same order.
Thus, to date finite-density QCD sum-rule calculations do not lead to saturation, simply because a
consistent calculation of higher order effects is as yet unfeasible.

We note that this situation is somewhat analogous to the Brown, Mither and Prakash calcula-
tion [83]. As already mentioned earlier, in this approach saturation was enforced in an ad hoc
manner by introducing a two-loop term in the effective theory, which proves to be unsatisfactory
from a fundamental point of view.

In effect, the QCD sum-rule calculations [126] work at tree level only, in that the high-Q? limit
suppresses soft-pion processes which are important at larger distances. In this sense, there cannot
be an Adler-Weisberger relation to this order in QCD sum-rule calculations, i.e., g4 = 1. Thus,
vector and axial couplings are identical to this order. Loop corrections to g4, however, do introduce
g4 # 1. As is shown by Brown and Machleidt [136], this suffices to achieve saturation, and
moreover, finite density effects that change nucleon and vector meson masses are counterbalanced
by a change in g4(p) up to p = pp, as we point out below.

There are many experimental indications that g, decreases from its vacuum value g4 = 1.26
with increasing density, mainly from observations of missing Gamow-Teller strength (see, e.g., ref.
[140]). Theoretical calculations by Rho [106] and by Ohta and Wakamatsu [107] suggest that
g4 drops to unity at nuclear matter density, in the manner of eq. (5.19). In fact, this decrease
has been confirmed recently by Drukarev and Levin [109]. In particular, it is shown in these
calculations that changes in the quark condensate at the mean field level have little influence on the
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Fig. 7.1. (a) One-pion exchange interaction in nuclear mat- Fig. 7.2. (a) Two-pion exchange loop. (b) Correlated pion
ter, which is equivalent to (b) the Pauli blocking of pro- pair, through virtual-p exchange in the ¢-channel.

cesses where both nucleons lie below the Fermi surface.

dependence of g4 on p, as most of the dependence can be traced to isobar-hole diagrams, namely
those considered in refs. [106, 107].

From the mean-field relation (3.21) noted in ref. [21] and from the comparison of eq. (3.21)
with (3.29) setting M = m, in the latter, one finds [24]

ginn/4m = 3m, (7.34)

essentially the tree-level coupling of gynxn. This coupling must then be multiplied by the loop
correction to obtain the full coupling,

Eenn/AT = (82w /4T ) e8] ~ 14.7 (7.35)

for zero density (g4 = 1.26). Of course, g,yn is treated in the same way, because of chiral
invariance.

Such loop corrections have not previously been included in nuclear matter calculations. If g4
were to drop with density according to eq. (5.19), it would cut down the scalar attraction by ~ 1/3,
leaving the vector repulsion that results from the gauge coupling gy and which is not affected by
strong-interaction renormalizations. Clearly then, egs. (5.19) and (5.20) cannot be used as such in
this context, rather, we expect that a momentum-averaged g4 has to be used instead [136]. Very
detailed calculations have been carried out by Mull et al. [141], which qualitatively confirm the
approach taken in ref. [136].

Consider the two-pion exchange loop, fig. 7.2. The Rho-Ohta—Wakamatsu mechanism amounts
to introducing isobar-hole modifications into the pion propagator, and we generalize this so as to
include, also, nucleon-particle-nucleon-hole insertions. The process in fig. 7.2a, with or without the
inclusion of the rescattering, fig. 7.2b, then gets a factor (g4 (p, k))2, where the average is taken over
the loop momentum k. The k-dependence of g4 brings in large cancellations, so that the (g4(p, %))
decreases only slightly by nuclear matter density. The decrease is parameterized by Brown and
Machleidt to be

(84) ey = (84(p,K)) = 1/[1 + ber(p/po) ], (7.36)

where b.g ~ 0.03-0.05 and the brackets indicate an averaging over the momentum k. This form
for (g4).y is the same as that of eq. (5.19), but b here gives a density dependence which is an
order of magnitude weaker. Nonetheless, because of the near cancellation between scalar and vector
mean fields, this is sufficient to achieve saturation.
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The schematic arguments given here can be made quantitative with the approach of Mull et al.
and Durso et al. [141]. Specifically they have shown that particle-hole insertions in the pion lines
produce a substantial density-dependent repulsion. As a consequence, the nucleon effective mass
does not have to drop until the attractive scalar mean field decouples sufficiently to give saturation.
The loop correction works together with the decoupling of the scalar mean field in order to produce
saturation at a higher my,.

Let us summarize the results of this section. Drukarev and Levin {126] obtained very large values
for 2y and |X| straightforwardly to lowest order in the QCD sum-rule formalism. Large, but not
quite so large, potentials are also obtained in Walecka theory, which can in fact be reproduced
from a rather detailed calculation [135] beginning from the nucleon-nucleon potential. In the latter
calculation, scalar interactions are substantially reduced due to short range correlations resulting
from vector-meson exchange, but built up again by exchange terms from pion exchange, etc.
Introduction of density-dependent meson masses into the Brockmann-Toki calculation brings the
scalar and vector mean fields closer to those obtained in the QCD sum-rule formalism. Saturation
is facilitated by density-dependent corrections to the pion propagator, which can be expressed in
terms of a density- and momentum-dependent g4 (p, k).

