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Using the QCD sum rules we calculate the neutron-pro- 
ton mass difference at zero density as a function of the 
difference in bare quark mass m a -  m u. We confirm re- 
sults of  Hatsuda, Hogaasen and Prakash that the largest 
term results from the difference in up and down quark 
condensates, the explicit ~ (m a -  m, )  entering with the 
opposite sign. The quark condensates are then extended 
to finite density to estimate the Nolen-Schiffer effect. The 
neutron-proton mass difference is extremely density de- 
pendent, going to zero at roughly nuclear matter density. 

The Ioffe formula for the nucleon mass is interpreted 
as a derivation, within the QCD sum rule approach, of 
the Nambu-Jona-Lasinio formula. This clarifies the N c 
counting and furthermore provides an alternative inter- 
pretation of  the Borel mass. 

We compare calculations in the constituent quark 
model treated in the Nambu-Jona-Lasinio formalism with 
ours in the QCD sum rule approach. 

PACS" 12.38.Lg; 14.20.Dh; 21.65. + f 

1. Introduction 

The Nolen-Schiffer effect [1] has defied explanation for 
two decades. Recently, Henley and Krein [2] suggested 
a possible explanation in terms of  dynamical mass gen- 
eration, using the Nambu-Jona-Lasinio model. Hatsuda, 
Hogaasen and Prakash [3] realized that the calculations 
in the QCD sum rule formalism for the ~ - X  energy 
splitting, which were carried out to linear order in the 
strange quark mass, could be immediately applied to the 
neutron-proton mass difference mnp by changing the 
strange quark mass m, to md, the down quark mass. These 
authors found that 

m,w = -- 4.79 y I ( q q )  I 1/3 - 1.56 (m a -  m,),  (1.1) 

* Supported in part by the US Department of Energy under Con- 
tract No. DE-FG02-88ER40388 

where 

(rid> Y-(au5 1 (1.2) 

is negative, since the value of the quark condensate de- 
creases with increasing current quark mass. Using the 
Ioffe formula [4] for the nucleon mass, 

mn~[  --  2 (27~)2(~q)11/3 (1.3) 

and the assumption that ( q q )  scales with density like the 
nucleon effective mass 

(c~q)p ( m * )  3 
( q q ) 0 - -  ~ (1.4) 

these authors could quantitatively explain the Nolen- 
Schiffer effect. Especially noteworthy of (1.1) is that the 
condensate and bare quark mass difference enter with 
opposite signs, showing that the condensate plays a large 
role in mnp. With the Hatsuda et al. [3] 7 = - 0.0065, the 
neutron-proton mass difference (exclusive of  electromag- 
netic effects) is 1.8 MeV for p = 0, given m a -  m u = 4 MeV. 
This means that (putting the numbers in Hatsuda et al.'s 
eq. (5.9)) 

m* ] 
mnp~ 8 " - - 6 . 2  MeV 

m. _1 
(1.5) 

so that m,,p,~O at nuclear matter density where 
m * / m n ~ 0 . 8 .  Thus, the neutron-proton mass difference 
changes sign in going to higher density. Henley and Krein 
[2] obtained a similar result. 

The QCD sum rules provide a consistent formalism 
for the necessary calculations. We wish to show that, 
within this formalism, the different signs of dynamically 
generated mass and current quark mass effects emerge in 
a simple way. Whereas we agree with the results of  Hat- 
suda et al. [3] we differ with the results of  Belyaev and 
Ioffe [5] for the analogous Z - 2 7  mass splitting. QCD 
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sum rules at finite density have also been used previously 
to obtain the properties of nuclear matter [14]. 

The QCD sum rules focus on the high momentum, or 
short range behaviour, using a Borel transformation to 
extend calculations in the perturbative sector down to the 
nonperturbative one. We shall see that the main part of 
our results are determined by how one can make loops 
out of the quarks in the correlator of nucleon currents, 

these giving the leading In - ~  behavior. Although 

the calculations are straightforward, the bare quark mass 
enters in a way which is counter intuitive from a low 
energy point of  view. We shall try to explain, from a 
simple approach, how each of the isospin breaking terms 
enter. 

