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Order of the QCD transition and QCD sum rules
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We propose using the finite-temperature p-meson mass as an order parameter to monitor the QCD
transition. This is suggested by the p-meson mass formula that emerges from finite-temperature QCD
sum rules in the vector channel, and which encompasses the effects of both quark and gluon condensates.
We find that a second-order chiral-restoring transition implies a second-order behavior for the p mass
even if the value of the gluon condensate is unaffected by the transition.
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In this Brief Report we would like to explore the impli-
cations of chiral restoration on the order of the QCD
transition. Historically, the order of the chiral-
symmetry-restoration transition was believed to reAect
the order of the QCD transition, more so as it was be-
lieved that chiral restoration is accompanied by
deconfinement. However, there is now ample evidence to
the contrary and that the QCD transition to a new phase
signaled by the onset of deconfinement is accomplished
only at temperatures considerably higher than the
chiral-symmetry-restoring temperature Tr [1]. This is
also reAected in the observation of hadronic modes above
T, [2].
It is believed that the lack of deconfinement at temper-

atures T-Tz is due to the persistence of magnetic in-
teractions between quarks, reAected by an area-law be-
havior of the Wilson loop [3]. The area-law behavior can
be traced back to a persistence of the QCD string tension
(magnetic-flux lines) above Tr, while electric interactions
are screened. Thus, as confirmed by lattice QCD calcula-
tions [4,5], the magnetic gluon condensate (B ) seems to
persist above Tz, preventing deconfinement. Conse-
quently, the quark condensate may have only limited use-
fulness as a global order parameter for the QCD transi-
tion from hadrons to a plasma of deconfined constituents.
Of course, the choice of an order parameter is merely a

matter of convenience. We would like to suggest here us-
ing the mass of the lightest vector exc)tation of the sys-
tem, as QCD sum-rule formulas imply that the p mass is
determined by both quark and gluon condensates.
Rough estimates based on the QCD sum-rule method
have produced the estimate [6,7]

1/3
m (qq )+
m (qq)

which would point to an interchangeability of the p-
meson mass and quark condensate as order parameters.
We would like to present here a more thorough study of
this problem, using the method of finite-temperature
QCD sum rules. We should find that (1) is in fact only
approximately true. In general, the order parameters
(qq ) ' and m * can have different critical types of behav-
ior despite being related by the QCD sum-rule formula,

and thus violations of the scaling relation (1) would single
out one or the other quantity. Remarkably, we will find
that the scaling violations are small and that (1) is still ap-
proximately valid.
We will limit ourselves to finite temperature only and

leave density effects to a further study. Finite-
temperature sum rules were introduced in [8] and ela-
borated in [9,10]. We will not give here any details of the
procedure, but rather use the results of [10] for the calcu-
lation of the finite-temperature Wilson coe%cients and
proceed from there. We will depart from [10] when cal-
culating the p-meson mass by way of the so-called "ratio
method, "which is more convenient for our purposes as it
eliminates the dependence on the p-meson coupling
strength f . Using this method, the final expression for
the p mass then depends only on temperature, the Borel
parameter M, the continuum threshold so, and of course
the condensates, which we will use as input. We will
comment on the dependence on the continuum threshold
below.
The QCD sum-rule method at finite temperature is

based on the fixed ~q~ dispersion relation for the vector
correlator of currents:

Imlloo(co, ~q~ )
noo(qo, ~q() =—f ' d~ .

co—qo (2)

Here we have written down the dispersion relation for
the 00 component of the correlator. Because of the lack
of Lorentz invariance as a result of the presence of a heat
bath, there is a transverse as well as a longitudinal form
factor, the latter being related to IIOO. In the limit
~q~~0, which will be taken throughout, the two form
factors turn out to be proportional, however. As is stan-
dard, the left-hand side (LHS) of (2) is evaluated at large
spacelike momentum transfer, —qo —=Q2~0o, whereas
the right-hand side (RHS) is parametrized as narrow res-
onance plus continuum, reQecting the possibilities of
damping a vector excitation in the medium. As is well
known, at finite temperature, there is, in addition to the
classic channels of resonance formation and pair produc-
tion, the possibility of Landau damping at vanishing
momentum transfer. These contributions to the imagi-
nary part of the vector correlator are depicted diagram-
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FIG. 1. Absorptive processes contributing to the imaginary
part of the correlator to lead: (a) quark-antiquark pair forma-
tion, (b) p-resonance formation, and (c) Landau damping
[virtual-quark (pion) absorption].