8. The hadron to quark/gluon transition

In this section we turn to aspects of the QCD phase transition proper. Recent evidence, numerical
and theoretical, strongly suggests that the transition for two-flavor QCD is of second order, while
it would be of first order for three or more massless flavors. Indeed, the strange quark mass
seems to interpolate between the two possibilities, and it appears that it is sufficiently heavy that
the transition is of second order. Wilczek has presented an analysis of this situation [142], and
suggests modeling the critical behavior of QCD with a theory belonging to the same universality
class. The order parameter in question being the chiral condensate, he suggests to consider the
Landau-Ginzburg free energy

F=TrOMOM) + > TeMIM + 2, Tr(MTM)? + A, (Tr MTM)?, (8.1)

where u? is the temperature-dependent renormalized mass-squared, while A; and A, parameterize
the strength of the quartic couplings. For two flavors, M may be taken to be

M=0c+it-m, (8.2)

which brings us back to the linear sigma model of Gell-Mann and Levy, the nonlinear version
of which we studied extensively in section 2. Interestingly, the linear model is equivalent to the
standard O(4) invariant n = 4 Heisenberg magnet, whose critical behavior has been studied
extensively [143]. For three flavors, however, the situation is more complicated, and it appears
that then the transition is first order. Seeing that the critical behavior of the Landau-Ginzburg
free energy shares many features with the QCD case, it seems to be more than just a convenient
playground. Specifically, the model predicts that in the two-flavor case the second-order behavior
changes into a smooth cross-over for finite, but small, quark masses, just what is observed in recent
two-flavor simulations [6, 144]. The advantage of this approach is that this model can be studied
by standard renomalization group techniques, and the effects of temperature and density, as well
as that of massive flavors are reflected in a renormalization of the coupling constants and mass
parameters. This was indeed the main conclusion of the analysis presented in section 2, outside of
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the renormalization group approach. In this section we would like to take the scaling of hadron
masses for granted, and explore phenomenologically its consequences for the hadron to quark/gluon
transition. It is intuitively obvious that dropping hadron masses near 7, will affect significantly the
nature of the transition between the hadronic and the quark/gluon phase, as the effective number
of degrees of freedom on the hadronic side is strongly mass dependent. The scenario presented here
takes dropping hadron masses into account explicitly [145,146].

We first develop a scenario which involves modifying the Hagedorn [147,148] scenario of a
maximum hadron temperature in order to take into account effects of scaling hadron masses,
eq. (2.1). This lowers the maximum hadron temperature still more from the Hagedorn temperature
Ty. The minimum temperature for stability of the quark/gluon plasma must be high enough so
that the pressure is greater than zero, Pog > 0; otherwise there would be a dynamical instability
and the quark/gluon plasma would collapse. Naively, this turns out to be greater than the hadron
temperature, i.c.,

(TQG)min > (TH)max . (83)

If this were so, there would be a phase gap between the maximum hadron temperature and the
minimum quark/gluon one.

We shall first develop this scenario, although many people have pointed out that the Hagedorn
scenario must be modified, and we shall discuss ways in which to modify it. Nonetheless, the
scenario leading to (8.3) is instructive in telling us that the chiral symmetry restoration transition
is not that of deconfinement. The following section may thus be considered academic in the sense
that it explores consequences of premises that are most likely not realized. Yet, it seems to us
instructive, and amusing.

8.1. The Hagedorn scenario

It is by now well established that increasing the temperature in the hadronic phase will ultimately
restore the chiral symmetry that is spontaneously broken via a condensate of quarks. We have no
doubt that such a chiral symmetry restoring transition takes place. Indeed, lattice gauge calculations
are consistent with the realization of chiral symmetry above T,sg by massless hadrons, as we shall
discuss later on.

Well below the chiral symmetry restoring temperature, 7,sg, the hadronic phase is sufficiently well
described by taking into account the lowest mass degrees of freedom, namely the scalar, pseudoscalar
and vector mesons, as well as the lowest mass baryons. Once the temperature becomes comparable
to the pion mass, however, higher lying states can be populated, and a simple description using only
a finite number of degrees of freedom seems to be inadequate. It has been suggested [147, 148]
that the hadronic phase in this regime is better described by an exponentially rising density of
states, the so called Hagedorn model. The celebrated consequence of this model is of course the
occurrence of a maximal temperature Ty for the hadronic phase, which comes about because from
some temperature 7" < 7 on it becomes thermodynamically more favorable to populate higher
mass states instead of increasing the kinetic energy of the lower lying ones. Thus, 7 can never be
reached. While this conclusion may have seemed startling at the time of its inception, it is not really
surprising, as we do not expect a hadronic phase at high temperatures anyhow, being aware of the
quark/gluon substructure of hadrons. Rather, we expect the Hagedorn model to break down close
to 7y, when the energy density of the phase is so high that the quark/gluon substructure becomes
apparent. Nevertheless we believe the Hagedorn density of states to be a reliable description of the
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hadronic phase below Tj, which we shall take to be T,sg without loss of generality *).
The Hagedorn density of states is usually parameterized as

p(m) = cm™ %™ Tism | (8.4)

where the parameters ¢ and a can be adjusted to fit the experimentally known resonances. Good fits
can be obtained with a < 3 and ¢ = 0.01-0.03 (see, for example, refs. [12,13]). Our conclusions
do not depend on the precise value of these constants, as they do not influence the size of the phase
gap.

The main thrust of this report has been the exploration of the consequences of the scaling
assumption (2.1), which has been established approximately from various points of view. It will be
implemented here in the following way. The energy density of the “Hagedorn phase” can be written
as

en(T) = /dmp(m)eu(m), (8.5)
M

where M 1s a low mass cutoff and ey (m) is the energy density of hadrons of mass m. It is in the
latter quantity that the temperature dependent masses appear, as
d3k

euim) ~ [ Ezotne o), (8.6)

with ng(¢) the Fermi distribution function, and

e(k) = VK2 + m*2, (8.7)

In a nonrelativistic Boltzmann approximation the energy density of hadrons of mass m* > T is
then

en(m) = (m*T)2n)¥* m*e™IT (8.8)

such that the total energy density is, using (8.8) and (8.4) in (8.5)**,

3/2 <
eq(T) ~¢ (%) ®2(T) /dm* (m*)3/2~aem [ Tyse—m*[T (8.9)
M

with the definition
Tisr = D (T)Tysr = (1 - T/ Tip)"® Tysw . (8.10)

Above we have taken a parametrization of the @ (T') suggested by results presented in section 2.
This parametrization fits approximately the calculation of Gerber and Leutwyler {149]. The latter
was carried out in chiral perturbation theory and as such cannot include effects due to higher mass

*) In general a transition temperature is associated with a certain scale. We have argued in section 3 that there are in fact
two such scales. However, only one, the scale set by the quark condensate, is soft, such that there can be only one critical
temperature in that regime.