Since the numerical results of Hatsuda et al. [3] vary 
with variations of  the Borel mass M, one might feel some- 
what uncomfortable with them. By our simple model we 
obtain quite similar results, that do not depend on the 
value of  the Borel mass. This gives us confidence that 
they really have an explanation for the Nolen-Schiffer 
effect. 

2. Isospin breaking in the Q C D  sum rules 

We begin by outlining the simplest treatment of the nu- 
cleon giving the so called Ioffe formula [4], which retains 
only the quark condensates. The contribution of the gluon 
condensate is relatively small, and, in any case these will 
not contribute to the isospin breaking which we will dis- 
cuss later in this section by introducing a difference 
m d -  m, between down and up quark masses. 

The correlator of nucleon currents 

g ( q  2) = i S d4xeiqx( TtlN(X ) oN(O)) (2.1) 

can be decomposed into two invariant structure functions 

H (q2) = ~H~ (q2) + H2 (q2) (2.2) 

In Fig. 1 we show the contributions to be kept in the 
zero-order treatment. With a suitably chosen (proton) 
current 1 (C is the charge conjugation operator) 

Ilp ( X )  = I~ abe [hi ( X )  C ~ l  l u (x)] [ ~Y5 ~/l d (x ) ]  (2.3) 

~1(q2)= ~ + ( ~  

~2(q a) = 
Fig. 1. Perturbative contribution and condensates included in the 
Ioffe formula 

1 This current, while not unique, has all the required properties of 
a nucleon current [4]. We shall assume in the following that it has 
enough overlap with the physical nucleon current that the results 
do not depend on the details of the source 

it is easy to show that 

H1 (q2) _ 

H2(q  2) - 

(_q2)2  ( q 2 )  1 
64rt 4 in - -g2 _ 2 ( q q ) 2 q ~  

Q4 Q(~_) 1 
-- 647t 4 In q _ ~ ( q q ) 2  Q~ (2.4) 

1 
4zr2 (c jq)  ( -  q2)ln 

- 4rt2 (c iq)  in ~ -  (2.5) 

where Q2 = _ q2. For  each Lorentz structure we have the 
sum rule 

2 1 ~ ImH1, 2 (s) 
HI,z(Q )=~-  S s+Q2 ds (2.6) 

0 

where we have left out possible subtractions, which will 
be taken care of by the Borel transform. After the Borel 
transform, the sum rules for H I and H 2 are: 

M 4 ( qq)2 
2 __ 2 

s  )--3~n4+~ M 2 

1 - m2n/M2 (2.7) 

M 2 
/s = 47r2 <qq> 

= I~ 2 ~ e --m2n/M2 (2.8) 
M 

where /s denotes the operator of the Borel transform 

.m  ' Q: . . . .  ( n -  1 ) . ,  [Q21. (2.9) 
Q2 /n = M 2 

where M 2 (the square of the Borel mass) is kept fixed, 
and 2 N is the overlap between correlator and nucleon 
state. Taking the ratio of (2.8) to (2.7) one has 

2aM 4 
m . -  M6 +4a2 (2.10) 

where 

a =  - (2~)2(c7q) (2.11) 

The Ioffe formula (1.3) is obtained by neglecting the term 
(4/3)a  2 in the denominator of  (2.10) and choosing 
M =  rn n. In fact, the formula is much better than our 
rough description would suggest, because a continuum 
contribution which we have left out comes in to cancel 
a substantial part of  the (4/3)a  2 in the denominator. 

The above simple treatment gives us sufficient basis 
for studying the effect of quark condensates. As we show 
in Appendix A, the down quark condensate is somewhat 
smaller than the up quark one because of  the larger down 
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quark mass. For  rn a -  m u = 4 MeV, we have 

<dd> 
- 1 ~ --0.0065 (2.12) Y =<au> 

according to [3] (see also our estimate in Appendix A). 
We now write down the fu l l / 2vH (Q2) for the proton, 

keeping the bare quark masses rn d and rn, to linear order 

M 4  2 <au> 2 <dd> (2.13) 
/ s  M 2 +ma 4 ~ 2  

M 2 m d M 4 
/ 2~Hz(Q 2 ) -  4rc2 ( d d > - l ~  4 

< ~ U >  2 
+~ ~ - ( m d + }  m,(1 + Y)) (2.14) 

