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A canonical quantization of the skyrmion with co-mesons is presented using Dirac theory of quantization under constraints. 
After removing the spurious spin-isospin zero modes from the meson spectrum, an explicit meson-nucleon hamiltonian is con- 
structed. In the strong e-coupling limit the semi-classical results are recovered. The relevance of this approach to low-energy 
meson-nucleon physics is stressed. 

In the past few years, the Skyrme model has pro- 
vided important insights to hadronic structure at low 
energy [ 1,2]. This non-perturbative approach is be- 
lieved to relate to QCD in two ways. First, asymptot- 
ically in the sense that Nc--,ov QCD is believed to 
truncate to an effective theory of weakly coupled me- 
sons that bears some relation to the original Skyrme 
model. Second, dynamically in the sense that it in- 
corporates the important aspects of current algebra. 

The Skyrme model is rooted in the non-linear a- 
model, where the elementary fields are pions. The 
topologically stable soliton configurations inherent in 
the model yield baryon properties that are in fair 
agreement (30%) with the QCD baryons. Both scale 
and counting arguments seem to support the inclu- 
sion of vector mesons such as the co, p, A~ etc., whose 
masses lie in the 1 GeV-range. If indeed QCD should 
reduce to an effective mesonic theory at low energy 
as suggested by the large Arc arguments, then the more 
realistic the meson theory, the better the baryon 
properties. 

Recently, Adkins and Nappi [ 3 ] have suggested to 
use the isoscalar o-meson to stabilize the skyrmion. 
Using semiclassical arguments, they have concluded 
that the bulk properties of the nucleon and A-isobar 
remained qualitatively similar to the ones derived in 
the conventional Skyrme model. Similar arguments 
were then used by several other authors [4-13] to 
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extend the model to the lowest-lying vector mesons 
(p, At ). The same semiclassical procedure was used 
with chiral quark models in the presence of vector 
mesons [ 14,15 ]. 

So far, there have been few systematic approaches 
to the Skyrme model [ 16,17 ] (none to its chiral gauge 
variants) from the point of view of a relativistic 
quantum field theory. A direct operator treatment is 
unavailable. The commonly used approach starts 
from the classical soliton solutions, and then uses a 
naive semiclassical quantization of the collective de- 
grees of freedom. These quantization arguments are, 
however, limited. In order to describe meson-nu- 
cleon physics at low-energy using Skyrme-like models, 
it is imperative to go beyond these semiclassical ar- 
guments. Only then, one can extract the pertinent 
meson-baryon form factors and analyze the rele- 
vance of vector dominance in the model. A non-per- 
turbative meson-nucleon hamiltonian would be very 
useful for a systematic analysis of the NN and Nlq 
interaction [18] in the spirit of boson-exchange 
models, and shed more light on the structure of the 
isoscalar and isovector meson exchange currents. At 
this stage, we should point out that the model is not 
renormalizable. In other words, there is no consistent 
way of dealing with the infinities that will arise in the 
quantum approach. We expect, however, that in the 
soliton sector the skyrmion size will provide natural 
cutoffs or form factors that would cut down the ultra- 
violet part of the meson fluctuations in most of the 
physical observables we are interested in. For in- 
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stance, while the zero-point correction to the masses 
is plagued with perturbative UV divergences, the mass 
splittings are not and can be calculated in the present 
context. It is important, however, that the physical 
quantities extracted from the present approach do not 
depend on the short distance character of  the meson 
fluctuations. 

Having said this, we would like to show in this let- 
ter how one can construct a meson-nucleon hamil- 
tonian starting from skyrmions, that explicitly 
differentiate between the bound states (N, A, ...) and 
the asymptotic mesons (n, to,... ). In a subsequent let- 
ter [ 19 ] we shall, as an application of the formalism 
presented here, calculate the width of the A-isobar. A 
more detailed account of the construction will be 
given elsewhere [20]. Starting from classical soil- 
tons, we will use the canonical version of the collec- 
tive coordinate method [21] ~ to quantize the 
collective degrees of freedom as well as the quantum 
fluctuations. This method is based on Dirac theory 
of quantization under constraints [22 ]. In its canon- 
ical form, the procedure avoids ordering ambiguities 
usually present in the functional approach [23,24]. 

To illustrate our points we will discuss the to-sta- 
bilized version of the Skyrme model [ 3]. For sim- 
plicity and clarity we will not address the issue of 
translational invariance and the recoil problem. The 
generalization of our arguments to more realistic vec- 
tor models is straightforward though tedious, and will 
be reported elsewhere [25,20]. 

