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Abstract

A common idiom in biology education states, “Eyes in the
front, the animal hunts. Eyes on the side, the animal hides.”
In this paper, we explore one possible explanation for why
predators tend to have forward-facing, high-acuity visual sys-
tems. We do so using an agent-based computational model
of evolution, where predators and prey interact and adapt
their behavior and morphology to one another over succes-
sive generations of evolution. In this model, we observe a
coevolutionary cycle between prey swarming behavior and
the predator’s visual system, where the predator and prey
continually adapt their visual system and behavior, respec-
tively, over evolutionary time in reaction to one another due
to the well-known “predator confusion effect.” Furthermore,
we provide evidence that the predator visual system is what
drives this coevolutionary cycle, and suggest that the cycle
could be closed if the predator evolves a hybrid visual sys-
tem capable of narrow, high-acuity vision for tracking prey
as well as broad, coarse vision for prey discovery. Thus, the
conflicting demands imposed on a predator’s visual system by
the predator confusion effect could have led to the evolution
of complex eyes in many predators.

Keywords: swarming behavior, predator confusion effect,
predator-prey coevolution, visual acuity

Introduction
“Eyes in the front, the animal hunts. Eyes on the side, the
animal hides.” So goes the common idiom in biology edu-
cation when teaching students how to classify animal skulls.
It is widely believed that forward-facing, high-acuity visual
systems play an important role in predation, for example,
in dragonflies catching flying prey (Olberg, 2012). Despite
this common observation, we have little empirical evidence
explaining the evolutionary history of these focused visual
systems observed in so many predators. In this paper, we ex-
plore one hypothesis for why predators tend to evolve com-
plex visual systems: the conflicting demands imposed on a
predator’s visual system by the well-known “predator confu-
sion effect” could have led to the evolution of complex eyes
in many predators.

In previous work, we have shown that not all prey evolve
to respond to the presence of predators by hiding or flee-
ing (Olson et al., 2013a,b; Haley et al., 2014, 2015; Olson
et al., 2015, 2016). In fact, some prey species have evolved
to stay together, form swarms, and defend themselves as
a group for a variety of hypothesized reasons (Krause and
Ruxton, 2002). For example, swarming is hypothesized to
improve group vigilance (Pulliam, 1973; Treisman, 1975;
Kenward, 1978; Treherne and Foster, 1981), reduce the
chance of being encountered by predators (Treisman, 1975;
Inman and Krebs, 1987), dilute an individual’s risk of be-
ing attacked (Hamilton, 1971; Foster and Treherne, 1981;
Treherne and Foster, 1982), and reduce predator attack effi-
ciency by confusing the predator, i.e., the predator confusion
effect (Jeschke and Tollrian, 2007; Ioannou et al., 2008).
As such, swarming opens the possibility for an evolution-
ary “arms race” between predators and their prey (Vermeij,
1987), where the predator and prey continually adapt to one
another over many generations of evolution.

Here we use an agent-based computational model of evo-
lution to study the coevolutionary dynamics between preda-
tor and prey (Olson, 2015). We implement the predator con-
fusion effect as a simple perceptual constraint on the preda-
tor’s visual system, and allow both the predator and prey be-
havior to coevolve over successive generations of evolution
(as in Olson et al. 2013a). We further extend this work to
allow the predator visual system to simultaneously evolve,
which enables us to explore how the predator visual sys-
tem adapts in response to the prey behavior. From these ex-
periments, we discover a coevolutionary cycle between prey
swarming behavior and the predator’s visual system. From
further analysis, we discover that the predator visual sys-
tem is the primary driver of this cycle: When the predator
evolves a focused visual system, the prey evolve to disperse;
whereas when the predator evolves a broad visual system,
the prey evolve to swarm. Thus, we suggest that there is a
selective advantage for predators that evolve a complex vi-
sual system capable of both narrow, high-acuity vision for
tracking prey as well as broad, coarse vision for prey dis-
covery.
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Methods
To study the coevolutionary cycle between predator and
prey, we create an agent-based model in which predator and
prey agents interact in a continuous two-dimensional virtual
environment. Each agent is controlled by a Markov Net-
work (MN), which is a stochastic state machine that makes
control decisions based on a combination of sensory inputs
(i.e., vision) and internal states (i.e., memory) (Edlund et al.,
2011). We coevolve the MNs of predators and prey with a
genetic algorithm, selecting for MNs that exhibit behaviors
that are more effective at consuming prey and surviving, re-
spectively. Certain properties of the sensory and motor be-
havior of predators and prey are implemented as constraints
that model some of the differences between predators and
prey observed in nature (e.g., relative movement speed, turn-
ing agility, and, for predators, maximum consumption rate).
Predator confusion, described in more detail below, is im-
plemented as a constraint on predator perception that can be
varied experimentally. The source code1 for these experi-
ments is available online. In the remainder of this section,
we summarize the evolutionary process that enables the co-
evolution of predator and prey behavior and visual systems,
describe the sensory-motor architecture of individual agents,
then present the characteristics of the environment in which
predator and prey interact. A detailed description of MNs
and how they are evolved can be found in Olson et al. (2016).