In deriving these we have included the diagrams of 
Fig. 2. The results for each diagram alone are listed in 

(a) (b) (c) 

(d) (e) 

Fig. 2. Nonvanishing diagrams for the proton (X). The x denotes 
a heavy quark mass insertion; o denotes a heavy condensate. Di- 
agrams a-e refers to the contributions listed in Table 1 

Table 1. Contributions to the correlator from condensates and quark 
masses. The superscripts refer to the figures. ( ~]q> denotes the light 
quark condensate, the heavy quarkcondensate is (qq> (1 + y) 

H(2a'=32n4(-q2)21n(-q~22) 

II(2b'=<qq> (l+y)q21n 

(qq>(1  + y )  
H (2~) = -- qm 47f2 

<qq)2 
H(~d~= _~/  q~ 

4m(qq> 2 H(2e) : 3 q2 

- ~  ~ r -  (1 + ~)~ 

H(gb)=(qq>4~r2 q 21n --/~2 

(clq>2 (1 +y) H ~'3~ = - 2m ~ T -  

Table 1. Of course, the ( r id )  multiplying m d can be taken 
to be the common <qq> and the (au> 2 can be taken to 
be < qq>2 to the necessary order. We shall spend the rest 
of  the chapter discussing the origin of  the various terms. 

(i)  Most important for the condensate is the fact that 
the term - (M2 /4 1 r  2) ( d d )  for the proton, the term that 
gave the Ioffe formula, involves the down quark conden- 
sate only. This will give a contribution to the neutron- 
proton mass difference 

(i) ,,~ am.  = - 2 (2~r2) 2 [(•u5 - (a~d) ] /M 2 

-- y [ -- 2 ( 2 ~ ) 2 < a U ) ]  U3~-- -- ym n (2.15) 

The reason that this term in/-/2 for the proton involves 
only <dd> can be seen fi'om Fig. 1. The condensate must 
be in the down quarks if there is to be a non flavour- 
changing loop (which gives rise to the log(Q2//_t2)). The 
reason why no flavour-changing loops appear (to linear 
order in the quark mass) is apparent fi'om the structure 
of  the nucleon current, (2.3). Since the current is essen- 
tially proportional to the d-quark field times a trace over 
the two same quarks, a condensate in one of the u-quark 
lines implies a trace over a single quark propagator, which 
vanishes. The cancellation of  the higher order term 
m,<au> (which appears in H1) is however nontrivial and 
might not be related to the symmetries of the current, as 
it only occurs in D = 4. We have checked, however, that 
it also occurs for other choices of the nucleon source. 

Note that with our estimate of - y ~ 0 . 0 0 6 6  in Ap- 
pendix A, ( i ) ,.~, &n, 7 MeV, much greater than the empirical 
neutron-proton mass difference. 

This result is much larger than we might intuit from 
a constituent quark model, where we would use the con- 
stituent quark mass m o ~ 89 rn~ instead of rn n in (2.15), the 
neutron and proton differing by one down quark. (We 
might also easily obtain the opposite sign for the above 
effect in the constituent quark model.) 

(ii) From (2.14) it is clear that the term 4a2 in the de- 
nominator of (2.10) is to be taken as 

xa4 2"4(2~)4</~U>2__ (2.16) 

in the case of the proton, but 4(2~z)4<dd>2 in the case 
of the neutron. Remembering that the Ioffe formula for 
rn n is obtained from (2.13,2.14) by setting M = m , ,  we 
see that if we kept the (4/3) a 2, then we would have 

~ 2 a  ( 1 - - 4 ~ 6 )  (2.17, mn~ ~ 
a 2 

4 is cancelled by conti- We argued that much of the x 

nuum terms. We will here make the assumption that the 
continuum is isospin symmetric, in order to compare with 
other works [3, 5] which implicitly make the same as- 
sumption (we shall investigate different continuum 
thresholds for neutron and proton in another section). 
Then, since the ( d d )  2 term in the proton subtracts form 
the mass, there will be a further contribution 

2 c~ (i~ ~- -- ~ ym. (2.18) 
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as can be seen by replacing the Borel mass by the nucleon 
mass and using the Ioffe formula everywhere. " 