We take as dynamical variables the parameters that 
characterize the isospin position of the classical 
hedgehog solution together with the quantum fluc- 
tuations around it. The presence of spurious zero 
modes in the small oscillation expansion requires 
careful quantization conditions. The zero modes arise 
from the invariance of the classical solution under 
spin-isospin rotation. By imposing the proper con- 
straints on the various fields to separate the zero 
modes from the rest of  the meson spectrum, we de- 
rive an effective hamiltonian that involves explicit 
baryons (N, A) as well as mesons (n, to). Somewhat 
surprisingly, we observe that the nN coupling is of  
order N~- 3/2 while the toN coupling is of  order N~- 1/2 
The absence of a n N  coupling to order N 7 1 / 2  is re- 

~ In this approach the issue of hermiticity is subtle. We refer to 
ref. [ 17 ] for a critical discussion. 

lated to our gauge conditions. Since in our case t~e 
to-meson is still present in the baryon-meson hamil- 
tonian, the resulting baryon spectrum is different 
from the one discussed by Adkins and Nappi. We 
show explicitly how to recover their spectrum in the 
strong to-coupling limit. 

Consider a non-linear a-model minimally coupled 
to a massive spin- 1 to-meson [ 3 ], 

~ ¢ =  ½0uq~g( q ~ ) O u ~ + f 2 m 2 [ c o s ( f  ~ ~ q~) - 1] 
1 2 --I- l v t a 2 f ,  i 2 - ~tou~ - ~ . . . . .  u +go,  t o u B u ,  ( 1 ) 

where qb is the isotriplet pion-field and Bu the usual 
topological current. Here g,~ characterizes the strength 
of the to--, 3r~ decay in the vacuum, and gab ( ~ )  is the 
induced metric on the curved O (3) manifold. As for 
any Proca field, tOo is a constrained variable and not 
an independent degree of freedom. With this in mind, 
the classical hamiltonian associated to ( 1 ) reads 

9¢t~ = ½ ( U ~ + g o ~ tO i B i ) g - ' (fig) ( U a~ + g o~ tO i B i ) 

+ ~Vi@g(@)V,@+f2m~[1 - c o s ( f ~ -  ~ @) ] 

+ / ~ j  + 1  2 i vvt2 ,,.,2 ..L" l ~tOo + (oj ¢2j - go,Bo) 2 , 

( 2 )  

w h e r e / / ,  and g2 are the momenta canonically con- 
jugate to qb and to respectively. They satisfy canoni- 
cal Poisson brackets. I f  A [q o] is a functional of  q~, 
then we define A' = ~ A / ~ c b  and A = 6 A / ~ .  Note that 
as expected, ~ i s  positive and thus bounded from be- 
low. The static soliton configurations are solution to 
the time-independent Hamilton equations. The static 
hedgehog solution is given by 

( ~ ( x ) = f ~ F ( r ) ,  o9=0 (3) 

with F ( r )  subject to the boundary conditions 
F (0 )  = n  and F ( ~ ) = 0 .  Contrary to recent claims, 
this solution is stable against homogeneous scale 
transformations. We stress again that too is not an in- 
dependent field, and its scaling properties follow from 
the constraint equation 0£~/0too=0. In the discus- 
sion of ref. [ 26 ] this point has been ignored. 

Global rotations, isorotations and translations of  
(3) yield configurations with the same energy, sug- 
gesting that the vacuum is infinitely degenerate. Na- 
ive quantization around the classical configuration 
(3) using the small oscillation expansion is doomed 
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because of the presence of  zero-energy modes. These 
are static solutions to the small oscillation problem 
that immediately result from the broken invariances. 
Because of the hedgehog character of (3),  spin zero 
modes are identical to isospin zero mode and are 
given by (unnormalized) 

O~(x)=T~¢(x), t o = 0 .  (4) 

The T's are the usual O (3) generators in the adjoint 
representation. Note that these zero modes are also 
solution to the differential equations resulting from 
[H, q)] =0  by variation. That this is always the case 
follows of course from spin-isospin invariance. To 
treat these modes properly, we will use the collective 
coordinate method [21,27,28 ]. For that, define 

q)°(x) =R°b[0] [0~(x) +~b(x, t) ], (5) 
where R is an element of the symmetry group of the 
vacuum, and ~(x) the body-fixed pion field. Since 
the to field is an isosinglet that vanishes in the classi- 
cal vacuum, its status remains unaffected by a rigid 
isorotation R. 

