A genome wide dosage suppressor network reveals genomic robustness

Biranchi Patra†, Yoshiko Kon†, Gitanjali Yadav, Anthony W. Sevold, Jesse P. Frumkin, Ravishankar R. Vallabhajosyula, Arend Hintze, Bjørn Østman, Jory Schossau, Ashish Bhan, Bruz Marlolf, Jenna K. Tamashiro, Amardeep Kaur, Nitin S. Baliga, Elizabeth J. Grayhack, Christoph Adami, David J. Galas, Alpan Raval, Eric M. Phizicky and Animesh Ray

1Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, USA, 2Department of Biochemistry, University of Rochester School of Medicine, Rochester, NY 14627, USA, 3National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India, 4Institute for Systems Biology, 1441 N 34th St, Seattle, WA 98103, USA, 5Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA and 6Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Received July 29, 2016; Revised October 17, 2016; Editorial Decision November 01, 2016; Accepted November 07, 2016

ABSTRACT

Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures.

INTRODUCTION

Robustness of biological systems has two different connotations: physiological robustness, which is defined as the ability of an organism to withstand the effects of fluctuations in its environment by maintaining homeostasis (1), and genetic robustness, which is the ability of an organism to withstand the effects of deleterious mutations in its genes (1–3). Genetic robustness leads to physiological robustness through optimization of fitness by competition within an environment (4). Genomic robustness is genetic robustness when applied to the whole set of genes of an organism. In contrast to physiological robustness, which is a property over short time-scales relative to the generation time, genomic robustness is a property of the overall genetic organization of gene sets over evolutionary time scales, or, in the case of cancers, over multiple cell generations. The question of genomic robustness was first experimentally addressed by determining mutational effects on the lysis-lysogeny decision circuit of bacteriophage lambda (5). Gene redundancy (6), and promiscuity of gene function (7,8) both contribute to genomic robustness. The core set of essential genes might impede evolvability (9), because any deleterious mutation...
in these genes would reduce fitness. However, epistasis and modular rewiring of genetic networks may in principle overcome this barrier (2,10). Biological interaction networks are robust to perturbation (1,11–14) because of several features, including power-law network topology, redundancy, modularity and their dynamic properties (1,3,15–25). Recent studies have revealed dynamic interaction among apparently unrelated gene modules in response to genotoxic stress, suggesting the existence of highly reconfigurable networks of gene and protein modules as well as of unexpectedly plastic macromolecular complexes (26,27). Although modularity is a common feature of interaction networks, which is thought to contribute to physiological robustness (20,26,28–31), the contribution of modularity to genomic robustness is difficult to determine (16).

The suppression of essential gene mutations has been classically employed to investigate gene function, and suppressors provide clues to mechanisms of evolution (8,32–33). Here we use genome wide dosage suppressor (DS) analysis to probe mutational robustness of the genome. As opposed to secondary mutations that cause survival in the presence of deleterious primary mutations, here we artificially enhance the expression of nearly every gene in the genome to determine which of these (i.e. DSs) could allow survival secondarily in the presence of a deleterious primary mutation. We tested the hypothesis that the network of DS genes is modular. To probe molecular mechanisms of robustness, we focused on a small set of essential genes related to vital cellular processes, such as DNA replication, cell cycle control, RNA synthesis and processing. We have uncovered 660 pairs of DS-mutant gene interactions (out of a theoretical maximum of 27401 interaction pairs) involving 517 suppressor genes and 53 mutant alleles. We report the discovery of at least one novel mechanism of robustness in a eukaryote, namely, the engagement of promiscuous gene functions through degenerate pathways.

MATERIALS AND METHODS

MORF plasmids

The movable open reading frame (MORF) library (34) containing 5871 2μ plasmids with galactose inducible promoter and a URA3 selectable marker were divided into 16 pools. Each pool, representing approximately 384 plasmids, was grown in 96 deep-well plates, pooled, and plasmid DNA samples were isolated for transformation.

Yeast strains, media and transformation

Temperature sensitive lethal *Saccharomyces cerevisiae* strains had specific mutations in BY4741 background (MATα his3Δ1 leu2Δ met15Δ ura3Δ); point mutants were provided by Dr Charlie Boone (University of Toronto) (35) and ts deletion mutants were screened and selected from the deletion mutant library (OpenBiosystem). Note that yeast temperature sensitive lethal mutant alleles are often combinations of multiple base changes in the same gene, but for the purpose of this work we consider such combined lesions as one allele. For each mutant, the range of growth and the threshold of non-permissive temperature on both inducing (+galactose) and non-inducing (−galactose) conditions were determined. Yeast strains were grown in yeast complete media containing 1% raffinose, transformed with 1 μg of each MORF plasmid pool and plated at permissive temperature on synthetic defined medium lacking uracil with 1% raffinose. The transformants from 16 plates were pooled and selected at the restrictive temperature for that particular ts allele on complete and synthetic media containing either 2% glucose (repression) or 2% galactose (induction) (see Supplementary Table S1A) for a list of restrictive temperatures corresponding to the ts alleles). The threshold restrictive temperature that cuts off the growth of each individual allele with or without (vector control) the candidate suppressor plasmid was determined for each suppressor by incubating identical multiple-replicate plates at a range of temperatures spanning at least ±2°C around the restrictive temperature for that allele. Transformants in each mutant strain were selected for growth above the respective restrictive temperature characteristic for the corresponding mutant strain containing the empty vector plasmid.