(iii) The m e ( d d  ) term in the proton again involves only 
the down quark condensate so that the two up quarks 
can make up a loop, giving the log Q2 term. This is a 
dimension-four term and enters into H 1 (Q2) precisely as 

a gluon condensate ( ~  G2) (had we kept it) would, but 

with the opposite sign. Multiplying numerator and de- 
nominator by - (2~r )  3, we have 

m e ( d d )  _ m d 
4zc z --2 (2~r) 4 [ - 2 (2zO2(dd>] 

md mn (2.19) - 2(2re) 4 

to compare with the main term M4/(32~r 4) in i ~ H m  (Q2). 
Thus, in (2.10) the M 6 in the denominator is replaced by 

M6--+ M 6 _ m n m d  M 2  (2.20) 

so that, with r n ~  M, it is clear from expanding the de- 
nominator in (2.10) to first order that this term adds ~ m  e 
to the proton mass. Thus 

(iii)mnp _~ -- m d . 2.21) 

(iv) Furthermore, we deal with the term ( m e / 6 4 x  4) M 4 
in/7,MH 2 (Q2). In some ways this is the simplest term in 
the isospin breaking. It comes from the mass term in the 
bare quark propagator, that we can write in coordinate 
space as (to first order in the quark mass) 

l [ t ' . x  i me 1 Se(x)  -- (2.22) 2n 2 7 + 2  7 ~  9 

In the case of the proton only m e enters if two of the 
quarks are to be contracted into a loop; since they must 
be identical to lowest order these must be the two up 
quarks. Multiplying and dividing the ( -  M 2 / 4 n 2 ) ( d d )  
term by 2 (27r) 2 and using the Ioffe formula, we have 

2 M 2 m n  m e  M 4  
L m H 2 ( Q  ) =  32zr4 -~ 16~r4 

( qq )2  (rne+ ~ m~). +4  M 2 (2.23) 

Thus, the 2a in the numerator of (2.10) is replaced by 

2a + 2rn e M 2 + 4 Mg so that the mass of the proton is 

increased by 2m e. Consequently 

~(iV)mnp'~ --  2m a . (2.24) 

It is amusing that the m e in the quark propagator in- 
creases the proton mass relative to the neutron, even 
though the latter has two down quarks, the former only 
one. As we have pointed out, the result is determined by 
how one has to make loops, which have the dominant 
(logarithmic) behavior in Q2. 

Finally, due to the different coefficient in front of  the 
m q ( q q )  2 contribution for up and down quarks (see 
(2.14)), for the neutron the factor 2a in the numerator ( a2) 
of  (2.10) is replaced by 2a + 2m d M 2 +  4 M g ' ~  , which 

results in an additional mass difference 

(~(V)mnp'~ + m e . (2.25) 

Of course, all five of  the Omne we have calculated thus 
far are linear in me, and only the sum of  them is mean- 
ingful. 

Our results are obtained by summing the fimne: 

m , p -  - 35- ~m, - 2 (m e -  m,) (2.26) 

where we have reinstated the difference in masses. With 
= -0 .0065  this gives 

mnp = [10.8 m~*-8]  MeV (2.27) 
mn 

to compare with the formula of Hatsuda et al. (1.5). 
Although the coefficients we obtained using this rough 
and schematic way are somewhat larger than those ob- 
tained by the more detailed treatment of [3], we also 
obtain a nearly vanishing m~p at nuclear matter density, 
where m*/m..~0.8,  using m a - m u = 4 M e V .  Note that 
when calculating m*, the nucleon mass at finite density, 
we have kept only the contribution of the scalar conden- 
sate. It is well known however that finite density creates 
a non-zero vector condensate, which gives rise to a vector 
field, which shifts the physical nucleon mass back near 
to its zero density value. (It is known that the nucleon 
chemical potential p is close to the rest mass m,; there- 
fore, as far as the nucleon energy is concerned, the vector 
and scalar fields largely cancel.) In the mass-difference 
however, the vector condensate appears only as a higher 
order correction. Since there is no vector condensate in 
the p = 0 vacuum, the shift from the vector potential can 
be accounted for in a straightforward manner. The im- 
pact of the vector condensate is discussed in more detail 
in [3]. 