The physical isospin I is the generator of left trans- 
formations R ~  ( 1 +i(~Ta)R, whereas the intrinsic 
isospin J generates right transformations R ~ R ( I  
+iE~T~). Owing to the hedgehog character of (3), 
the latter may be identified with the physical spin to 
lowest order. Since (5) is invariant under the "gauge 
transformation" 

R ~ R (  1 +ie~T a) , 

0 + ~  ( 1 - i ~ T  ~) (0+~)  • (6) 

Canonical quantization of ( 1 ) now yields first class 
constraints of the form 

G~-=Ja + i  f d3xHTa(O+~)=0, (7) 

where H is the momentum conjugate to ~. Thus, the 
structure of these constraints is unchanged by the in- 
teraction. To eliminate the "gauge" redundancy we 
choose the subsidiary constraint 

Za- f d3x~g(~))TaO=o , ( 8 )  

as suggested by a straightforward Taylor expansion 

of ( 5 ). The Poisson bracket of (7) and (8) is given 
by 

Aab = [Ga,Zb] = j  d3x  Ta(~+~)g(¢)Tb~. ( 9 )  

To lowest order A,,b is equal to A,~ab, where A~ is the 
classical moment of inertia given by the norm of the 
zero modes (4). In so far there is no contribution to 
the moment of inertia from the isoscalar tn-field. Since 
(9) is non-vanishing, the constraints are now second 
class, and may be taken as strong operator identities. 
Correspondingly, the commutators are also changed 
from Poisson brackets to Dirac brackets. 

In order to disentangle the collective degrees of 
freedom from the fluctuations, we further choose to 
decompose H=HL+HT such that HL is proportional 
to the zero mode, and ~2 

f d3xHT TaO = - g o  J (10) 
f. 

d3x toini Ta~ 

as suggested by the time derivative o f ( 8 ) .  Solving 
for HL in (7) gives 

HL = [ - ig( fb ) TaO ]Aab ~ 

X ( J b + i f  ]-ITTb~+igo) ftoj[~jTbO), (11) 

where Aab is the tensor of inertia defined in (9).  Now 
(HT, ~) and (I2k, ogk) can be viewed as conjugate 
variables that satisfy Dirac and ordinary brackets re- 
spectively. With our choice of (HT, ~) it is easy to 
show that • and H~ satisfy canonical commutation 
relations, as of course expected. 

Recalling that /~ scales like N~ -~, and ~, to like 
NU 1/2, then to order N~- 1 the normal ordered hamil- 
tonian reads (in the absence of recoil) 

Ja j2 
H=Ms+H¢,o+go, to iBi ( - iTao)~ + 2A-~' (12) 

where H¢,o is the order 1 meson hamiltonian in the 
hedgehog background. The time-independent spin- 
isospin zero modes (4) are solution to the back- 
ground field equations associated to H¢o,. They are, 

~2 There is of course some arbitrariness in choosing these gauge 
conditions. This arbitrariness, however, is severely limited by 
requiring canonical commutation relations for the original fields 
throughout. Physical quantities are, of course, independent of 
this choice of gauge. 
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however, excluded from the meson spectrum because 
of (8). Note that the o)-nucleon coupling is of order 
N~- l/2. To this order, the pion-nucleon coupling van- 
ishes because of the gauge condition (10). It shows 
up to order Ng 3/2 in the form 

ja  jb 
HeN = -- 2A--~ [ ½ raOg' (0) "~TbO+ TaOg((b) The] 

+h.c. (13) 

and vanishes for a constant pion field (Dashen 
point). The form of this coupling is very similar to 
the one used in the so-called static Chew model [29 ]. 
In fact such a coupling was discussed long ago by Pauli 
and Dancoff [ 30 ] in the context of the strong cou- 
pling approximation. At this stage we should point 
out that even though (13) scales like N~ -3/2, this does 
not imply that the pion-nucleon coupling constant 
scales like NU 3/2. As a matter of fact, (13 ) yields a 
pion-nucleon coupling constant that is exactly the one 
obtained from conventional source theory [20 ]. To 
see this, we have to rewrite (13) in terms of the "ex- 
trinsic" pion field q~R~. Since asymptotically the 
time component of the axial current reads Ao= 
R (Hv +HL), we can rewrite the pion-nucleon inter- 
action (13) in the following form: 