**) It is crucial here that the Hagedorn density of states is temperature independent.
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hadrons, like the p and A,. From (8.9) it is apparent that €5 (7) can be made arbitrarily large if
a < 3.5, as seems to be the case from fits to the observed spectrum. This happens at a temperature

(TH)max = T;SR (8.11)

or
2 2 1/3
(TH)max/ Tysk = (1 - (TH)max/TXsR) ~0.755. (8.12)

If we take for T,sr the value suggested by Gerber and Leutwyler, T;sg = 170 MeV, we obtain as
a maximum temperature for the hadronic phase (Ty )max =~ 128 MeV. We would like to stress that
this is a genuine effect of the scaling relation (2.1). Let us further note that at 7 = (7y )max the
hadron masses have dropped only by about 25%. This drop does not depend sensitively on the
specific form of @ (7'), as most parameterizations of @ (7°) differ significantly only close to Tysr.
Let us now investigate the high temperature side of the system.

For a phase of unconfined quarks and gluons, a calculation of the thermodynamic potential to
lowest order in the quark—gluon coupling constant reveals an energy density given by

2
€ac = (16 + ¥ N))3-T* + B, (8.13)

where B is the bag constant, or vacuum energy difference, and N, is the number of light quark
flavors. As we pointed out in section 3, B is associated with the gluon condensate, and represents an
attractive potential in the sense that the condensation of gluons shifts the vacuum energy upwards
by B. From the QCD trace anomaly we determined the value of B (eq. 3.9) for two flavors to be

B4 = 245 MeV . (8.14)

Let us stress again that the bag constant is a vacuum energy difference. In the perturbative regime
with unconfined gluons and quarks the vacuum has energy ¢ = B at zero temperature.

Consider then the phase with unconfined quarks and gluons, with an energy density given by
(8.13) and a pressure

2
Pog = (16 + 3N/)gzT*— B. (8.15)

In order for this phase to be stable, the pressure in this phase must be positive,
Poc 2 0. (8.16)

This puts a constraint on the temperature of the quark/gluon phase, as with N '+ flavors we find

332N, \/4
(TQG)minﬁzls(m) MeV . (8.17)

This minimum temperature turns out to be appreciably higher than the maximum hadron temper-
ature (7# )max: for two flavors we find from eq. (8.17)

(TG )min = 172 MeV ; (8.18)
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hence the phase gap. In obtaining the latter we have neglected the effect of degrees of freedom that
are common to both phases (y,v,e*,...), as they are also not present in the lattice simulations.
These will be important for the physics of the early universe, however. Perturbative corrections of
order g2 [150] on the other hand, where g is the quark—gluon coupling constant, lower the pressure
in the quark/gluon phase by ~ 28%, which would raise (7G)min t0 186 MeV.

We are thus led to the conclusion that with these assumptions, hadronic and quark/gluon
phases could never coexist at the same temperature, as the phases would be separated by a gap of
30-40 MeV. This implies that no transition could take place from the hadronic to the quark/gluon
phase via equilibrium processes. If the hadronic phase is heated adiabatically, the high lying states
are populated and the “Hagedorn wall” builds up. Of course, this is not what happens in a heavy-ion
collision, where the time scales are much too small to build up the massive resonances. Before we
turn to this scenario, however, we would like to explore a little further the equilibrium situation.

While the Hagedorn description of the hadronic phase seems to be reliable up to temperatures
close 10 (Ty)max, it is clear that this description will break down as soon as enough energy is
pumped into the system to reveal the quark/gluon substructure of the hadronic states. While we do
not know precisely at what temperature the description breaks down, it is possible to construct a
“phase jump”, which presumably occurs through nonequilibrium processes via tunneling, from the
hadronic phase to a new phase at a higher temperature. The requirements for the occurrence of the
jump are rather severe: since the temperature in the two phases cannot be the same, we require
pressure and energy density to be equal, though at different temperatures. Thus:

en(Ty) = eqc(Tqa) , Py (Ty) = Pog(Ta) - (8.19)
This implies that the “net ram pressure” in both phases must be equal,
€¢—3P =4B. (8.20)

In the hadronic phase the pressure is negligible; the scenario then seems to be such that if the
energy density in the hadronic phase approaches 4B, the system may “break out” of the Hagedorn
equation of state and jump to a quark/gluon phase without changing energy density or pressure,
and thus without latent heat. In fact, a detailed calculation shows that this energy density is
achieved just slightly below (7 )max, and the system would end up in the quark/gluon phase
with a temperature just above (Tqc)min- This phase, however, is not stable. As discussed in refs.
[145, 146], modifications in the Hagedorn picture, for example due to the excluded volumes of the
particles, make this phase jump only a curiosity.

8.2. Lattice gauge simulations

There is by now an extensive amount of data from lattice gauge calculations in the pure glue
sector with no dynamical quarks, which shows a clear signal for a first order phase transition at
Tgauge- This temperature is easily calculated setting Ny = 0 in the previous formulae. We thus get

2
1655 Tyuge =B = 0. (8.21)

Note that B is evaluated for Ny = 0 in this case. We then find

Tyauge = 220 MeV . (8.22)
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Fig. 8.1. T, in MeV as function of the »,, the number of time slices. The fancy crosses are for two flavors of dynamical
quarks (from ref. [144]).