Our first term does, however, agree with what we 
would obtain from the difference of 3 and X masses, 
(4.72c) and (4.72d) of Reinders, Rubinstein and Yazaki 
[6], after taking the Borel mass M to be equal to m n. Of 
course, both terms in either formula (1.5) or (2.27) de- 
pend linearly on m d -  m u, so that after introduction of  
the electromagnetic mass differences, we can adjust 
m e -  m, slightly to obtain the correct neutron-proton mass 
difference at zero density. 

We have confirmed the main point of Hatsuda et al. 
that the dynamically generated contribution and bare 
quark piece enter with opposite sign. This means that the 
coefficient of the dynamically generated contribution can 
be quite large, as it is in both Hatsuda et al. [3] and in 
our formula (2.27). In either case, the neutron proton 
mass difference will be substantially lessened in nuclei, 
changing sign for P ~ P o ,  where P0 is nuclear matter 
density. 



3. Relation to the Nambu-Jona-Lasinio formula 

In this section we wish to show the relation of the dy- 
namical mass generation by the QCD sum rules to the 
Nambu-Jona-Lasinio model. We begin by keeping only 
the lowest terms in (2.10) resulting in the Ioffe formula 

2a - 2 ( 2 g ) 2 ( c T q ) .  
m~ - -  M 2  - -  M 2  , 

(3.1) 

i.e. this equation would result in the Ioffe formula if the 
Borel mass M is replaced by m~. We wish to offer another 
possibility. 

The Nambu-Jona-Lasinio formula for m, is usually 
written 

rn,, = - G (cTq) (3.2) 

where the quark condensate is 2 

d3k mQ 
( 0 q ) = - - g  (2~) 3 ~ +  2 0 mQ 

(3.3) 

with mQ the constituent quark mass, g the degeneracy, 
and G a constant. Although A is considered a somewhat 
arbitrary cut off in the NJL formalism, since the mag- 
nitude of ( q q )  is usually well known from the Gell- 
Mann-Oakes-Renner relation, we can determine 3 A in 
order to reproduce this known value of  

( q q )  - - (220 MeV) 3 . (3.4) 

It is convenient [7] to consider m~ to result from the mean 
field relation 

g2NN g. 
mn=--32 m ~ - \ c i q ) '  (3.5) 

which is shown graphically in Fig. 4. In other words, we 
interpret G of (3.2) as 

2 
gaNN (3.6) 

mo 

Of course, exchange terms (of relative order g -1  com- 
pared with the leading term), short range correlations, 
etc., can be included. They would change the value 
of  m~. 

In mean field approximation and tree level, m~ was 
found to be 940 M e V ~ m ,  in the estimate of [7]. We 
therefore suggest that the M 2 in the denominator of (3.2) 

2 Tracing back where M 2 should be interpreted as m~. 
came from, we see that the lowest order term, the per- 
turbative quark loop in H l ( q  2) (see Fig. 1) goes as 
Q41nQ2, whereas H2(q  2) goes as ( ~ q ) Q 2 I n Q 2 .  The 
Q41n Q2 turns into M 4 and the Q21n Q2 into M 2 upon 
Borel transforming. The Ioffe expression for m~ comes 

2 In this section we are neglecting the bare quark mass as it is not 
essential for these arguments. The full expression including effects 
from the bare quark mass can be found in Appendix A 
3 In order to compare results with [2] we shall frequently use 
A = 0.8 MeV, which does not reproduce (3.4) 
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(a) (b) (c) 

Fig. 3. Same as Fig. 2, but for the neutron (~) 

Fig .4. Graphical representation of the mean field relation consid- 
ered behind NJL 

from the ratio of H 2 to H 1 ,  so  that the M 2 in the de- 
nominator of (3.2) arises from the diquark loop that 
H1 (q2) has in addition to that of  H2(q2).  (The former 
has two loops, the latter one). This diquark loop is a 
scalar, not unlike the qq loop which would represent a 
scalar particle as Q2--*oo, stripping off  all gluon inter- 
actions. 

Our interpretation simplifies the problem of N c de- 
pendence. Both m n and ( q q )  are linear in Arc, whereas 
m~ has no N C dependence. Thus, both sides of (3.2) have 
the same (linear) N c dependence. This is not apparent in 
the Ioffe formula, (1.3). 