1 nnN = -~n f d3x t / ~  - IA 0 . (14) 

To leading order in Arc (14) simplifies into 

if HnN= ~ d3x r/0oA~ °) +h.c. , (15) 

which is the time component of the expected pion- 
nucleon coupling term. Remember that to leading or- 
der in Arc the spatial part of the coupling term van- 
ishes in the massless limit (VA(°)=0). (15) when 
sandwiched between the proper pion-nucleon states, 
yields the ordinary pion-nucleon coupling constant. 
A more detailed account and analysis of the above 
hamiltonian will be given elsewhere [20]. At this 
stage we should mention that recently, Schnitzer [ 31 ] 
has proposed a pion-nucleon hamiltonian for the 
original Skyrme model. However, in his treatment of 
the pion fluctuations both the constraint conditions 
and the zero-mode problem have been ignored. 

If we were to treat the to-nucleon coupling in (12) 

perturbatively, then the baryon spectrum is given by 
(ignoring zero point fluctuations ) 

j2 
H a = M s +  - -  (16) 

2Ar~" 

In the case where the co coupling in (12) is strong 
(being of order N~-,/2 it can involve an energy shift 
of order NT' ), it can affect quantitatively the baryon 
spectrum as described by ( 16 ). Indeed, from the gen- 
eral results of ref. [ 20], the equation of motion for 
the co field reads (ignoring local background effects) 

b,( 
f d3x cojBj(-iT~¢) ([~+m~)coj+g~ A~ 

- g , ~ B j (  - iTaO) ~ . ( 17 ) 

The non-local term in (17) is left over by the con- 
straint condition (10). This integro-differential 
equation can be integrated at once to give 

coj=cof +(VZ_mZ)_,g~j(_iT,# ) Ja (18) A~ + Ao, 
with 

Ao,=~go, d3xBi(-iTaO)(-V2+m2) -I 

× / ~ i ( - i T a ¢ ) .  (19) 

and where co -+ are free massive waves subject to the 
usual causal boundary conditions. This yields a bar- 
yon spectrum of the form 

Ao, 
j2  (1 A~-+-A~) (20) H~ =Ms + ~ 

There are no other meson-induced effects on the 
spectrum to order NU i . The to induced term in (20) 
is attractive (A~o> 0) since it is driven by the space 
components of the vector interaction. Remember that 
the time component of the vector interaction is re- 
pulsive and provides the skyrmion with the necessary 
repulsion at short distances to balance the overall 
long-range pion attraction. The higher the spin the 
larger the down-shift. The effective moment of iner- 
tia is A =A.  +A,~, and agrees with the one originally 
derived by Adkins and Nappi [ 3 ]. 

To summarize, for a weak to coupling, the moment 
of inertia is exclusively pionic and given by A~, while 
for a strong to coupling it is given by A. The semiclas- 
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sical quan t i za t ion  a rguments  p resen ted  in ref. [ 3 ] rely 
on the  use o f  the  e q u a t i o n s  o f  m o t i o n  for  the  to f ie ld  
in the  lagrangian,  p r io r  to the  cons t ruc t i on  o f  the  
hami l t on i an .  Th i s  p r o c e d u r e  is in genera l  no t  correct .  
H o w e v e r ,  s ince the  co f ie ld  in (1 )  enters  at m o s t  
quadra t ica l ly ,  then  in a func t iona l  f o r m u l a t i o n  it can  
be e l i m i n a t e d  f r o m  the  s tar t ing ac t ion  us ing the  con-  
v e n t i o n a l  H u b b a r d  o r  gauss ian  t r an s fo rma t ion ,  thus  
a m e n d i n g  in a way  the  Adk ins  and  N a p p i  p rocedure  
in the  semiclass ica l  l imi t .  T h e i r  p rocedure ,  however ,  
was n e v e r  m e a n t  to be  m o r e  genera l  t han  that .  The  
va r i a t i ona l  a r g u m e n t s  used  in ref. [ 3 - 1 5  ] do  no t  fol- 
low f rom conven t iona l  quan t i za t ion  schemes,  and  can 
no t  be  i m m e d i a t e l y  s u p p o r t e d  by the  canon ica l  pro-  
cedure  d iscussed  above .  T h e  la t ter  al lows for  a sys- 
t e m a t i c  analysis  o f  m e s o n - n u c l e o n  physics  at low 
energy.  

We w o u l d  l ike to t hank  H. Yamag i sh i  for  s t imula t -  
ing discussions.  
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