This is just the central value from lattice gauge calculations as summarized by Bernard et al. [144]
(see fig. 8.1), although the error bars shown are large. The critical temperature of Gerber and
Leutwyler [149], T,sg = 170 MeV, is a bit above the central value for the two-flavor chiral
restoration temperature found in lattice gauge calculations, but again the error bars are large. Note,
however, that the effects of hadron mass scaling, which are not included in the latter authors’
calculation, would bring their temperature even below 140 MeV, if estimated as in eq. (8.11) and
following. Recent calculations [10] find 7,sg ~ 140 MeV. In any case, our values for T;sg and
Tsauge are in reasonable agreement with those obtained in the lattice calculations.

Another set of data obtained from lattice gauge calculations is that of screening masses [8,7].
In these calculations the prominent feature is the parity doubling, which presumably should be
associated with chiral symmetry restoration. In particular, it is apparent that the N (%—) at 1535
MeV becomes degenerate with the nucleon at just the same temperature at which the A4, joins the
p in the vector meson spectrum. Similarly, the s-meson is brought together with the pion with
extrapolation to zero quark mass, even though the annihilation process which couples the glueball
to the two-pion correlated state (the ¢) is omitted in the calculation.

In the simulation by De Tar and Kogut [8] four flavors of staggered fermions are used to extract
screening masses on a 6 x 10® lattice. It is well known that the four-flavor world investigated
there shows a much stronger signal than the two-flavor one, and that the transition temperature
is much less in the four-flavor case. There is a simple way of understanding why Tysg(N; =
4) < Tysr (Ny = 2), which invokes the parametrization of the quark condensate by Gerber and
Leutwyler [149], which results from chiral perturbation theory taking into account only pions at
finite temperature. Then

(Oldql0): _ | _Mr=1 T2

(0lgq10) — Ny 12f2°

The way in which Ny enters is easily understood here. The N, in the denominator arises because
the total condensate is trivially proportional to the number of flavors. The N} — 1 in the numerator

(8.23)
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Table 8.1
Summary of screening masses in the chiral limit with constraints. The masses are given in units of temperature. (From De
Tar and Kogut [8])

B n oy Po P Ao Ay N(3+) N(3-)
5.10 0 6.2(4) 7.4(6) 7.4(6) 9.4(5) 9.4(5) 12.9(2) 14.4(4)
5.175 2.67(2) 2.67(2) 6.9(3) 6.9(3) 6.9(3) 6.9(3) 11.2(2) 11.2(2)
5.25 4.04(4) 4.04(4) 7.3(1) 6.3(2) 7.1(1) 6.3(2) 9.3(2) 9.3(2)

comes in because the condensate is “melted” by producing pions (production of a pion involves
moving a quark from the negative energy sea up to positive energies). In our scenario, heavy
mesons also enter in. The most important of these are the p and A4, mesons, of which there are
also N}' — 1. Note that, as their masses drop, the p and A, are more easily excited; the Boltzmann
factors are not small anymore. Thus, with two flavors and only pions, (8.23) would give

Tysr (N = 2) = 2V2f; =~ 250 MeV . (8.24)

The ratio of critical temperatures in the four-flavor world to that in the two-flavor world is, in this
simple model, predicted to be

Tysr (Ny = 4)/Tysr (Ny = 2) = V0.4, (8.25)

which is in fact close to the one obtained on the lattice. The normalization of temperatures, however,
is off, due to the neglect of the heavier mesons in the chiral perturbation theory calculation. Inclusion
of the latter brings T,sg down to about 170 MeV [149], and ultimately to < 150 MeV, as suggested
by the above arguments and found in lattice gauge simulations. Then,

Tysk(Ny = 4) = V0.4 Tysg (N = 2) ~ 89 MeV, (8.26)

where we used our Tysr (Ny = 2) ~ 140 MeV. This seems to fit the lattice gauge simulation results
quite well.

Let us now discuss results obtained in lattice QCD for the screening masses (see table 8.1). The
two columns each for p- and A;-mesons correspond to their two helicity states. Results for two
flavors are not very different [7], and screening masses for the two different helicity states of p and
of A; are now similar. The quantities in table 8.1 are conventionally called screening masses, but
we prefer to call them inverse screening lengths. When continued to Euclidean space, they reaily
describe the energy of the lowest state with given quantum numbers. We shall assume, as is often
done in lattice gauge calculations, that the screening mass measures the analytically continued, real
time, energy.

In order to simulate the effects of temperature in lattice calculations, the time-like extent of
the lattice is cut to f = 1/T while the space-like extent is left untouched. Thus, with a lattice
spacing a, the temperature on a lattice with N, time slices is just T = 1/Na. In order to vary the
temperature on a lattice of fixed temporal extent, one adjusts the quark-gluon coupling strength g,
as it is believed that the lattice spacing a is related to the (inverse) coupling strength = 6/g?
by the asymptotic scaling relation. From 84, /da = 0 and the definition of the QCD beta-function
one obtains the usual scaling relation (quoted here for two flavors)

adr = (8a%B/29)343/8exp(—4n2p/29) . (8.27)

In the above, A; is the ultraviolet lattice regulator. The asymptotic scaling relationship of course
holds true only at weak coupling, i.e. in the continuum limit. It is expected, however, that some



C. Adami and G.E. Brown, Matter under extreme conditions 59

relation exists between the coupling strength and the lattice spacing in the pre-asymptotic scaling
regime, though this cannot be obtained by perturbative renormalization group techniques. As most
lattice calculations show that the observables do not follow an asymptotic scaling behavior in the
region of couplings probed, a certain amount of skepticism with regard to the normalization of
lattice results is in order. Let us nevertheless try to understand the results for the screening masses.
In these calculations, the quantity “measured” is the coefficient in the exponent of the equal-time
Green’s function with appropriate quantum numbers, at finite temperature. Some care has to be
taken to extract the physical particle mass from this number, though. For a massless noninteracting
quark, the equal-time finite-temperature Euclidean Green’s function reads*)

N=T ip-(x-y) 8.28
G(x—y,1) = Z/(2n)3w2+p e , (8.28)
where the sum goes over the fermionic Matsubara frequencies

w, =2nT(n + %) . (8.29)
Integrating over angles and taking the residue in the dp integration shows that