If  we identify m~ with M, then from (3.5) we find, 
comparing with (3.1) 

2 

gaNN__ 3 g .  (3.7) 
4~ 

This is obtained in tree approximation, so that to obtain 
the pion-nucleon coupling constant we must multiply by 
g2, which gives 

2 

ggNN__ 3~g~ = 14.7 (3.8) 
4~Z 

where we have used gA = 1.25. At the very least, this gives 
an amusing interpretation of  the factor 2 (2 ~)2 in the Ioffe 
formula, (3.1). 

Let us continue our considerations to finite density. 
Taking all masses, except the pion mass, to scale [7] as 
f * ;  i.e. 

m* m* f *  ( q q ) ,  ( f , ) 3  
and (3.9) 

m, m~ f~ ( q q )  J~ 

the NJL formula goes into 
2 2 

--3gaNN m* -- ( q q ) * .  (m*) 2 (3.10) 
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By ( q q ) *  we mean that on the right hand side of (3.3) 
not only mommY,  but also A -~A *, where 

A * _ f *  (3.11) 
A f~" 

However, we can rewrite (3.10) as 
2 

2 g c r N N  (qq)* 
m n  - -  3 2 m~ ( f , / f ~ ) 2  

(c]q)* 
- G ( f , / f ~ ) 2  (3.12) 

using (3.9). 
In practice A ~800MeV,  mQ~330 MeV 

A >>mQ. Thus, to a good approximation 
so that 

( glq)~-- - ~A2mQ (3.13) 

in dependence on A and mQ, and similarly ( q q ) *  
~- - ~A*2m~.  Using (3.11) we find 

(qq)* ,~ ~ A*2m~ -- ~A2m~. ( 3 . 1 4 )  
( f . * / f . ) ~ -  ( f . * / L )  ~ 

Defining 

A d3k m~ (3.15) 
( q q ) ~ J L =  - g  f o (2n)3 ~ ~ 2  

we see that 

m* = -- G ( ~]q)*JL (3.16) 

to within terms of relative order m~/A  2. Thus, to a good 
approximation, the Nambu-Jona-Lasinio formula (3.2) 
can be continued in medium by letting mn~m* and 
mourn  ~ and keeping A fixed. 

Thus far no calculation of how (g*NN) 2 changes going 
into the medium exists. Calculations [7] of the medium 
dependence of  (g*NN) 2 show that it decreases at less than 
or about half the rate of (m*)2 as the density p goes from 
0 to nuclear matter density P0- We plan to address this 
issue in the future. In general calculations in the tree 
approximation in the literature [8, 9] show * g,:rNN to change 
little with density or temperature. This may be an artefact 
of  not including loops. For  example, gA increases from 1 
to 1.26 with loop corrections, whereas g* decreases from 
1.26 in free space to ~ 1 as measured [10] in (s, d)-shell 
nuclei. Arguments have been [7] made that g e ~ x x  should 
scale with density as g* for not too high momenta 
p~mA, ,  where mA1 is the Al-meson mass. From chiral 

. invariance, one might expect goNN to scale * as g,~NN" Thus, 
loop corrections might introduce appreciable density de- 
pendence " * in g~NN" 

On the other hand, our connection above of the Ioffe 
formula with Nambu-Jona-Lasinio was made at tree level, 
indicating that loop corrections must be found in higher 
order terms in the QCD sum rules. Whereas the connec- 
tion between the scaling of g~ and * gnNN in [7] is made 

from low momenta, and the Goldberger-Treiman relation 
holds for zero momentum, the QCD sum rules let the 
momentum go to infinity. Thus far, connections between 
the results from calculations in these two regimes have 
proved difficult to make. 

4. Discussion of the Nolen-Schiffer effect 

Hatsuda, Hogassen and Prakash [3] neglected the density 
dependence of y, (1.2) in stating their final results, al- 
though this density dependence as calculated in the NJL 
formalism and shown in their Fig. 2 is fully as rapid as 
in m* i.e. // , 

y *  m *  n (4.1) 
}' m n 

Inclusion of this additional density dependence would 
nearly double their effect. Since we have now connected 
the NJL formalism with the Ioffe formula, we feel jus- 
tified in using the former in the QCD sum rule frame- 
work. 