Coevolution of predator and prey
We coevolve the predator and prey with a genetic algo-
rithm (GA), which is a computational model of evolution
by natural selection (Goldberg, 1989). In a GA, pools of
genomes are evolved over time by evaluating the fitness of
each genome at each generation and preferentially select-
ing those with higher fitness to populate the next generation.
The genomes here are variable-length lists of integers that
are translated into MNs during fitness evaluation. Further-
more, we allow the predator visual system to evolve by at-
taching a single integer value to each predator genome that
controls the predator view angle, i.e., the size of the arc that
the predator’s visual system covers (see Figure 1).

The coevolutionary process operates as follows. First,
we create separate genome pools for the predator and prey
genomes. Next, we evaluate the genomes’ fitness by select-
ing pairs of predator and prey genomes at random without
replacement, then place each pair into a simulation envi-
ronment and evaluate them for 2,000 simulation time steps.
Within this simulation environment, we generate 50 iden-
tical prey agents from the single prey genome and compete
them with the single predator agent to obtain their respective
fitness. This evaluation period is akin to the agents’ lifespan,
hence each agent has a potential lifespan of 2,000 time steps.
The fitness values, calculated using the fitness function de-

1Model code: https://github.com/adamilab/eos
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Figure 1: An illustration of the predator and prey agents in
the model. Light grey triangles are prey agents and the dark
grey triangle is a predator agent. The prey agents have a
180◦ limited-distance visual system (100 virtual meters) to
observe their surroundings and detect the presence of the
predator and prey agents, whereas the predator agents have
a variable-sized visual system that can see for 200 virtual
meters. “PL” and “PR” correspond to the sensors just to
the left and right of the agent’s heading, respectively. Each
agent has its own Markov Network, which decides where to
move next based off of a combination of sensory inputs and
memory. The left and right actuators (labeled “L” and “R”)
enable the agents to move forward, left, and right in discrete
steps.

scribed below, are used to determine the next generation of
the respective genome pools. At the end of the lifetime sim-
ulation, we assign the predator and prey genomes separate
fitness values according to the fitness functions:

Wpredator =

2,000∑
t=1

S −At (1)

Wprey =

2,000∑
t=1

At (2)

where t is the current simulation time step, S is the starting
swarm size (here, S = 50), and At is the number of prey
agents alive at simulation time step t. It can be shown that
the predator fitness (Eq. 1) is proportional to the mean kill
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rate k (mean number of prey consumed per time step), while
the prey fitness (Eq. 2) is proportional to (1 − k). Thus,
predators are awarded higher fitness for capturing more prey
faster, and prey in turn are rewarded for surviving longer.
We only simulate a portion of the prey’s lifespan where they
are under predation because we are investigating swarming
as a response to predation, rather than a feeding or mating
behavior.

In this case, we use a GA with a population size of 100
(100 prey, 100 predators), per-gene mutation rate of 1%,
gene duplication rate of 5%, gene deletion rate of 2%, and
mutation rate of 5% for the predator visual system that adds
a number in the range [-50◦, 50◦] to the arc size while keep-
ing it constrained between [1◦, 360◦].

Once we evaluate all of the predator-prey genome pairs
in a generation, we perform fitness-proportionate selection
on the populations via a Moran process (Moran, 1962), al-
low the selected genomes to asexually reproduce into the
next generation’s populations, apply random mutations to
the newborn offspring, increment the generation counter,
and repeat the evaluation process on the new populations
until the final generation (25,000) is reached.

We perform 30 replicates of each experiment, where for
each replicate we seed the prey population with a set of
randomly-generated MNs and the predator population with
a pre-evolved predator MN that exhibits rudimentary prey-
tracking behavior with a 180◦ visual system. Seeding the
predator population in this manner only serves to speed up
the coevolutionary process, and has negligible effects on the
outcome of the experiment (Figure S1 from Olson et al.
2013a).