T  e-@nls—vl
- .30
Glt,x-y) = ZnZw,,lx—yl (8.30)

Consequently, by looking at the large r = |x — y| behavior we find the “screening mass” to be just
the Matsubara frequency. As we expect to pick up only the lowest frequency in this analysis, the
“screening mass” for a massless quark at finite temperature would be wy = =nT; a system of n,
massless quarks would show a screening exponent wy = ngn7. A look at the results obtained by
De Tar and Kogut [8], reproduced in our table 8.1, and by Gottlieb et al. [7] show that this is
precisely what lattice calculations show at high temperature. Thus, the p; and A4, screening masses
are essentially 27, while that of the N(3+), N(3—) doublet is 37T (once T reaches Tysg). The
fact that these screening masses have reached their asymptotic value at the rather low temperature
T = T,sr is important. In the case of the n- and g-mesons, the screening mass is substantially
below 2z. This indicates that interactions are still important at T = T,sgr, as will be discussed in
detail in the next subsection. The degeneracy of the # and ¢ screening masses leaves no question
that chiral symmetry has been restored.

Note also that, had a remnant nonscaling mass—either bare or dynamically generated—persisted
above T, the screening exponent would have been

Wser = /W3 + M3~ wo + %mg/a)o, (8.31)

where m( denotes the nonscaling mass. Thus, a remnant mass would lead to deviations from the
linear behavior wy = ng,nT. These deviations, if present, are not resolved by the present accuracy
of lattice simulations.

We conclude then that these lattice results corroborate the idea of dropping vector meson and
nucleon masses, and are consistent with vanishing masses close to 7.. With this in mind let us
calculate the pressure in the hadronic phase exerted by these nearly massless particles. Taking only
the 7, p and 4; we obtain

90 (8.32)

*) For simplicity, we neglect the spin of the quark.

2
P(m,p,A)) = 21=T*



60 C. Adami and G.E. Brown, Matter under extreme conditions

which by itself already equals the pressure from the quarks. From the N (%+) and N (%—) and
their antiparticles we obtain further

2

4
90T , (8.33)

P[NG+)+ NG| =Fx16
where the 7/8 arises from the fermionic nature of the particles. This pressure almost matches the
one coming from the gluons. However, it seems unreasonable to keep adding up hadron degrees
of freedom, which results in the Hagedorn scenario as described in section 8.1. Rather, it seems
more physical to limit the degrees of freedom much in the same way as in the Debye theory of
solids, as done in ref. [146]. In Debye’s theory of the heat capacity, the phonon spectrum is cut
off when the number of phonons reaches 3N, where N is the number of atoms. The argument is
that the number of degrees of freedom in the effective excitations (vibrations) should not exceed
that of the underlying constituents (atoms). In the same fashion, if we consider the underlying
constituents in QCD to be quarks and giuons, then the number of degrees of freedom in the effective
excitations, the hadrons, should not exceed that in quarks and gluons. We include the gluons in
this computation, because deep inelastic scattering shows half of the momentum inside hadrons to
be due to gluons.

The effective number of degrees of freedom for a free gas of quarks and gluons turns out to be
40 (in the case of two flavors). In ref. [146], the limitation on the number of degrees of freedom
is implemented by introducing a temperature dependent excluded volume.

In lowest-order approximation, the pressure equation for the phase transition is

4 o4
geﬂv(H)%T = 37%T - B, (8.34)

where g. (H) denotes the effective number of degrees of freedom in the hadronic phase*’,
g (H) <40. (8.35)

As we have discussed, lattice gauge simulations already indicate that nearly enough hadrons go
essentially massless as 7 — T,sg to saturate the limit mentioned above. It is more difficult to
ascertain what the effects of the remaining interactions between quarks and antiquarks are on the
effective number of degrees of freedom on the quark/gluon side. In section 8.3 we shall construct
a scenario which fits results of lattice gauge calculations for T > T,sg. This scenario indicates that
one should continue to count the effective degrees of freedom as (hot) hadrons, as T passes from
below through the region of chiral restoration. A condition not unlike that of eq. (8.35) will arise
out of the dynamics of the scenario.

We would now like to compare the predictions of our scenario with results of lattice simulations.
In fig. 8.2 we show the results of Kogut et al. [6] for the energy density, as a function of § = 6/g?
[which can tentatively be converted to temperature using relation (8.27)] of up and down dynamical
quarks, as well as that of the energy density of strange quarks.

We interpret these results as follows: At about 8 ~ 5.30 the production of hadrons increases,
since the hadron mass has dropped appreciably (see section 8.1). By § ~ 5.40 the rapid increase
in up and down quark energy has ended. The energy is still about 30% below black-body. This is
just the reduction that would be expected from O(g?) corrections [150] with a; = 0.29 £ 0.11,

*) The factor 37 on the right hand side of eq. (8.34) arises in the usual way by multiplying the 24 quark and antiquark
degrees of freedom by a factor 7/8 to take into account their fermionic nature, and adding the 16 gluonic degrees of freedom.
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Fig. 8.2. Isodoublet (¢, 4/ T*, triangles) and strange (es/T*, circles) energy densities versus coupling § = 6/g2. The data
have been corrected for free massless field finite-size effects. (From ref. [6])

as noted earlier, following eq. (8.18). Although we shall argue in section 8.3 that the system is
not perturbative in this region, we might expect perturbative estimates to give us the correct order
of magnitude for effects from interactions. These corrections should decrease in magnitude with
increasing temperature, and the combined quark and gluon energies should go to the sum of the
black-body energies. Unfortunately, the accuracy in the present lattice results is insufficient to single
out the energy in gluons, and we are unable to divide the energy in hadrons into that in quarks and
gluons separately. From the fact that deep inelastic scattering shows that the hadron momentum
is about equally distributed between quarks and gluons, we might expect the energy production to
be also roughly equally divided. Taking eq. (8.35) literally, this would appear to give nearly the
same as the black-body radiation calculated for the 21 equivalent degrees of freedom in quarks
and slightly (~ 1/4) more than the black-body radiation calculated for the 16 degrees of freedom
in gluons. Thus, if the true degrees of freedom are hadronic at this stage, we expect lattice gauge
simulations to overestimate the energy density stored in gluons, by about 21/16.