Indeed, fo rA  = 800 MeV and mQ = 330 MeV, to order 
m~/A 2 it is easy to calculate the change in (qq )*JL  due 
to introduction of a small bare quark mass m (~ as (see 
Appendix A) 

- ) ,  
f i (qq  N j I ~ o  an , .*2  (4.2) 

~m(O) . . . . . . . .  Q 

where we take m~ ,-~ 0.8 mQ. Note that this change comes 
from the low momentum region of the integrand in (3.15) 
and should be insensitive to the cutoff A. Using the def- 
inition (1.2) of 7, (3.14) and (4.2) we find that 

fi In ( qq)NJL 
y * = (m d -  mu) ~rn(O) 

_ - 0.49 (m a -  mu) rn~ 
~ A  2 

(4.3) 

This essentially linar dependence of y* on m~ has the 
consequence that the m*/m n in (1.5) and (2.27) are re- 
placed by (m*/m,y ,  thus nearly doubling the Nolen- 
Schiffer effect. 

After years of futile efforts to obtain sufficiently large 
quantities to explain the Nolen-Schiffer effect, it seems 
refreshing to, for a change, obtain too large an effect. On 
the other hand, the QCD sum rules concentrate on the 
high Q2, or short range aspects, and the longer range 
terms would be expected to give much less of an effect. 

Consider, for example, what happens in the constit- 
uent quark model, treated in NJL [2]. Instead of rnn, take 
the up or down constituent quark masses, M u or M d, to 
be generated by (c]q) .  Take the o- to be made up as 

1 o- = ~ [(flu + r id) ) .  (4.4) 

Then, from the direct terms shown in Fig. 4 the generated 
masses M,  and M d will be equal. With introduction of  
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exchange terms, the ( ~ u )  contribution to M,  will be di- 
minished by g - 1, where g is the degeneracy (g = 6), and 
the ( d d )  contribution to M d will be decreased. Thus, to 
order g -1 ,  the up quark mass comes slightly more from 
( d d )  than from ~au), just as in the Ioffe formula the 
proton mass comes from ( d d )  even though the proton 
contains two up quarks and only one down quark. How- 
ever, in the neutron-proton mass difference mnp, there is 
a factor of 1 / 18 in the constituent quark model compared 
with the Ioffe formula, 1/6 of  this being g -  i, and the 
other 1/3 from the ratio of  quark mass to nucleon mass. 
This discussion may help to explain why the QCD sum 
rule calculation gives such a large answer with the pa- 
rameters used. As noted, to the extent that we are allowed 
to decrease the bare quark mass difference ma-mu, we 
can improve the quantitative argreement with the empir- 
ical effect. 

5. Conclusions 

We have confirmed the result of  Hatsuda, Hogaasen and 
Prakash that the dynamically generated and bare quark 
contributions to mnp have opposite sign, leading to a large 
change in mnp with density. We have shown that this 
results from the way in which quark loops are contracted, 
in order to obtain the high Q2, or short distance, behav- 
iour. 

Many partial explanations of the Nolen-Schiffer effect 
have been given within the language of the broken sym- 
metry sector; i.e., mesons and nucleons. These have been 
in terms of electromagnetic effects, p -  o)-mixing, etc. 
[11, 12]. It may well be that by adding these effects up, 
one has a real explanation. This in no way contradicts 
our explanation, which uses different variables, especially 
the quark condensates. We suggest that effects like the 
Nolen-Schiffer one have explanations in both sectors. The 
reason that the QCD sum rules work is that the pertur- 
bative and the nonperturbative sectors overlap; thus, per- 
haps, a given phenomenon can be described by the var- 
iables in either sector. One example of this overlapping 
in explanations is the decrease in meson masses with den- 
sity. In Brown, Mfither and Prakash [13] the decreasing 
meson masses were described in terms of medium cor- 
rections which involve isobar nucleon-hole insertions in 
pion propagators. An explanation of the same phenom- 
enon is given in [7] in terms of changes in the quark 
condensate with density. Although it is clear that both 
explanations rely on partial restoration of chiral sym- 
metry with increasing density, they have not yet been as 
tightly connected as they should be. 