Predator and prey agents
Figure 1 depicts the sensory-motor architecture of predator
and prey agents in this system. The retina sensors of both
predator and prey agents are logically organized into “lay-
ers,” where a layer includes 12 sensors, with each sensor
having a field of view of 15◦ and a range of 100 virtual me-
ters. Moreover, each layer is attuned to sensing a specific
type of agent. Specifically, the predator agents have a single-
layer retina that is only capable of sensing prey. In contrast,
the prey agents have a dual-layer retina, where one layer is
able to sense conspecifics, and the other senses the predator.
(We note that there is only a single predator active during
each simulation, hence the lack of a predator-sensing retinal
layer for the predator agent.)

Regardless of the number of agents present in a single
retina slice, the agents only know the agent type(s) that
reside within that slice, but not how many, representing
the wide, relatively coarse-grain visual systems typical in
swarming birds such as Starlings (Martin, 1986). For exam-
ple in Figure 1, the fourth retina slice to the right (labeled
“A”) has one prey (light grey triangle) and two predators
(dark grey triangles) in it, so both the predator and prey sen-

sors activate and inform the MN that one or more predators
and one or more prey are currently in that slice. Further-
more, since the prey near the seventh retina slice from the
left is just outside the range of the retina slice, the prey sen-
sor for that slice does not activate. We note that although the
agent’s sensors do not report the number of agents present
in a single retina slice, this constraint does not preclude the
agent’s MN from evolving and making use of a counting
mechanism which reports the number of agents present in
a set of retina slices. Once provided with its sensory infor-
mation, the prey agent chooses one of four discrete actions:
(1) stay still; (2) move forward 1 unit; (3) turn left 8◦ while
moving forward 1 unit; or (4) turn right 8◦ while moving
forward 1 unit.

Likewise, the predator agent detects nearby prey agents
using a limited-distance (200 virtual meters), segmented
retina covering an evolvable angle in front of the predator
that functions just like the prey agent’s retina. Similar to the
prey agents, predator agents make decisions about where to
move next, but the predator agents move 3x faster than the
prey agents and turn correspondingly slower (6◦ per simula-
tion time step) due to their higher speed.

Simulation environment
We use a simulation environment to evaluate the relative per-
formance of the predator and prey agents. At the beginning
of every simulation, we place a single predator agent and 50
prey agents at random locations inside a closed 512 × 512
unit two-dimensional simulation environment. Each of the
50 prey agents are controlled by clonal MNs of the particu-
lar prey MN being evaluated. We evaluate the swarm with
clonal MNs to eliminate any possible effects of selection at
the individual level, e.g., the “selfish herd” effect (Wood and
Ackland, 2007; Olson et al., 2013b).

During each simulation time step, we provide all agents
their sensory input, update their MN, then allow the MN to
make a decision about where to move next. When the preda-
tor agent moves within 5 virtual meters of a prey agent it can
see (i.e., the prey agent is anywhere within the predator’s vi-
sual field), it automatically makes an attack attempt on that
prey agent. If the attack attempt is successful, the target
prey agent is removed from the simulation and marked as
consumed. Predator agents are limited to one attack attempt
every 10 simulation time steps, which is called the handling
time. The handling time represents the time it takes to con-
sume and digest a prey after successful prey capture, or the
time it takes to refocus on another prey in the case of an un-
successful attack attempt. Shorter handling times have neg-
ligible effects on the outcome of the experiment, except for
when there is no handling time at all (Figure S2 from Olson
et al. (2013a)).

To investigate predator confusion as an indirect selection
pressure driving the coevolution of swarming, we imple-
ment a perceptual constraint on the predator agent. When
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Figure 2: Relation of predator attack efficiency (# success-
ful attacks / total # attacks) to number of prey. The solid
line with triangles indicates predator attack efficiency as a
function of the number of prey within the visual field of the
predator (ANV). Similarly, the dashed line with error bars
shows the actual predator attack efficiency given the preda-
tor attacks a group of swarming prey of a given size, using
the ANV curve to determine the per-attack predator attack
success rate. Error bars indicate two standard errors over
100 replicate experiments.

the predator confusion mechanism is active, the predator
agent’s chance of successfully capturing its target prey agent
(Pcapture) is diminished when any prey agents near the tar-
get prey agent are visible anywhere in the predator’s visual
field. This perceptual constraint is similar to previous mod-
els of predator confusion based on observations from nat-
ural predator-prey systems (M. Jeschke and Tollrian, 2005;
Jeschke and Tollrian, 2007; Ioannou et al., 2008), where the
predator’s attack efficiency (# successful attacks / total # at-
tacks) is reduced when attacking swarms of higher density.