Suppressor identification and confirmation

Suppressor MORFs were identified and confirmed by 3-fold cross validation as described below. Candidate hits were first identified by microarray hybridization of isolated plasmid DNA from colonies growing above the restrictive temperature for the respective ts allele as follows: ~300 colonies were picked from selection plates at restrictive temperature, grown in 96 deep-well plates. The cells were pooled and plasmid DNA isolated using Cycle Pure Kit from Omega Bio-Tek and labeled with Cy3 dye, whereas the pooled DNA of the MORF library was labeled with Cy5 by polymerase chain reaction (PCR) amplification using two flanking primers (5’GGACCTTGAASHAAACTCTC3’, 5’CTCTATACTTAAACGTCAAGG3’). Labeled probes were hybridized to spotted microarrays (UHN Microarray; containing >95% of all open reading frames (ORFs)) at 65°C for 16 h. Microarrays were scanned in Bio-Rad VersArray Chip Reader and the data were analyzed using ScanArray express software 3.0 (Perkin Elmer). Second, once candidate suppressors were identified by microarray hybridization the suppressor genes were subsequently PCR amplified from the individual MORF DNA from the single colonies that generated the pools, and were analyzed by agarose gel electrophoresis for the expected size bands for the corresponding gene; where there were discrepancies, the candidates were discarded. Approximately 70% of the hits could be validated at this step. Third, with all remaining candidates that exhibited the correct gene size by PCR, the corresponding plasmid DNA from the MORF library (not from the candidate colonies) were reintroduced into the corresponding yeast mutant strain and tested again for suppression to confirm the candidate gene. Over 95% of candidate genes could be validated at this stage. For a limited number of suppressors (130), we purified the DNA from colonies growing on selection plates with raffinose and galactose, transformed into *Escherichia coli*, re-isolated the corresponding plasmid DNA samples, PCR amplified the ORF off the MORF plasmids and sequenced the DNA. In all cases, the suppressor MORFs identified by sequencing
were identical to the MORFs identified by microarray hybridization, and no mutation was ever detected within the sequenced regions. The putative suppressor genes identified by either microarray or by direct sequencing were retransformed individually to the respective mutant strains, their ability to suppress the mutants confirmed individually on at least three separate transformed colonies by isolating single colonies and testing on inducing or non-inducing plates at a range of temperatures above the growth cutoff temperature of the corresponding unsuppressed mutant, dependence of suppression on the introduced MORF plasmid was confirmed for each transformant on plates containing 5-fluoroorotic acid and for those transformants passing all above tests the titration-spotting test was carried out for final confirmation/quantification of suppressor strength. The background strain was always compared on the same plate with the candidate-suppressed strains at a range of temperatures spanning at least 1°C over the corresponding threshold temperature for growth of the given mutant. The extent of suppression was subsequently quantified through spotting of serial dilutions of each mutant-suppressor culture under both inducing and non-inducing conditions. A subset of the final list of suppressors was again confirmed by sequencing. The negative control for each suppressor was the corresponding mutant strain carrying the empty MORF vector (BG1776). Positive control plasmids were the complementing genes under pGAL control, except for six mutants (cde13, cdc4, cde15, cdc35, cdc48 and abd1) that did not have the appropriate positive controls because either the over-expression of the corresponding MORF plasmids was lethal (CDC13 and CDC48) or they were absent in the MORF library (CDC4, CDC15, CDC35 and ABD1). The strength of suppression for each suppressor was normalized to the growth of the diluted spots against that of the corresponding vector control (BG1776) strain on the same plate on adjacent rows (Supplementary Table S2). Finally, to address the concern that some of the MORF plasmids in the library might be mislabeled, we picked at random 85 MORF DNA samples from the collection of 517 non-redundant suppressor MORFs and sequenced them. All 85 sequences out of 85 confirmed the correct MORF. Therefore, the chance of an error due to MORF mislabeling in the full dataset (assuming the errors are randomly distributed with a small mean), by Poisson distribution, is at most $(1−e^{−1/36}) = 0.012$, or at most 6 among 517 suppressors.

Protein detection

Cultures were grown in repressing and inducing media, and whole cell extracts were prepared by the bead beating method in yeast lysis buffer (25 mM Hepes-NaOH pH 7.5, 10 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 0.1% Triton X-100) containing EDTA–free complete protease inhibitor tablet (Roche). Proteins were detected by Western Blotting, probed by anti-HA antibodies (Covance) using standard methods.

Liquid growth assay

Growth curves in liquid media along with maximal growth rates were determined using a Bioscreen C Automated Growth Curves Analysis System (Growth Curves USA). The suppressed strains were grown in 200 μl of S-URA with 1% raffinose and 2% galactose at various temperatures in 96-well plates. The optical density (OD) was measured at 600 nm every 30 min for 48 h of growth.

RNA methods

Strains were grown in 5 ml S-URA media containing 2% raffinose for 24 h at 28°C. Samples were diluted to OD 0.02 in 150 ml S-URA media containing 2% raffinose and 2% galactose and then grown overnight at 25°C with agitation. At OD 0.1, cultures were shifted to 34.5°C with continuous agitation and samples were harvested at 0, 45, 90 and 180 min by centrifugation. Total RNA was isolated using a hot phenol method (36), followed by two chloroform extractions, RNA precipitated by addition of 1/10th volume of NaOAc pH 5.2 and 2.5 volumes of 100% ethanol and the pellet dissolved in 50 μl ddH2O. Total RNA was deproteinized again after DNase treatment and resuspended in 10 μl of ddH2O, and quantified by a nanodrop spectrophotometer.

Gene expression measurements

One microgram total RNA samples from two individual biological replicates, four time points each (0, 45, 90 and 180 min), of smc2-8 mutant strains harboring pGAL:SMC2, pGAL:UME1, pGAL:MEK1, pGAL:HTA2, pGAL:SNU66 and the negative control MORF plasmid (pGAL:negative, BG1766), were reverse transcribed, hybridized to Affymetrix Yeast Genome S98 arrays and scanned with Affymetrix GeneChip Scanner 3000. The microarray data were analyzed with GeneSpring 6.2 software, and were deposited in Gene Expression Omnibus (accession number GSE24266). Microarray expression levels were verified for seven reference genes by quantitative RT-PCR using samples of a third biological replicate (Supplementary Figure S7).

Microarray data analysis

The Affymetrix array data were processed using the robust multi-array analysis as described previously (37). A log scale, linear additive model represented the perfect match and mismatch data. For each experiment (time point or condition), the RMA analysis produced one numerical estimate of expression for every probe on the chip (two replicates for each treatment and time point). We combined the replicates using a median based normalization (given microarray replicates 1 and 2, determined the median intensities m_1 and m_2 of microarray 1 and microarray 2 respectively; adjusted the values of microarray 2 by adding $m_1 - m_2$ to the intensities of microarray 2) to produce an average of the adjusted intensities. For each time point and treatment we produced one intensity measurement for each probe. These numbers were used to find ratios of fold change from one time point to the next. For each chip, a background noise intensity measure was formed using the average intensity of the SPACER probes which act as a set of negative controls for the chip—if for a particular probe, the intensity level at
time points t1 and t2 was below the background noise level at t1 and t2, then we assumed the probe was expressing at background noise level and the fold change was set to 1. We clustered genes that were significantly differentially expressed in at least one time point.