We have reinterpreted the Ioffe formula to be a der- 
ivation, in the no loop approximation, of the NJL for- 
mula for the mass of  the nucleon. The Borel mass finds 
a physical meaning here as the scalar meson mass m~ and 
cannot be arbitrarily varied. Thus, we do not see the need 
for m n to be insensitive (in the region where M 2 =  m 2) to 
variations in the Borel mass. The mass of the p-meson, 
mp, is quite flat as a function of M i n  the region M,-~mp 
so that the p-meson is well accommodated in the philos- 
ophy of  the QCD sum rules. It may be that the mechanism 
of mass generation for the p-meson is quite different from 

that for the nucleon, although most of the mass, in both 
cases, comes from the ( q q )  condensate. 

We pointed out that, in detail, the isospin breaking is 
much larger in the QCD sum rules than in the constituent 
quark picture, described in the Nambu-Jona-Lasinio for- 
malism. 
We would like to thank Hallstein Hogaasen, Tetsuo Hatsuda and 
Madappa Prakash for the intial inspiration and for many discus- 
sions which contributed to the understanding of these effects. 

Appendix 

In this appendix we use the Nambu-Jona-Lasinio theory 
to determine y. In the NJL theory the condensate ( q q )  
depends quadratically on the cut off. We shall see that y 
depends only logarithmically on A, however, so we should 
be able to estimate y reliably in the NJL formalism. 

The condensate is just the scalar density in the negative 
energy sea, but with a subtraction such that the conden- 
sate vanishes if the dynamically generated mass is zero 
[8]. 

d3k I (r~ § m (~ 
< #Iq> = -- g ~ Vk 2 § (rh 47 m(~ 2 0 

m(0) ) 
l/k + (m% 2 J 
(ha § rn(~ [A 

42z2 g ] /a2§247176 2 

A ,§ I/A2 § (rh § rn(~ 2 ] 
~ ~m ~ m~~ 

~ + m  (~ l 
m(~ [A I /A 2 §  (m(~ 2 +7U- 2 

a § ]/A 2 § (rn(~ 2 ] 
( m ( ~  2 In m (o) J (A1) 

Here, g = 6 is the degeneracy. Also, r~ = 330 MeV is the 
dynamically generated mass and m (~ is the bare quark 
mass. Thus, mQ = rfi § m (~ Following Henley and Krein 
[2], we take A = 800 MeV. 

We first calculate ( q q )  with m(~ (in the chiral 
limit). We find 

(Oq)  = - (296 MeV) 3 . (A2) 

This is too high, due to the value of the cut off. However, 
as mentioned earlier, the ratio of condensates y is much 
less sensitive to the cut off. Furthermore, we take 
m} ~ 190MeV for the strange quark mass (with 
mQ = 540 MeV), which gives us 

(~s)  = - (263 MeV) 3 . (A3) 

Thus, 

~ 0.71, (A4) 
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in the generally assumed range. This  means  that  

Y ' - - - ( a u )  1 = - - 0 . 2 9 .  (A5)  

Using (2.26) we see that  this implies for  the ~ - 2 7  mass-  
difference 

m z - m z  = - - } ( - - 0 . 7 1 ) m  n 

- 2 - 1 9 0 M e V = 8 1 M e V  (A6)  

to compare  with the empirical  124 MeV. 
Tak ing  m a -  m u = 4 MeV and m d = 7 MeV we calculate 

y of  the neu t ron-p ro ton  system to be 

y = -- 0.0066. (A7)  

Note  tha t  scaling y~ linearly with the bare  quark  mass  
would give 

4 
- - -  0.0062. (A8)  

Y=Y~ 190 

Thus,  at least for  y, l inear per tu rba t ion  theory works  well. 
In fact, for  small m (~ the linear theory gives 

g <qq> = 0.49 (rh) 2 . (A9)  ~m (o) 

The  nonanalyt ic  te rm l n m  (~ in (A1)  is mult ipl ied by  
(m(~ 3 so that,  at  least for  small bare quark  masses,  there 
is no p rob lem in practice with this expansion.  

It  is s t ra ight forward  to see that  ]y] is a decreasing 
funct ion of  density. This dependence is shown in Fig. 2 
o f  H a t s u d a  et al. [3] and  in general our  results in this 
Append ix  are in agreement  with these authors.  
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