Pcapture is determined by the equation Pcapture = 1
ANV

,
where ANV is the number of prey agents that are visible to
the predator, i.e., anywhere in the predator agent’s visual
field, and within 30 virtual meters of the target prey. By
only counting prey near the target prey, this mechanism lo-
calizes the predator confusion effect to the predator’s retina,
and enables us to experimentally control the strength of the
predator confusion effect.

Although our predator confusion model is based on the
predator’s retina, it is functionally equivalent to previous
models that are based on the total swarm size (Figure 2,
dashed line), see, e.g., (M. Jeschke and Tollrian, 2005;
Tosh et al., 2006; Jeschke and Tollrian, 2007; Ioannou et al.,
2008). As shown in Figure 2 (solid line with triangles), the
predator has a 50% chance of capturing a prey with one vis-
ible prey near the target prey (ANV = 2), a 33% chance of
capturing a prey with two visible prey near the target prey
(ANV = 3), etc. As a consequence, prey are in principle
able to exploit the combined effects of predator confusion
and handling time by swarming.

Results
To evaluate the evolved prey behavior quantitatively, we ob-
tain the line of descent (LOD) for every replicate experi-
ment by tracing the ancestors of the most-fit prey MNs in
the final population until we reach the randomly-generated
ancestral MN with which the starting population was seeded
(see Lenski et al. 2003 for an introduction to the concept
of a LOD in the context of computational evolution). For
each ancestor in the LOD, we characterized the behavior
with a common behavior measurement called swarm den-
sity (Huepe and Aldana, 2008). We measured the swarm
density as the mean number of prey within 30 virtual meters
of each other over a lifespan of 2,000 simulation time steps,
which provides an indication of how closely the prey are
staying near each other on average. Similarly, we evaluate
the predator’s view angle by tracing the LOD of the most-fit
predator and observing the view angle of each ancestor.

In Olson et al. 2013a, we showed that when the predator’s
visual system only covered the frontal 60◦ or less, swarming
to confuse the predator was no longer a viable adaptation
(as indicated by a mean swarm density of 0.68 ± 0.02 at
generation 1,200). In this case, the predator had such a nar-
row view angle that few swarming prey were visible during
an attack, which minimizes the confusion effect and corre-
spondingly increases the predator’s capture rate (Figure S8
from Olson et al. 2013a). When the predator’s visual sys-
tem was incrementally modified to cover the frontal 120◦

and beyond, swarming again became an effective adaptation
against the predator due to the confusion effect (indicated by
a mean swarm density of 6.13 ± 0.76 at generation 1,200).
This suggests that the predator confusion mechanism may
not only provide a selective pressure for the prey to swarm,
but it could also provide a selective pressure for the predator
to narrow its view angle to become less easily confused.

When we allow the predator view angle to coevolve along
with the predator and prey behavior, we observe that the
predator populations do indeed evolve focused visual sys-
tems in response to prey swarming behavior (Figure 3), as
indicated by the predator view angle evolving to < 100◦

once the prey begin to swarm. Interestingly, the predator and
prey populations appear to repeatedly cycle between differ-
ent states of view angles and behaviors, respectively, such
that there is a significant negative correlation between the
predator view angle and swarm density across all 30 coevo-
lution experiments (Figure 4). This finding is surprising be-
cause the predator population should be able to effectively
“defeat” the swarming prey population by shrinking their vi-
sual system to the point that the prey will no longer evolve to
swarm. Why then would the predator population evolve to
widen their visual system once the prey evolve to disperse,
and allow the prey population to again evolve swarming be-
havior to reduce the predators’ attack efficiency?

Shown in Figure 5, when predators with fixed view an-
gles are competed against dispersive prey, the predators with
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Figure 3: Swarm density and predator view angle from the LOD of a single coevolution experiment. The predator and prey
populations repeatedly cycle between different states of view angles and behaviors.

Figure 4: Pearson’s r between swarm density and predator
view angle from the LODs of 30 coevolution experiments.
All coevolution experiments have a negative correlation be-
tween swarm density and predator view angle, indicating
that when swarm density goes up, predator view angle goes
down, and vice versa. P <= 0.001 for all correlations.