To sum up, according to the arguments leading up to eq. (8.35) the sum of energies in quarks
and gluons should be the same as that calculated from black-body production of hadrons with the
limitation (8.35), but it may not be sensible to divide this energy density up into quark and gluon
degrees of freedom due to the absence of deconfinement. Another interesting aspect of fig. 8.2 is
the smooth rise in the energy density contained in the quarks. An estimate for the temperature
difference between # = 5.3 to 5.4 using asymptotic scaling (8.27) gives AT ~ 18 MeV. We believe
that this should be accurate to within a factor ~ 2. It is clear that the rise in energy is not as
abrupt as would be expected in a first-order transition. In fact, Kogut et al. conclude that their
results “suggest that there is no transition at all, and that there is only a smooth cross-over between
hadronic matter and the quark-gluon plasma [...]”. A smooth cross-over would be consistent with
a second-order chiral symmetry restoring phase transition.

8.3. Dynamical confinement

Earlier we have mentioned that several lattice QCD results hint at nontrivial effects in the high
temperature phase. Indeed, it was proposed some time ago by De Tar [151,152] that the high
temperature phase might be “dynamically confined”, in the sense that the long range fluctuations
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are color singlet modes, and that the poles and cuts in the linear response functions of the hadronic
phase go over smoothly into those of the high temperature one. The suggestions of Hatsuda and
Kunihiro [153-155] are similar in nature. These scenarios of dynamical confinement presuppose
a QCD phase transition of second order. In this subsection we would like to show how a simple
picture of quasi-free quarks interacting at high temperature solely through magnetic current—current
interactions (the electric ones being screened) can unify seemingly unrelated lattice results.

One of the most important aspects of the high temperature phase is the loss of relativistic
covariance due to the presence of the heat bath. It is this feature that allows a situation where
electric interactions are screened while the magnetic ones are untouched. In a relativistically
covariant description this statement is of course empty, as one can be traded for the other just by
choosing a different inertial system. In the high temperature limit, however, inertial systems are not
equivalent. Nevertheless, the system is still Lorentz invariant, of course. The most important aspect
of the lattice results on the other hand is the Euclidean formulation of the problem. Temperature
is introduced formally as imaginary time, such that the original Minkowski metric is replaced by
a flat three-dimensional one, with no time coordinate but a temperature instead. Consequently,
this approach can only reveal static, or time averaged (steady state) properties of the system.
In other words, lattice calculations cannot provide information about the time development of
observables, or about the spectrum of excitations. On the other hand, one may investigate equal-
time correlation functions measuring correlations in the spatial direction at finite temperature. This
leads to information about the momentum spectrum.

Early evidence showed chiral restoration as realized by parity doubled hadrons above 7, (see
table 8.1). While this could be interpreted as supporting the idea of dynamical confinement, the
arguments of the last section pointed to a picture where the quarks propagate freely with their masses
given by the lowest Matsubara frequencies. However, recent lattice calculations [10, 156, 157] show
results for the Bethe-Salpeter wave function for 7 and p mesons at a temperature 7 > 7, that
do not support this. Rather, those results show unambiguously that there are strong correlations
present even at these high temperatures. It is those correlations that we would like to understand
in the following.

To be specific, let us develop the formalism for the interaction of charges and currents in
Euclidean space-time. Below, we will essentially follow Koch et al. [158].

In Euclidean space, the Dirac equation for a massless particle has the following form (yf are the
Euclidean y matrices):

Veduw =0, (8.36)
and is solved by the ansatz
Y (x) = yoe i GnrinTre=ies, (8.37)

where the dependence in the O-direction is due to the antiperiodic boundary conditions on fermion
wave functions which result from finite temperature. The frequencies

w, = 2n+ )T (8.38)

are the fermionic Matsubara frequencies. We noted earlier that only wg contributes to the screening
mass for massless quarks.

We shall now consider a simplified situation where the interaction between the quarks is entirely
magnetic in character, i.e., is the interaction between the magnetostatic fields of the quark currents.



C. Adami and G.E. Brown, Matter under extreme conditions 63

We neglect any color-electric effects because of the screening. This is an unusual situation, rarely
encountered in classical electrodynamics, as magnetic effects are usually down by v/c as compared
to the electric ones. To reduce it to more familiar grounds, we will introduce a relabeling of the
(¢, z)-coordinates in Euclidean space that changes electric into magnetic fields and vice versa. This
will convert the magnetic current-current interaction to a static potential with a Coulomb-like
and a string-like piece, the string tension of this potential, however, not arising from the time-like
Wilson loops, but rather from the space-like ones. Due to the periodicity in the z-direction, the
Coulomb-like potential will turn out to be logarithmic.