Quantitative RT-PCR

DNase treated RNA was reverse transcribed in 25 μl RT reaction mixtures (1 x First Strand Buffer, 0.02 μg random hexamers, 0.01 M DTT, 0.5 mM dNTP mix, 0.6 U RNase-OUT, containing 3 U Superscript II Reverse Transcriptase) for 2 h at 37 °C, followed by heat inactivation at 100 °C for 5 min and quick chilling on ice. A standard curve was generated for each gene target starting with 0.5 μg RNA and four successive 2-fold serial dilutions. The cDNA templates generated by reverse transcription was used for quantitative RT-PCR in Applied Biosystems 7500 FAST Real Time PCR system. The PCR mix constitutes 20 μl buffer containing 1 x FAST SYBR Green Master Mix and 0.2 μM forward and reverse primers (IDT), with the PCR conditions: [95°C → 20 s] HOLD, [95°C 3 s → 60°C 30 s] 40 times). The following primers were used for real time PCR of seven genes:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT2 Forward</td>
<td>GGG GTT TGA ATT TGT GGG CCA TGA</td>
</tr>
<tr>
<td>OPT2 Reverse</td>
<td>TCA TAA TCG TCG AGC GCC CTG TAA</td>
</tr>
<tr>
<td>SMC2 Forward</td>
<td>AAC TGG TCG CCG AGG TAG GCT ATT</td>
</tr>
<tr>
<td>SMC2 Reverse</td>
<td>GCC AAT TCA ACT TTC CCA GGA GCA</td>
</tr>
<tr>
<td>PHO5 Forward</td>
<td>AGA CAT GCT GGT GAC TTC TGC GCT</td>
</tr>
<tr>
<td>PHO5 Reverse</td>
<td>AAG CAC TCA AAG TGT TGG CAC CAG</td>
</tr>
<tr>
<td>CYC7 Forward</td>
<td>ATG AGC GGA GTA TCC AAA CCA GGC TCT</td>
</tr>
<tr>
<td>CYC7 Reverse</td>
<td>GTC CAA CTT TGT TAG CAC CAC CTC</td>
</tr>
<tr>
<td>GRE1 Forward</td>
<td>ACT GGT GGT GGC ACT TAT ACC CAA</td>
</tr>
<tr>
<td>GRE1 Reverse</td>
<td>TGG TAG CGG TTA CTG TAC TCA CCT</td>
</tr>
<tr>
<td>SIR2 Forward</td>
<td>AGG GAA AGA AGC CCA AAT CCT CCA</td>
</tr>
<tr>
<td>SIR2 Reverse</td>
<td>CAA TCG TGC TCA ATT CCT CTG CCA</td>
</tr>
<tr>
<td>FIT1 Forward</td>
<td>TGC CCA ATC TGT TCG TAC CCA TGA</td>
</tr>
<tr>
<td>FIT1 Reverse</td>
<td>CCC AGC GTT AGT GTT TCG AAC TCT</td>
</tr>
</tbody>
</table>

Datasets

The full DS dataset (DS-ABC, see text), consisting of data reported here combined with other available data, was culled from the following sources: Magtanong et al. (33), the latest BioGRID version 3.1.78 (38) and this work (660 DS interactions between 53 mutant ORFs and 571 suppressor ORFs). The full DS dataset contains 2286 interactions between 454 mutant ORFs and 1284 suppressor ORFs, and includes 60 reciprocal interactions, resulting in 2226 unique interactions (see Supplementary Table S6). The protein–protein interaction (PPI) network was constructed from BioGRID version 3.1.78 (38) that contains 6614 ORFs of which 5955 nodes are connected by physical interaction edges. The 99 866 physical interactions produced 60 143 unique edges among 5728 nodes. This network was curated to filter out indirect physical interactions and retain only the direct physical interaction data from eight types of experiments including Biochemical activity, co-crystal structures and reconstituted complexes, co-immunoprecipitation, protein–peptide interactions, two-hybrid, far western and FRET. The resulting direct PPI network, containing a total of 20034 unique interactions between 4683 nodes (Supplementary Table S14), was used for studying the enrichment of PPI interactions in the DS network. Genetic interaction (GI) data were downloaded using the latest BioGRID version 3.1.78 (38), which contains eleven kinds of GIs, namely, Dosage growth defect, Lethality, Dosage Rescue, Negative Genetic, Phenotypic Enhancement, Phenotypic Suppression, Positive Genetic, Synthetic Growth Defect, Synthetic Haplo-insufficiency, Synthetic Lethality and Synthetic Rescue. In all, the GI dataset includes 16898 interactions between 5411 nodes. The Stanford Microarray Database was used for inferring co-expression between yeast ORFs at a correlation coefficient cut-off of ±0.5. The resultant co-expression network includes 623224 unique edges between 5155 nodes from total 643 experiments reported by two groups (39,40). Genome-wide protein complex data was inferred by combining the Curated Yeast Complexes (CYC2008), a comprehensive catalog of manually curated 408 heteromeric protein complexes in S. cerevisiae with 400 complexes in the annotated yeast high-throughput complexes derived from high-throughput Tandem Affinity Purification/Mass Spectrometry (TAP/MS) studies (41), and 72016 pairs of indirect physical interactions from Affinity Capture, Co-Fractionation, Co-purification and Co-localization experiments (BioGRID version 3.1.78). The Pfam domains for many yeast proteins have been assigned one of four age groups ABE, AE/BE, E and F depending on their taxonomic distribution among archaea (A), bacteria (B), eukaryote (E) and fungi (F) (42). This dataset was used to analyze whether DS pairs were likely to belong to the same age group. Both the DS datasets were tested for significant overlap with computationally predicted modules. For this, 41 Yeast Louvain modules were identified in the Yeast direct PPI network by using the NetCarto algorithm (43). In addition, Markovian clusters were identified using the MCL-MLR clustering method (44) at an inflation value of 2.4. Statistical tests are described in Supplementary Data. The frequency distribution of suppressors of strength ≥3 on a per gene basis was not significantly different from the frequency distribution of suppressors of all strengths (P ~ 1.0) (Supplementary Table S15 and Figure S3). Therefore we did not separately parse the suppressors by their respective suppression strengths in our analyses.

Paralog identification

The list of paralogs (554 gene pairs) was described before (45), and includes 457 pairs previously found (46). Of the 1108 paralogous genes, 1001 were represented in the MORF library. To test for significant enrichment of paralogs, we performed a Fisher’s exact test using the 5829 testable ORFs as the baseline.

Network properties

Betweenness centrality (BC) (fraction of shortest paths through a node) was $B_i = \sum_{h=1}^{n} b_{ih}$, where b_{ih} is the ratio of the number of shortest paths between a pair of nodes in the network that pass through node i. BC was scaled as $B_i = \frac{2B_i}{(n-1)(n-2)}$, where n is the number of nodes in the network (47). Clustering coefficient (ratio of the actual number of degrees of a node to the possible degrees given a node’s
neighbors), and shortest path between pairs were computed using the MATLAB Boost Graph Library toolset.

Functional congruence assessment

Functional gene annotations were derived from the MIPS FunCat database (48). A total of 449 of the 642 unique suppressors were annotated genes. Un-annotated genes (class ‘99’) were excluded. Here, functional congruence between two genes is defined as the extent of overlap between their respective MIPS annotations. Because MIPS functional annotations are hierarchical categories, we studied the congruence of MIPS annotations based on the first category alone, first and second, first, second and third, etc. categories, down to congruence in all five categories. Because genes can have several MIPS annotations, we compiled the possible pairs of categories for each pair of genes and calculated the fraction of pairs of annotations that agreed, divided by the number of possible pairs of annotations. Because many annotations do not include details up to the fifth functional categorization, we devised rules to match annotation strings of different length. For example, when matching the functional MIPS annotation ‘01.01.05.01.02’ (degradation of polyamines) with ‘01.01.06’ (metabolism of the aspartate family), we pad annotations such that the previous example would result in a match at level 1, a match at level 2, but not at level 3 and beyond. In other words, for incomplete annotation the omitted part is assumed to be different from that of any other annotations. The functional congruence of two genes at level n is the fraction of annotations of these genes that are identical up to level n. By design, the functional congruence of a pair at level n is larger or equal to the functional congruence of that pair at level $n+1$.