matically in Fig. 1. After the standard Borel transform
we obtain, for the RHS of (2) (see [10]),'

RHS=f 8 s'
P M2

(c)
FIG. 2. (a) Leading perturbative contribution in the OPE,

coefficient 8&,' (b) contribution of the gluon condensates 8 2 and
8 2,' (c) contribution of the square of the quark condensateg2&

C
{qq)

LHS =(at( T M )

8 so 4T M

On the other hand, a calculation of the LHS of (2) using
the operator-product-expansion (OPE) technique in a
nonperturbative temperature vacuum, keeping the dia-
grams in Fig. 2 [expansion to order (M ) ], yields where

+8 2(T M)G ' 3 M4 3 M4

&qq &'

(N d
8 o M'

a,e,(Z'M')= ' M' " tanh e-"'M 1+ ~ +2~
24m 0 ~4 4T M2 M4

C g= ——"n.a
s&

and

n~(to/T) = [1+exp(co/T) ]
Note that we have removed the tadpoles in (5) by doing one subtraction.
Equating (3) and (4), we obtain the sum rule

f e ' =R(M' T')M: (8)

For the coefficient cI in front of the last term, which is due to the Landau damping mechanism [see Fig. 1(c)),we obtain for a heat
bath of quarks and gluons cL, =—2, while it is +—,

' for the case of damping through pion, rather than quark, absorption. We adopt
the pionic Landau-damping scenario throughout. These coefficients differ from the estimates of [8,9,10],but are consistent with what
is expected from the quark number susceptibility y= —IIOO(0, 0) on general grounds.
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where we defined

R(T,M )=C&(T,M ) — tanh e ~M dr@ +cl
Sn '0 4~ M

+C,(T M )G ' 3 ~4
4 &E') &qq)'
3 M

The coupling strength f is eliminated from (g) by taking the 1/M derivative and dividing by M R:

m (T,M )=- a
a(1/M') [M R (T,M )]/(M R) .

Specifically, we obtain

M I, (M, T)—(—'&B )——', &E ) )Iz(M, T)+—'"ma, &qq) /MI
M I3(M, T)+(6'+cr )T +I&(M, T)(—', &B )/M 4&E—)/M ) ,",n—a—,&qq) /M

(10)

where the I„are integrals of the order tanh(M/4T),
which can easily be obtained from (5)—(10). Before inves-
tigating (11) numerically, we would like to make some
qualitative comments. First, taken at face value, Eq. (11)
suggests that a simple formula such as Eq. (1) cannot
hold, as the gluon condensate contribution might turn
out to be non-negligible at high temperatures, when the
quark condensate contribution is negligible. Further-
more, while the quark condensate contribution adds to
the mass ("repulsive contribution" ), the gluon condensate
subtracts from it ("attractive"). As we mentioned earlier,
the gluon condensate itself, as opposed to the quark con-
densate, persists above Tz. Therefore, as the quark con-
densate diminishes, those contributions could very well
cancel, leading to a premature, first-order-like vanishing
of the p mass before reaching the chiral-symmetry-
restoring temperature, in contradiction to lattice-gauge-
theory results [11], which indicate that the chiral-
restoration transition involves a smooth crossover of
thermodynamic variables. This contradiction is prevent-
ed by the coefFicient of the gluon condensate contribution
C 2 going to zero as the Borel mass tends to zero. The
latter can be shown to occur as a consequence of (11), as

the minimum of the equation shifts to lower Borel masses
when the quark condensate is reduced. This is consistent
with the general idea [12] that the Borel mass parameter
should roughly coincide with the resonance mass.
In the gluonic sector we are thus witnessing a situation

which is opposite to the one in the quark sector: While
C, ,2 is independent of temperature and the quark con-
(qq )

densate drops with temperature, the converse is true for
the gluonic Wilson coeScient and condensate. We
hasten to add, though, that choosing a different vacuum
(a diff'erent normal-ordering procedure for the operators)
could well reverse the situation, as this may shift temper-
ature dependences from condensates to Wilson
coeScients and vice versa (see, e.g. , [13]).
We have plotted the behavior of 8 & as a function of