Under this transformation (¢ < z), the Euclidean Dirac equation is invariant. The wave function,
however, changes to

w(x) = yoe @n+DrTze=iroxoe—ip, ¥ (8.39)

The antiperiodicity is now in the z-direction. The Dirac equation is solved by

po = +iy/p? + p3 = +i\/[(2n + DT 4 p? = —iE, (8.40)

with E real. The wave function then takes the form

w(x) = yoe Erg i n+ DT ze—ip, xs (8.41)

Close inspection of the effective Dirac equation reveals, as postulated earlier, the effective quark
mass,

M = /md, + [2n + DT, (8.42)

where we have allowed for a putative dynamically generated quark mass Mgy From (8.42) it
is clear that this effective quark mass is quite large at the temperatures that we are considering.
Therefore, we may treat the bound state problem nonrelativistically by solving the Schrodinger
equation

(Pi/2meg —V)y = Ey, (8.43)

where we introduced a static interquark potential V. Let us first discuss the potential induced by
the periodicity in the z-direction (the former time direction). The potential of a periodic array of
these charges can be written as (for electrodynamics)

e [1 & 1 1
o=2|2_2 _ 1. '
4n [’ 2 (\/P+y2+ (ng - z)? ”ﬂ)] (8.44)

n=1

We would like to stress again that we do not consider magnetic effects as they are considered to
be screened (remember that we have effectively exchanged electric and magnetic fields via the
(z,t) interchange). In the large-T limit we simply obtain the Coulomb potential in two dimensions
(potential of a charged wire)

D(r.)=—(e/2mB)In (r /28). (8.45)

A similar potential has been obtained in QCD; by Hansson and Zahed [160], investigating
essentially the same problem. The above potential is the analog of the one-gluon exchange interquark
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Fig. 8.3. Manousakis-Polonyi potential from ref. [9]. The finite temperature (T > T.) space-like potential corresponds
to the full line, the zero temperature time-like potential to the dashed line. The dashed—dotted line represents the finite
temperature (T > T.) space-like potential and the short-dashed line the modified Coulomb potential according to eq. (8.44)

potential in the real world. However, it is known that this is not sufficient to reproduce bound-
state properties even at zero temperature, and a linearly rising piece has to be added. The usual
string tension ¢ appearing in these potentials is related to the correlation of time-like Wilson
loops, and therefore vanishes in the high temperature limit (disordering of the Wilson loop). The
only remaining correlation is that of space-like Wilson loops, which are not related to a static
interquark potential [161]. In the (¢, z) inverted world, however, this is the correlator that acts as
the confinement criterion, and therefore we should add to the logarithmic potential derived above a
linearly rising potential with a string tension obtained from the correlation of the space-like Wilson
loops. The latter was estimated from lattice calculations performed for pure glue by Manousakis and
Polonyi [9]. They calculated the correlation function of two space-like Polyakov lines for T ~ 27T,
where T is the pure gauge transition temperature. We show their results in fig. 8.3. The correlation
function of time-like Polyakov loops gives roughly the same potential as the correlation of time-like
Wilson loops. The potential due to the latter is denoted by the dotted line, and seems to approach
zero with distance rather rapidly, indicating screening. As the time-like direction is compressed with
increasing temperature, the electric modes move more and more into the high-frequency region and
decouple, leaving effectively a three-dimensional confining theory with magnetic interactions, as
observed long ago [161]. Also in fig. 8.3 are shown the results of Polonyi and Manousakis for the
correlation function of space-like Polyakov loops at T ~ 2T.. According to the arguments raised
above, this correlation function is interpreted as the potential V' (R) between a heavy quark and
antiquark (heavy in this context meaning large effective mass) in a world where the (¢, z) relabeling
is performed. Let us now parameterize this static potential V' (R) as

V(R) = _‘b/R+UspR+C’ (846)
with the values

b=0.184£0.02, /Gy =022+£0.03a""', (8.47)
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Fig. 8.4. Wave function for the p-meson as a function of Fig. 8.5. The pion wave function at T = 0 (“cold”, ¢t =
r/a (a = 0.22 fm) for different temperatures. The curves 4,6) and the screening pion correlation function at T ~
correspond to wave functions obtained with the confining 1.5T;. For the “cold” case two Euclidean times are plotted,
potential Eq. (8.46). Temperatures. 150 MeV (full line), to show that the wave function is roughly independent of
250 MeV (short-dashed line) and 350 MeV (long-dashed) the number of time slices used, while for the hot case two
line. Data are from ref. [10] and correspond roughly to values of z are shown (from ref. [10]).
T ~ 210 MeV.,

where the space-like string tension is given in lattice units. The constant ¢ remains undetermined.
The physical zero-temperature static potential, measured by time-like Wilson loops [159], also
shown in fig. 8.3, can be parameterized by

b=4n, Vo=022+002a"". (8.48)

From the known value of ¢ = (400 MeV)2, we deduce that @ = 0.1 fm in the Manousakis and
Polonyi calculation.

The persistence of the (space-like) string tension at temperatures above T, implies that magnetic
modes are still confined; indeed, they should be as the compression of the time-like direction does
not affect the magnetic fields. The potential (8.46) should therefore be thought of as originating
from interactions mediated by these modes. The space-like string tension gy, above T is calculated
to be about the same as the zero-temperature string tension (8.48), suggesting that magnetic
screening is negligible at these temperatures, within the accuracy of these lattice results.

The full potential (8.46) can now be used to solve the (temperature-dependent) Schrodinger
equation (8.43) to obtain the bound state wave functions in the QCD case. We thus obtain fig.
8.4, where we have plotted the wave functions obtained for three temperatures together with results
from lattice QCD calculations [10]. The latter (in the pseudoscalar channel) are redisplayed in
fig. 8.5 for a temperature T = 1.57, (which here corresponds to T ~ 220 MeV) together with
a measurement of the same quantity on a symmetric lattice (77 = 0). These wave functions are
obtained by measuring the spatial/ correlation of quarks and antiquarks at equal time, a distance z
downstream of a “hot” wall from which the initial quark and antiquark are boiled off in a completely
uncorrelated state. As the quarks are carried downstream, only the lowest energy eigenvalue will
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Fig. 8.6. Wave functions for the p and 7 at (a) T=210 MeV and (b) T=350 MeV as a function of r/a (a=0.23 fm). The
full line corresponds to the p with spin quantum number S; = +1. The dashed line represents the pion and the p(S; = 0)
wave functions. In (a) arbitrary normalization was used, while in (b) all wave functions have the same normalization. Data
are from ref. [10].

survive, and correlations build up due to the current—current interaction. Also, any transverse
momentum of the quarks is suppressed at large z, as from the uncertainty relation in this space we
find p; ~ 1/v/Tz, and the momenta of quark and antiquark are effectively parallel at large z. This
reflects the binding in the original space. As is obvious from these plots, the hot wave function
cannot be distinguished from the cold one, a quite striking result, which may be explained by the
simple model presented above.