RESULTS

A genome-wide screen for dosage suppressors

We transformed 108 isogenic yeast strains each containing a temperature sensitive (ts) point mutation (85 mutants) (35) or a ts deletion mutation (23 mutants) (49) with pools of the entire MORF library plasmids (‘Materials and Methods’ section, Supplementary Table S1A). The use of this library permits interrogating every conditional mutant with virtually every yeast ORF, under conditions where each ORF is expressed in the presence of galactose or glucose (Figure 1A–C). The mutant genes were chosen mostly on the basis of their known functions related to RNA polymerase/RNA modification and/or cell cycle/DNA replication. We transformed each mutant strain with high copy 2µ based plasmids expressing ORFs under pGAL promoter control (34), selected the transformants at the permissive temperature (25°C), then tested for the ability of the recombinant plasmids to rescue growth defect above the specific restrictive temperature for the corresponding mutant strain (see ‘Materials and Methods’ section). Each candidate suppressor ORF, identified first by hybridizing purified plasmid DNA from candidate suppressed strains on DNA microarrays, was individually confirmed by multiple retransformation and validation experiments and a randomly chosen subset (~130 MORF plasmids re-isolated from suppressed strains) by sequencing (see ‘Materials and Methods’ section for details). We obtained 660 confirmed DS interactions for 53 of the 108 ts mutants that we tested (Figure 1C and Supplementary Table S2). These 660 interactions involved 517 suppressor genes, all of which were individually confirmed through retransformation and repeats of the assays. We confirmed all suppressors of a third of the mutant strains collection independently twice at two different sites (University of Rochester and Keck Graduate Institute). A total of 642 out of 660 interactions are novel; 18 were reported earlier. These results did not find 147 multicopy suppressor interactions previously reported in the literature corresponding to the 53 query mutants (Supplementary Table S3). We directly tested 57 of these previously reported suppressor interactions (corresponding to seven query mutant genes), chosen arbitrarily from among the 147 interactions. We were able to confirm by our methods 15/57 interactions (Supplementary Table S4). As expected, strain background, allele differences, copy number of the plasmids, promoters used for gene expression and/or the levels of galactose-induced gene expression (including leaky expression in the absence of galactose) are sufficiently different among these studies, such that a direct comparison is not possible. Therefore, each case of confirmed suppression should be considered as a suppression event that is true under at least one set of conditions. In certain selected examples of weak suppression, we have noted improved suppression when the suppressor gene is expressed under a constitutive promoter (pTEF1) as compared to that with galactose induced promoter (data not shown).

The DS gene set is enriched for gene ontology (GO) molecular functions (See Supplementary Table S5, and description of significance calculation methods in Supplementary Data), transcription factor activity (Benjamini-Hochberg corrected enrichment significance $P = 9 \times 10^{-35}$) and ribosome structural components (Benjamini-Hochberg corrected enrichment significance $P = 4 \times 10^{-4}$). A fuller description of the functional implications of this set of suppressors is provided in later sections.

Computational analysis reveals uniqueness of dosage suppressor networks

In this and the following sections we explore general properties that might distinguish this large dataset of DSs of gene mutations from those reported previously.

The DS network discovered here (dataset DS-A, Supplementary Table S6), containing 53 ts mutants and 517 suppressor genes, exhibits a large connected component (560 nodes, 656 edges) (Supplementary Figure S2) that excludes 29 unconnected nodes and 20 edges. Of the 517 suppressor genes, 134 are of unknown function at the time of writing. Previous work (33) had examined the entire collection of DSs of essential gene mutants known at the time that included those reported in BioGrid (dataset DS-B; Supplementary Table S6B) and 214 suppressor genes they discovered for 29 mutants (dataset DS-C; Supplementary Table S6C). All three datasets together (DS-ABC; Supplementary Table S6D) comprises 2286 dosage-suppressor interactions (Supplementary Figure S3).
Figure 1. Systematic discovery of dosage suppressor (DS) genes. (A) The strategy for isolating DSs of ts lethal mutations. See ‘Materials and Methods’ section for details. (B) A few examples of suppressors of different strengths. A ts allele of cdc36 is viable at 25°C, but fails to grow above 33°C, is complemented by pGAL:CDC36 at 35°C or below under all tested conditions (galactose independent) and is suppressed by MATα2 (strong, grade 4), MTH1 (medium-weak, grade 2), CCL1 (strong, grade 5) and ASF2 (strong, grade 5). The latter two genes exhibit galactose independent suppression. Galactose-independent suppression generally implies leaky expression of the ORF through the pGAL promoter on a multicopy plasmid even in the absence of galactose. This is consistent with expression of the corresponding protein in the absence of galactose, as determined by western blots (see Supplementary Figure S1 for an example). YNL324W is a very weak suppressor (grade 1, but reproducible). pGAL-negative is the vector control. (C) Summary of the screen. Most suppressors were effective on galactose but not on glucose (Supplementary Table S2); a few exceptional suppressors are galactose independent (see above), presumably because these expressed detectable quantities of MORF-encoded protein on western blots even on glucose (see Supplementary Figure S1 for examples). The 22 mutants (Supplementary Table S1B) that failed to yield suppressors did however yield the wild-type complementing ORFs.

Paralogous genes do not explain most suppression mechanisms

Gene redundancy is one of the ways robustness might be encoded within the genome. The redundancy of genes leads inevitably to divergence by mutational pressure, and we recognize ancestral gene redundancy by the presence of paralogous genes, where gene pairs are structurally and functionally similar but nonidentical. We addressed whether suppression by paralogous genes could potentially explain mechanisms of suppression. Suppressors in DS-A are not significantly enriched (Fisher’s exact $P = 0.65$) for paralogs: only 93 out of 517 genes in the suppressor network have at least one known paralog, as determined by the curated list of ‘ohnologs’ (paralogs descended from whole genome duplication events) (45). Among the 93 paralogs, we found 20 paralogous partners within mutant-suppressor sets (Table 1). Seven out of ten paralogous partners encode ribosomal proteins, where each paralog suppresses the same mutation. Not all ribosomal protein genes suppressed the same mutations, and some ribosomal protein genes suppressed multiple mutations (Supplementary Table S7). These results suggest that additional mechanisms, such as suppression through PPI or through gene network rewiring, must be involved in most instances of dosage suppression discovered here.