Figure 5: Number of simulation time steps that prey are
present anywhere in an evolved predator’s visual system de-
pending on the predator’s view angle. Each box plot repre-
sents 30 replicates, and the notches represent the 95% confi-
dence interval around the median. Here, the predator is com-
peted against dispersive prey. Predators with higher view
angles are more likely to have prey anywhere in their visual
system at a given time. P <= 0.001 between all view an-
gles with a Kruskal-Wallis multiple comparison.
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Figure 6: Number of simulation time steps that prey are vis-
ible in a portion of an evolved predator’s visual system that
it pays attention to, depending on the predator’s view angle.
Each box plot represents 30 replicates, and the notches rep-
resent the 95% confidence interval around the median. Here,
the predator is competed against dispersive prey. Preda-
tors with higher view angles are more likely to spot prey
at a given time, which increases their foraging efficiency.
P <= 0.001 between all view angles except 180 vs. 210
with a Kruskal-Wallis multiple comparison.

Figure 7: Fitness of an evolved predator when competed
against dispersive prey, depending on the predator’s view an-
gle. Each box plot represents 30 replicates, and the notches
represent the 95% confidence interval around the median.
Predators with higher view angles forage for prey more ef-
ficiently, thus capturing more prey in their lifetime and im-
proving their fitness. P <= 0.001 between all view angles
except 150 vs. 180 and 180 vs. 210, Kruskal-Wallis multiple
comparison.

Figure 8: Diagram depicting the observed coevolutionary
cycle between the predator and prey in the presence of the
predator confusion effect.

broader visual systems are more likely to find a prey any-
where in their visual system at any time. Further, Figure 6
demonstrates that predators with broader visual systems are
also more likely to find dispersive prey in a portion of their
visual system that they pay attention to, which means they
spend less time searching for prey. Thus, the increased
foraging efficiency that broader visual systems offer preda-
tors against dispersive prey results in higher predator fitness
(Figure 7), which explains why predators evolve higher view
angles in the presence of dispersive prey.

Discussion
As demonstrated in Figure 3, selection favors predators with
a more focused visual system once swarming has evolved in
prey. However, once the predators evolve a focused visual
system, the prey evolve dispersive behavior in response and
a coevolutionary cycle commences between the predator vi-
sual system and prey behavior. Some time ago, researchers
commonly assumed that the evolution of social behavior is a
one-way street, and that once social integration has arisen
in a population it must be so advantageous (compared to
the cost of living in close proximity to conspecifics) that it
would not be lost (Wcislo and Danforth, 1997). Our findings
demonstrate that at least one form of social behavior—the
tendency to form cohesive swarms—can readily be gained
and lost, and that the gain and loss is governed by a coevo-
lutionary cycle that could occur between natural predators
and prey due to the predator confusion effect, as depicted in
Figure 8.

Furthermore, the findings in this paper highlight a trade-
off that natural predators likely experience when hunting for
prey: Broader, less-focused visual systems are more useful
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for initially spotting prey, but focused visual systems are bet-
ter adapted for tracking an individual prey down and avoid-
ing the effects of predator confusion when hunting prey in
groups. Thus, these conflicting demands imposed on the
predator’s visual system by the predator confusion effect
could select for the evolution of complex eyes that satisfy
both needs. Indeed, many animals—both vertebrate and
invertebrates—do have such complexity in the arrangement
of their retinae, including the presence of a fovea in ver-
tebrates (Moore et al., 2012) or “acute zones” in inverte-
brates (Land, 1997). Our system could not have evolved
such complexity because the retinal slices could not vary in-
dependently.

In future work, we plan to implement a more advanced
predator visual system that will allow the number of retina
slices to vary, and allow each individual slice to vary in size.
Through such a visual system, evolution will be capable of
adjusting each retina slice as needed and allow us to explore
under what conditions complex eyes will evolve. Another
interesting approach would be to allow the prey visual sys-
tem to coevolve as well in order to explore how evolution
shapes prey visual systems in response to predation.

Conclusions
In this paper, we implemented a computational model of
evolution that allowed us to explore the coevolution of
predator and prey morphology and behavior. In particular,
we explored the coevolution of the predator’s visual system
and prey behavior and discovered that a repeated coevolu-
tionary cycle occurs when we introduce the predator con-
fusion effect. Furthermore, we provided evidence that the
predator visual system is what drives this coevolutionary cy-
cle, and suggested that the cycle could be closed if the preda-
tor evolves a hybrid visual system capable of narrow, high-
acuity vision for tracking prey as well as broad, coarse vision
for prey discovery. Thus, the conflicting demands imposed
on a predator’s visual system by the predator confusion ef-
fect could have led to the evolution of complex eyes in many
predators.
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