We can also add a spin-spin Breit—-Fermi-type interaction that will split the # and p channels
[160,158]. The resulting wave functions are plotted in figs. 8.6a and 8.6b as the solid (p with spin
S, + 1) and dashed (z and p with S, = 0) lines, at 210 MeV and 350 MeV, respectively *).

To summarize the results of figs. 8.4-8.6, a space-like string tension as obtained by Manousakis
and Polonyi can explain the strong correlations found by Bernard et al. In this picture, a Breit—Fermi
interaction (with a; = 0.25) splits the p and n wave functions. Note that a purely logarithmic
confining potential as arising from the replications would not suffice to reproduce the wave functions
observed on the lattice; a linearly rising potential with g ~ g, is required at all temperatures. We
are thus led to believe that the states in these channels do not propagate in the plasma as weakly
interacting quarks, as suggested recently [162,163]. As noted following eq. (8.31), the proximity
of these screening masses to n,n 7T indicates that the dynamically generated quark mass has become
negligibly small (as compared to n,nT, to the accuracy of the lattice data); the lowest Matsubara
frequency wg = nT here plays the role of a “thermal mass” or “chiral mass”**) for the quark.
Since it becomes large as T increases, interactions can produce the correlations that are observed.
Nevertheless, the size of the system does not seem to be determined by the temperature or any
other soft scale, but rather by a hard scale, presumably that of deconfinement [157].

We would like to propose an intuitive picture of the high temperature phase based on the above
observations. We saw that current—current interactions persist above T, and force any quark-

*) These temperatures are chosen to facilitate the comparison with the lattice calculations of the same quantities.
**) The “chiral mass” is very different from a bare mass in the sense that it does not break chiral symmetry.
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antiquark pair (and maybe every three-quark state) to correlate into color singlets. As the quarks
are moving in the heat bath, the strings connecting them for color neutrality are constantly breaking
and reforming, which can be interpreted as hadrons going in and out of the heat bath. The energetic
advantage of color neutrality was emphasized in the context of dense strange matter by Bethe,
Brown, and Cooperstein [72]. This picture seems to suggest that the relevant degrees of freedom
are still hadronic, as suggested by the original deconfinement model of DeTar, and an equation
of state describing massless hadrons might be appropriate. This, however, raises the specter of a
maximum temperature again, as it seems as if we can construct an infinite tower of states with
different angular momenta in each channel, since there is no deconfinement. The average distance
between quark and antiquark is of the order 7!, thus once a quark moves beyond that distance
it is likely to be replaced by another one, closer to the former partner. This “quark promiscuity”
assures that the maximum angular momentum of a quark-antiquark pair is roughly

Jnax ~ TV xnT =nm, (8.49)

thus only bound states with angular momentum J = 0, 1, 2 are likely to survive. Thus, the density of
states in this phase is not exponentially rising, and there is no maximum temperature. However, the
number of states with these momenta exceeds the number of degrees of freedom in the quark/gluon
phase. Consequently, not all of these can be realized, since the condition (8.35) must be enforced.
Our picture for T > T,sg has a formal resemblance to the string flip model [164,165], but
the apparent similarity is somewhat misleading. In the string flip model with time-like strings,
chiral symmetry is broken, since the quarks flip helicity as they bounce back from a maximally
stretched string. In our case, for 7 > T,sg, we are in a chirally restored phase. The correlated quark
and antiquark must therefore conserve helicity. In fact, before the change of variables z — ¢, the
interaction between quark and antiquark is magnetic, i.e., a current—current interaction.

9. Conclusions

Our main objective in this report was to bring together a variety of theoretical approaches
and experimental information that support the notion of a “benign”, nondramatic change in the
properties of nuclear matter under extreme conditions. As temperature and density change, so do
the microscopic, and ultimately macroscopic, scales that govern the behavior of such matter; most
notable among these is the dropping of hadron masses. The latter is very natural in a picture of
chiral symmetry restoration that is not first order; intuitively we expect at a certain point of the
transition to have the choice to describe the hadron in either language: the hadronic one or the
quark one. In the absence of chiral-symmetry breaking this is most natural if the mass of the hadron
in question is essentially the sum of the bare-quark masses that make up the color-singlet.

We have explored here not only how such a change in hadron masses can occur in various
formulations, but also the ramifications of such behavior in intermediate to high-energy regimes,
from nuclear structure to heavy-ion collisions to neutron stars. In most applications it would show
that, while hadron masses are a convenient way to parameterize the change in related observables,
it is really the quark and gluon condensates that play the key role in chiral-symmetry and scaling-
symmetry restoration. There is still much to be learned about the subtle relationship between
these symmetries and the condensates, as it is they who mirror the changes in the nonperturbative
vacuum. A good description of the latter therefore is essential to further our understanding of
matter under extreme conditions. Dramatic progress was indeed achieved using QCD sum rules,
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lattice gauge theory, and the instanton-liquid model, to name but some of the front-runners. These
approaches are still being pursued and should yield more valuable information. Yet it seems that
we are still far from a satisfactory understanding of nonperturbative QCD, at any temperature or
density. Indeed, the exploration of the different temperature and density regimes can be viewed as
part of the ongoing effort of exploring nonperturbative QCD, using all available tools. Certainly,
relativistic heavy-ion collision experiments are a keystone to this concerted effort, and large-scale
projects such as RHIC should yield a wealth of puzzling details that further our understanding and
spark new insights. At the same time the need for large-scale computing facilties and logistics is
more and more obvious, not only on the hardware side. New and more powerful algorithms may
emerge from such efforts, and together with the next generation of machines this should give the
community a third solid leg to stand on, next to the analytical and the experimental one.
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