Analysis of Co-suppressor networks

If paralogous genes cannot explain most suppression mechanisms, is there evidence that the co-suppressors might be enriched for remnants of conserved functions over evolution? Therefore, we examined functional similarity among the genes discovered through this study with those in previous studies in three different ways.
First, are DS genes and their corresponding suppressed mutant genes functionally related? A total of 20 out of 660 mutant-suppressor pairs in DS-A shared the same gold standard GO terms (binomial $P < 10^{-15}$), and 922 of 2286 known mutant-suppressor pairs (in DS-ABC) shared the same GO gold terms (binomial $P < 10^{-15}$) (Supplementary Table S8).

Second, if the mutant genes and their suppressors are functionally related, then they should be enriched for GIs. To test, we intersected the DS-mutant gene pairs with 2286 known mutant-suppressor pairs (in DS-ABC) shared the same GO gold terms (binomial $P < 10^{-15}$) (Supplementary Table S8).

Table 1. Paralogous pairs of dosage suppressors

<table>
<thead>
<tr>
<th>Paralog 1</th>
<th>Gene name</th>
<th>Mutation(s) suppressed by paralog 1</th>
<th>Paralog 2</th>
<th>Gene name</th>
<th>Mutation(s) suppressed by paralog 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>YBR181C</td>
<td>RPS6B*</td>
<td>cdc24, cdc15</td>
<td>YPL090C</td>
<td>RPS6A*</td>
<td>cdc24, cdc15, poc4</td>
</tr>
<tr>
<td>YCR073W-A</td>
<td>SOL2</td>
<td>cdc26</td>
<td>YNR054W</td>
<td>SOL1</td>
<td>cdc26</td>
</tr>
<tr>
<td>YDR0999W</td>
<td>BMH2*</td>
<td>cdc25</td>
<td>YER177W</td>
<td>BMH1*</td>
<td>cdc25</td>
</tr>
<tr>
<td>YDR471W</td>
<td>RPL27B*</td>
<td>po4</td>
<td>YHR010W</td>
<td>RPL27A*</td>
<td>po4</td>
</tr>
<tr>
<td>YER056C-A</td>
<td>RPL34A*</td>
<td>cdc48</td>
<td>YIL05ZC</td>
<td>RPL34B*</td>
<td>cdc48</td>
</tr>
<tr>
<td>YER131W</td>
<td>RPS26B*</td>
<td>wp1</td>
<td>YGL189C</td>
<td>RPL26A*</td>
<td>wp1</td>
</tr>
<tr>
<td>YFR023W</td>
<td>PES4</td>
<td>smc2</td>
<td>YHR015W</td>
<td>MIP6</td>
<td>smc2</td>
</tr>
<tr>
<td>YLL177W</td>
<td>RPL17B*</td>
<td>cdc48</td>
<td>YKL180W</td>
<td>RPL17A*</td>
<td>cdc48, cdc13</td>
</tr>
<tr>
<td>YLR062C</td>
<td>MHT1</td>
<td>tafl4</td>
<td>YPL273W</td>
<td>SAM4</td>
<td>tafl4, cdc13</td>
</tr>
<tr>
<td>YLR029C</td>
<td>RPL15A*</td>
<td>cdc24, cdc26</td>
<td>YMR121C</td>
<td>RPL15B*</td>
<td>cdc24</td>
</tr>
</tbody>
</table>

*Ribosomal genes.

To further examine the uniqueness of the dosage suppression network discovered here, we calculated topological properties of the corresponding protein nodes in the PPI networks described above (Supplementary Table S10). DS-A comprising 660 interactions overlapped significantly with the PPI network ($P = 2.8 \times 10^{-13}$, see Table 2). The previous dosage-suppressor collection (DS-B and DS-C) also showed a statistically significant overlap with the curated PPI. The degree and clustering coefficient of the DS gene nodes in the PPI network are not significantly different among the three DS datasets. By contrast, the values of another topological property, BC (see ‘Materials and Methods’ section for definition) of the nodes in DS-A or DS-C are significantly higher than the nodes in DS-B (Supplementary Table S10). A statistically significant overlap with PPI network implies that the mutant-suppressor pairs may belong to the same protein modules or complexes. We next explicitly examine this question.

Modular organization of interacting proteins can explain suppression mechanisms

Most suppression mechanisms cannot be ascribed to the functions of individual genes/proteins in the absence of targeted genetic or biochemical studies. However, it should still be possible to derive general principles by examining the existence of functional modules in the DS network. Biological networks have underlying modular sub-structures that reflect functional organization and evolutionary origins of gene products (56,57). Because there is no unambiguous definition of a module within protein networks, we examined three intrinsically different concepts of modularity. First, we examined the enrichment significance of protein products of the suppressor interaction network within the protein complexes that are manually curated clusters obtained from physical PPI data (41), by determining the overlap of proteins of the 660 mutant-suppressor pairs with these complexes (41,38) (see Supplementary Data for a discussion of how the overlap is measured and Supplementary Table S9 for overlap significance P-values). The products of each member of 54 pairs of the total 660 dosage-suppressor pairs were found within the same protein interaction complexes (binomial $P < 10^{-15}$) (Table 2) (binomial test is an exact test for estimating deviations from a theoretical distribution separable into two categories, which is the appropriate
condition here). When the entire collection of 2286 dosage-suppressor pairs known so far (DS-ABC dataset) was so examined, 558 pairs co-occur in the same protein complexes (binomial $P = 10^{-13}$), signifying that in the full dataset also mutant genes and suppressor genes tend to express proteins that belong to the same complexes. These results suggest that the suppressors and their respective suppressed genes define modular elements within protein–protein complexes.

To directly determine whether the suppressor dataset is modular, protein modules were obtained by computationally optimizing a modularity measure on the PPI network (43), then the overlap of the proteins of the mutant-suppressor pairs within these computationally determined protein modules. Similar associations as with the first approach were observed within the computationally predicted PPI clusters (Supplementary Table S9). Using a yet another concept of modularity, we identified modules dynamically, by sequentially removing genes from a curated PPI network constructed from the DS pairs (see ‘Materials and Methods’ section), starting with the highest betweenness central (BC) gene and re-computing the BC of nodes in each resulting network, leading to a measure of modularity (58). BC of a node (i.e. a gene, for our purposes) is the ratio of the number of shortest paths between a pair of nodes, which passes through that node, to the total number of shortest paths that pass through that node. If one ranks gene by their BC values, and systematically remove them from the highest BC down, then the network becomes progressively unconnected. However, if the network is modular then the rate at which the network gets unconnected is slower than if the network is not modular: this is because the high BC nodes generally occur between strongly connected (or modular) node sets. Thus, gene pairs that predominantly lie within modules should remain connected in the PPI network longer than the average pair, while gene pairs that straddle modules should separate earlier.