M/T in Fig. 3 (this is essentially integral I4 normalized
to its zero-temperature value; its derivative, the integral
I2, has a very similar behavior) and the prediction of Eq.
(11) in Fig. 4. To obtain the latter we have parametrized
the decrease of the quark condensate assuming a second-
order behavior of the form
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FIG. 3. Dependence of C z [integral I4(M/T) in (11)] on
M/T, normalized to its zero-temperature value.
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FIG. 4. p mass vs temperature as obtained from (11) for
different continuum thresholds. The upper curve has +so= 1.5
GeV, and the middle one is for +so =1.25 GeV, while the lower
curve was calculated with +so = 1.0 GeV as an input.
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—[1 ( Z yy )2]1/2
X (12)

and read off the p mass at the minimum of Eq. (11) at
every temperature. This ensures that in this region the p
mass is independent of the choice of Borel mass parame-
ter. It is generally assumed (see also [8,10]) that the
threshold drops with temperature. As we have no con-
trol over this issue when opting for the ratio method, we
have performed the calculation for three different values
for the continuum threshold so, taking +so=1.5, 1.25,
and 1.0 GeV. Note that a higher continuum threshold
implies a higher p mass only at small and moderate tem-
peratures (see Fig. 4). The generally accepted zero-
temperature value is +so=1.5 GeV (upper curve). The
p mass becomes less and less dependent on the threshold
as temperatures tend toward T&.
Of course, the precise profile of the finite-temperature

quark condensate is not known; however, this is not need-
ed to investigate the qualitative behavior of the p mass.
Also, the value of higher-order condensates close to Tz is
not known, and those might change the picture close to
the critical temperature. Another critical point is our use
of a quark-gluon heat bath to calculate the temperature

dependence of the Wilson coefficients [LHS of Eq. (2)].
While this approach is of questionable merit at very low
temperatures, where the relevant degrees of freedom are
expected to be hadronic, it turns out that the effect is also
very small at these temperatures. The approach seems to
be more reliable at temperatures close to T&, which is our
region of interest. A calculation of p-meson parameters
in the QCD sum-rule approach using a pionic heat bath
to calculate temperature-dependent Wilson coeScients
was performed very recently [14], yielding similar results
at low and intermediate temperatures.
To sum up, the commensurate decrease of quark and

gluonic contributions leads to a smooth behavior of the p
mass up to T&. As this can be well described by Eq. (1),
this seems to imply that the physics close to Tz is, after
all, controlled by just one scale.

We would like to acknowledge the hospitality of the
Kellogg Radiation Laboratory at Caltech, where this
work got written up. We also thank Hans Bethe for dis-
cussions on the subject of this paper. This work was sup-
ported in part by the U.S. Department of Energy under
Contract No. DE-FG02-88ER40388.

[1]F.A. Brown et al. , Phys. Rev. Lett. 65, 2491 (1990).
[2] C. DeTar and J.B.Kogut, Phys. Rev. D 37, 2328 (1987).
[3]E. Manousakis and J. Polonyi, Phys. Rev. Lett. 58, 847
(1987).

[4] S. H. Lee, Phys. Rev. D 40, 2484 (1989).
[5]M. Campostrini and A. Di Giacomo, Phys. Lett. B 197,
403 (1987).

[6] N. V. Krasnikov, A. A. Pivovarov, and N. N.
Tavkhelidze, Z. Phys. C 19, 301 (1983).

[7] G. E. Brown, Nucl. Phys. A522, 397c (1991).
[8]A. I. Bochkarev and M. E. Shaposhnikov, Nucl. Phys.

B268, 220 (1986).
[9] R. J. Furnstahl, T. Hatsuda, and S. H. Lee, Phys. Rev. D
42, 1744 (1990).

[10]C. Adami, T. Hatsuda, and I. Zahed, Phys. Rev. D 43, 921
(1991).

[11]J. B.Kogut et al. , Phys. Lett. B 263, 101 (1991).
[12]M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,

Nucl. Phys. B147, 385 (1979);B147, 448 (1979).
[13]C. Adami and I. Zahed, Phys. Rev. D 45, 4312 (1992).
[14]T. Hatsuda (private communication).