We find that throughout this iterative process the mutant-suppressor pairs in the dataset DS-A were more likely to be found within module boundaries (Wilcoxon rank-sum $P = 2.26 \times 10^{-14}$; Supplementary Figure S5) (Wilcoxon rank-sum is a nonparametric hypothesis test appropriate for comparing a pair of matched samples) than were the randomly chosen protein pairs, than were the pairs in dataset DS-C (33) ($P = 1.55 \times 10^{-13}$) or than were those in the dataset DS-B ($P = 2.14 \times 10^{-10}$). That the mutant-suppressor pairs lie preferentially within module boundaries is consistent with the observed distribution of mutant-suppressor distances within the PPI network (number of edges along the shortest path in the PPI network connecting the mutant to the suppressor; see inset in Supplementary Figure S5).

Modularity of the suppressor dataset allows a method for exploring the functional organization of genes and their products. As a first step in such a process, we determined the identity of the complexes within which the mutant-suppressor pairs co-occurred. By culling from the BioGRID database 4632 direct PPIs and by identifying protein clusters using simulated annealing (43), we generated 41 modules (Supplementary Table S11). We queried each mutant-suppressor pair discovered in DS-A for their occurrence in these 41 modules, and found eight such modules containing five clusters and three singletons (Figure 2).

One module (Figure 2A) shows that mutations in cell cycle control genes cdc28 (a CKD), cdc20 and cdc16 (both anaphase-promoting complex protein genes) and cdc37 (encodes an HSP90 co-chaperone), are suppressed by several general including a ribosomal protein gene MRPL50, and MPD1 that encodes an endoplasmic reticulum chaperone interacting protein, underscoring the importance of molecular chaperones and ribosomal proteins in facilitating the suppression of point mutant alleles. In a second module (Figure 2B), mutations in cde9 (DNA ligase), tfh3 (transcription coupled DNA repair) and poh3 (encodes a member of the FACT complex for nucleosome reorganization) are in the same module with several suppressors including PSY3 (DNA repair-recombination), and SSL2 (DNA repair helicase), suggesting the possible involvement of these proteins for overcoming DNA damage/repair defects. A third module (Figure 2C) contains two suppressors of SEC18 and TEM1, one of which has no known function. As expected, well known multi-protein complexes, including the RNA–PolII complex (Figure 2D) and the DNA condensin–cohesin complex (Figure 2E) could be recovered.

Table 2. Similarities between mutant genes and their suppressors

<table>
<thead>
<tr>
<th>Number of mutant-suppressor gene pairs</th>
<th>Among dosage suppressor pairs (total 660) discovered in this work</th>
<th>Among all known dosage suppressor pairs (total, 2286)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Enrichment significance (Binomial one-sided test P)</td>
</tr>
<tr>
<td>With direct PPI</td>
<td>23</td>
<td>2.5×10^{-14}</td>
</tr>
<tr>
<td>Co-located in the same protein complex</td>
<td>54</td>
<td>$<10^{-15}$</td>
</tr>
<tr>
<td>Co-located in the same computationally predicted protein module#</td>
<td>74</td>
<td>1.3×10^{-5}</td>
</tr>
<tr>
<td>Co-located within the same PPI cluster##</td>
<td>12</td>
<td>2.04×10^{-5}</td>
</tr>
<tr>
<td>In which both genes are co-expressed</td>
<td>10</td>
<td>0.263097*</td>
</tr>
<tr>
<td>In which both genes are of similar evolutionary age</td>
<td>159</td>
<td>0.06422174*</td>
</tr>
</tbody>
</table>

* No statistically significant enrichment.
Co-located in one of 41 Louvain modules, computed by the Netcarto algorithm (43).
Co-located in Markovian clusters, computed by MCL-MLR clustering (44).
Figure 2. Mutant-suppressor pairs are enriched within protein modules. Five computationally predicted modules in which specific mutant-suppressor pairs are statistically enriched are shown. The Netcarto algorithm returned a total of 41 modules for the 660 ORF pairs in dataset A (Supplementary Table S6A). Of these, 71 pairs of ORFs lie within modules (Supplementary Table S11). Node color: pink, mutant genes; all remaining nodes (purple in panels A–C and E) are suppressors. In panel D, suppressor nodes are colored according to their known occurrence in various RNA Pol II sub-complexes (yellow: TFIID/SAGA complex; purple, SWI/SNF complex; dark pink, RNA Pol II core complex; light blue, SRB/Mediator complex; green, TFIIE complex; red, TFIIH complex). Edge color: green, genetic interaction (GI); blue, physical interaction, yellow, DS interaction; purple, co-expression; brown, shared protein domains.

Models of dosage suppression

Magtanong et al. (33) had shown several mechanisms of dosage suppression, including suppression via direct PPI, suppression by over-expressing genes upstream or downstream of mutant alleles, DSs acting as molecular chaperones and DSs involved in transcription and translation processes acting presumably by readjusting gene expression levels. By examining the collection of DSs found in this study we have noted all previously described mechanisms of suppression. Additionally, the collection of DSs we identified allowed us to probe two facets of underlying genomic plasticity, presumably important for molecular adaptation in evolution: (i) structural plasticity: a high degree of structural robustness of a protein machine (RNA Pol II complex) that can resist mutational impairment of many essential components through alternate interactions, (ii) functional plasticity: functional rewiring of cellular pathways utilizing promiscuous functions of genes (meiotic genes suppressing mitotic impairment of chromosome condensation). These models of suppression are illustrated in Figure 3A–D.

Structural plasticity revealed by dosage suppressors

In a previous genome-wide report, a large proportion of gain-of-function suppressors of missense mutant alleles were found to function through direct protein–protein contact, presumably by stabilizing PPI by mass action. This would imply that most such suppressors should encode proteins known to directly interact with the products of the mutant genes that they suppress—thus, both the mutant protein and its suppressor should be components of the same PPI complex. To test how often genes whose products are known to function within the same macromolecular complex can suppress mutations that affect products within the same or related complexes, we chose as a test bed a well studied protein machine—the RNA polymerase II (RNA Pol II) complex (59). RNA Pol II core (12 subunits) is recruited to the promoter by the general transcription factors TBP, TFIIA and TFIIB (1 subunit each), and TFIIF (3 subunits), with the help of the SRB/Mediator complex (25 subunits), to form the pre-initiation complex, following which TFIIE (2 subunits) and TFIIH (9 subunits) are recruited (60). The SWI/SNF (11 subunits) and SAGA (22 subunits) complexes facilitate chromatin remodeling during transcription initiation (59). Extensive GI studies among mediator complex proteins have been reported (61). We scanned eight mutant genes, each of which encoded a defective (or had a complete loss of one) transcription initiation complex protein (62,63), for gene dosage suppression by 75 sub-complex genes (Supplementary Table S12 and Supplementary Figure S6). Six mutants were ts lethal due to missense mutation (med4, med11, tbf3, rad3, kin28, taf12); two were ts deletion mutants (rpb4Δ and taf14Δ). The deletion mutants had complete deletion of the respective structural genes, such that there was no possibility of expression of any remnant protein fragment (49,64).
Figure 3. Models of dosage suppression through structural and functional plasticity. (A) Suppression of the effects of missense mutation by direct protein–protein interaction (PPI) through mass action. Mutation causes a structural defect in protein a to make a heat labile protein a*, which is destabilized at the restrictive temperature producing a distribution of structural isomers. Misfolded a* species are unable to form the functional a-b complex. However, if its interaction partner b is over-expressed, it recruits the minority fraction of the properly folded isomer, thus pushing the production of the functional a*-b complex through mass action. This mechanism of robustness is due to the structural plasticity of individual folding states of proteins. (B) Suppression of the effects of mutant alleles by direct PPI. Such genes conceivably encode proteins that are parts of essential protein complexes, but these proteins themselves may not be essential. Their role is to stabilize the macromolecular complex by directly interacting with members of the otherwise heat-labile complex. Missense or deletion mutations in such genes make these complexes heat sensitive. Heat stability is restored by over-expressing another member of these complexes through reinforcing PPIs. (C) Suppression by paralogs. An ancestral gene duplicates; the two copies diverge and specialize by mutation, generating two paralogous genes. However, sufficient ancestral function may be retained by both paralogs, such that under abnormal conditions, such as high expression, the latter could suppress a loss of function mutation in the former. Alternatively, both paralogous genes might separately suppress a lethal mutation in a third gene. (D) Suppression by rewiring. An essential biological process 1 might be dependent on gene 1 and gene 2. In the event that one of these genes is mutated, the organism dies. However, one of genes 3 or 4 might be able to restore viability by an alternate pathway that was specialized for a separate biological process 2, but is artificially recruited (e.g., by abnormal expression in time, developmental phase or intracellular compartment) to rescue a defect in biological process 1.

A total of 31 out of 122 DS-mutant interactions reside within the respective complexes (Figure 4A). For example, MED11, NUT1, GAL11, ROX3, SRB5 and SRB7 each suppressed med4. By contrast, nearly three times as many mutant-suppressor interaction pairs (91/122 compared to 31/122; $P = 0.0001$ by Fisher’s exact test) overlapped two separate sub-complexes (e.g. suppression of med4 by TFB3 of TFIIH complex and RPC10 of Pol II core complex, respectively). Suppressor interactions were specific: e.g. TFA1 (TFIIE complex) suppressed med4 but not med11—both of the latter encode mediator proteins. Similarly, SNF11 and SNF12 of the SWI/SNF complex each suppressed tfb3 but not kin28 (TFIIH); RPO21 (Pol II core) suppressed both tfb3 and kin28. We discovered 36 suppressors of the eight
RNA Pol II gene mutations, which are not known to be members of the RNA Pol II complex genes (Supplementary Table S2). The most striking example involves taf14Δ (Figure 4B), which yielded 27 suppressors, most of them encoding proteins outside the RNA Pol II complex, 12 of which are genes of unknown function. These results demonstrate the remarkable ability of this essential protein machine to function despite drastic genetic perturbations. It appears that the fragility introduced by the mutant alleles can be overcome by numerous alternate protein–protein contacts.

Functional plasticity by genetic rewiring

The genome wide suppressor dataset allowed us to explore suppression mechanisms quite different from that by direct PPI: we provide examples wherein increased expression of genes allowed the bypass of an essential gene function by engaging alternate genetic pathways. Results described below show that the suppression of smc2 mutation by at least two different suppressor genes appear to proceed through this general mechanism, including the engaging of proteins important for control of meiosis to an otherwise mitotic cell division cycle.

Smc2p is a DNA-binding subunit of the Smc2p/Smc4p condensin complex (65–67) required for sister chromatid (SC) alignment, separation and inhibiting SC recombination during mitosis (65,68). We identified four strong DSs of smc2: UME1, MEK1, HTA2 and SNU66 (Figure 5A). Strikingly, the first two are known to play mutually opposing functions (69–71): UME1 is a mitotically expressed gene required for the repression of a subset of meiotic genes, including those important for meiotic homologous recombination and MEK1 is a meiosis specific protein kinase that promotes meiotic homologous recombination by suppressing SC recombination. To provide more insights into the mechanisms of suppression, we analyzed the time course of mRNA expression by these four suppressed smc2-8 mutant strains at the restrictive temperature (temperature was shifted immediately upon transfer to the medium containing galactose, which corresponded to time ‘0’) and compared their global gene expression patterns with that of the mutant complemented by pGAL:SMC2 (See ‘Materials and Methods’ section).

Results (Figure 5B and C) show that all four suppressors partially induce the expression of some meiosis-related genes. This led us to propose and test a simple model of smc2 dosage suppression mechanism, in which meiosis specific genes rescue smc2 defects in mitosis (Figure 5D and E): smc2 mutation, which causes a failure of chromosome condensation in mitosis, allows the initiation but not the resolution of SC recombination, thus blocking mitosis (65). Ectopic expression of meiosis-specific genes in the suppressed strains either prevents precocious SC recombination or resolves the SC recombination intermediates allow-

Figure 4. Robustness of RNA Pol II complexes. (A) Suppressors of RNA Pol II mutants. We chose eight ts mutant genes (RNA Pol II core complex: rpb4Δ; mediator complex: med4 and med11; TFIIID: taf12 and taf14Δ; TFIIH: rad3, tfb3 and kin28) and scanned these for dosage suppression by 75 RNA polymerase II complex genes. DSs (at the base of each arrow) of mutant proteins (at the head of each arrow) are indicated. Node color: pink, proteins encoded by the mutated genes (note: only taf14 and rpb4 are deletion mutants, the rest are all missense mutants); blue, suppressor proteins. Note, Taf14p, Med4p and Med11p also suppress other mutations when over-expressed. Not all sub-complex proteins are shown. Edge color: green, dosage suppression, arrow denotes the direction of suppression. Example titration results are in Supplementary Figure S6. (B) Co-suppression network of taf14Δ as derived from genome wide DS screen. Edge color: yellow, dosage suppression; green, GI; blue, PPI. Some PPI interactions are directed (bait–prey interactions) and some are undirected.
Figure 5. Network rewiring as a mechanism of suppression. (A) Cell cycle checkpoint arrest by smc2-8 at the restrictive temperature is suppressed by galactose-induced expression of UME1, MEK1, HTA2 and SNU66. (B) Growth curves of the suppressed strains. Smc2-8 strains harboring pGAL:SMC2, pGAL:UME1, pGAL:MEK1, pGAL:HTA2, pGAL:SNU66 and the negative control MORF plasmid (pGAL:negative, BG1766), respectively. Samples taken from these cultures were used in gene expression profiling. (C) Heat map of differentially expressed genes. Cell cultures were grown in the presence of galactose at the permissive temperature to early logarithmic phase, then rapidly shifted to the restrictive temperature; 0 time point corresponds to temperature shift. This is described in detail in ‘Materials and Methods’ section (‘RNA methods’). Normalized log2 transformed mRNA levels of genes were re-normalized against corresponding expression levels in the negative control strain, the resulting expression ratios were filtered for signals above ±2 and hierarchically clustered. The first four time points are log2 ratios of expression values of smc2-8/pGAL:SMC2 to that of smc2-8/pGAL:negative control plasmid. The remaining lanes are log2 ratios of expression values of smc2-8/pGAL:UME1, smc2-8/pGAL:MEK1, smc2-8/pGAL:HTA2 and smc2-8/pGAL:SNU66, respectively, to that of smc2-8/pGAL:SMC2. (D) Results of a focused screen for additional smc2-8 suppressors. Only a few suppressors of various strengths are shown. (E) Mechanisms of smc2-8 suppression deduced from the phenotype and suppression network.

ing mitotic division to progress. This model is a particular instance of the general mechanism shown in Figure 3D. Specifically, a non-essential meiotic gene module controlling recombination replaces the essential mitotic gene module controlling chromosome condensation. We tested an implication of this hypothesis by introducing 37 MORF clones (Supplementary Table S13) corresponding to two categories of genes into smc2-8 and assaying their ability to suppress the ts growth defect: (i) other SMC complex genes, and (ii) several meiotic recombination-promoting genes. 29/37 genes so tested suppressed smc2-8 (examples shown in Figure 5D). Among those that suppressed smc2-8, were RAD51, DMC1 and MND1—all three are recombination-promoting genes, although RAD51 was a weak suppressor and all suppressions were galactose-independent. Several intron-containing meiosis-specific recombination genes, in-
cluding DMC1 and MND1, are expressed and spliced to the mature mRNAs at low levels in mitosis but are expressed highly and spliced efficiently in meiosis (72). The function of DMC1 is to promote recombination between homologous chromosomes and also to inhibit SC exchange in meiosis (73). Dmc1p participates in a cascade of reactions activated through phosphorylation by Mek1p (70), which we have found also to be a suppressor of smc2. These results support the idea that at least one mechanism of suppression of smc2 is through mitotic expression of meiotic recombination genes, which are expected to prevent the formation of or to promote the resolution of sister-chromatid junctions that occur at high frequency in smc2 mitosis.

DISCUSSION

The collection of 660 DS-mutant pairs discovered in this work supplements 1626 pairs reported previously in the literature (38) and 254 interactions that were discovered in a recent high-throughput experiment (33). The genome-wide network of DSs allowed us to explore functional relatedness among the co-suppressors. Mapping of the mutant-suppressor pairs on a PPI network revealed boundaries of topologically defined protein modules. By examining specific protein modules through suppressors of selected RNA Pol II gene mutants, we found that high expression of the genes for specific component proteins within large protein assemblies can functionally replace the absence or the reduction of specific essential components. These latter results underscore the importance of including systematic dosage enrichment for these classes of proteins in the dataset produced in this work. By contrast, there is a significant enrichment for ribosomal proteins in our dataset (B-H corrected $P = 2.64 \times 10^{-4}$) as in the full set of known DSs (B-H corrected $P = 4.5 \times 10^{-6}$). The suppression of cdc37 (a co-chaperone) mutant by RPS18A, RPL25 and RPS24B is consistent with the possibility that some ribosomal proteins may have weak chaperone-like activity (76). Additionally, recent studies indicate that the stoichiometry of ribosomal proteins affects gene expression profiles of specific mRNA populations (77). Thus, at least some of the suppressions involving ribosomal protein genes could possibly involve translational regulation.

Some suppressors of smc2-8 appear to act through direct PPI with the mutant protein. For example, SMC1 and SMC3, required for SC cohesion, but not the condensin gene SMC4, can suppress smc2-8 (Figure 5D). PPI between the mutant Smc2-8p and Smc1p/Smc3p cohesin complex might be able to stabilize misfolded Smc2-8p, whereas direct interaction between Smc2-8p and Smc4p, both members of the condensin complex, cannot do so. A recent report indicates that Smc2p homolog from Schizosaccharomyces pombe interacts with the S. pombe histone H2A and H2A.Z proteins in recruiting the condensin proteins to mitotic chromosomes (78). Since S. cerevisiae HTA2 encodes a homolog of S. pombe H2A gene family, it is possible that Hta2p also recruits Smc2p to the nucleosome in an analogous manner. If true, at least a part of the suppression mechanism by HTA2 might be explained by the stabilization of mutant Smc2p through direct PPI with Hta2p.

Dosage suppression by rewiring, in contrast to that by direct PPI, may involve low affinity and/or low probability interactions that illustrate alternative—redundant or degenerate—pathways. These pathways of suppression appear to decouple physical interaction modules from the modules of functional activities, and the flexible interaction edges rearrange the functional modules to buffer the effects of genetic and environmental perturbations (4,27).

In this work, mechanisms of suppression of a defect in chromosome condensation revealed insights on the potential of unrelated genes that could be brought to bear on solving problems associated with defective cellular processes. It is conceivable that yeasts in nature, and organisms in general, depend on the rewiring of gene regulatory circuits to find new solutions to essential cellular processes during evo-
lution under selective pressure, as observed in this work that meiotic genes relieve mitosis blockage. Such a possibility was investigated earlier in evolved yeast strains with a deletion in an essential gene \(\text{myo1}^+\), where aneuploidy and large-scale variation in the transcriptome were associated with survival \(\text{(79)}\). While aneuploidy was a recurrent theme observed in that work, it was also estimated that the number of available genetic solutions to a lethal perturbation might be limited. Our finding that nearly six times as many genes can suppress 53 deleterious mutations indicates a high degree of robustness built into the genome, and illustrates potential pathways for rewiring of the genome. It is conceivable that a deleterious mutation in an essential gene, leading to growth arrest, is followed by genomic changes that are often observed in stationary phase cells \(\text{(79–83)}\); these changes could in principle activate suppressor pathways to restore viability and provide adaptation. The network of DSs of essential gene mutants is analogous to the network of genes that could potentially bypass, if aberrantly expressed, a drug target gene function (e.g. of a cancer-essential gene) for tumor cell survival. Such a network for a cancer cell is the equivalent of potential pathways for developing resistance to cancer chemotherapy, or, analogously, for evolving independence from the checkpoints that ensure non-proliferative growth, which evidently occurs frequently during the development of cancers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dr C. Boone (U. Toronto) for discussion, for sharing strains and their suppressor data before publication, B. Kraynack and K. Say for initial work in suppressor discovery and C. Cordova, R. Vasudevan, V. Padmakumar, K. Bheda, K. Datta, A. Kamra, D. Lev, M. Pollock and S. Russell for technical assistance, and Dr C. Murre (UCSD) for comments on an earlier version of the manuscript.

REFERENCES

