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Abstract Animal grouping behaviors have been widely studied
due to their implications for understanding social intelligence,
collective cognition, and potential applications in engineering,
artificial intelligence, and robotics. An important biological aspect
of these studies is discerning which selection pressures favor the
evolution of grouping behavior. In the past decade, researchers
have begun using evolutionary computation to study the evolutionary
effects of these selection pressures in predator-prey models. The
selfish herd hypothesis states that concentrated groups arise because
prey selfishly attempt to place their conspecifics between themselves
and the predator, thus causing an endless cycle of movement toward
the center of the group. Using an evolutionary model of a predator-
prey system, we show that how predators attack is critical to the
evolution of the selfish herd. Following this discovery, we show that
density-dependent predation provides an abstraction of Hamiltonʼs
original formulation of domains of danger. Finally, we verify that
density-dependent predation provides a sufficient selective advantage
for prey to evolve the selfish herd in response to predation by
coevolving predators. Thus, our work corroborates Hamiltonʼs
selfish herd hypothesis in a digital evolutionary model, refines
the assumptions of the selfish herd hypothesis, and generalizes
the domain of danger concept to density-dependent predation.

1 Introduction

Over the past century, researchers have devoted considerable effort to studying animal grouping
behavior, due to its important implications for social intelligence, collective cognition, and potential
applications in engineering, artificial intelligence, and robotics [5]. Indeed, grouping behaviors are
pervasive across all forms of life. For example, European starlings (Sturnus vulgaris) are known to
form murmurations of millions of birds, which perform awe-inspiring displays of coordinated move-
ment [12, 19]. Western honeybees (Apis mellifera) communicate the location of food and nest sites to
other bees in their group via a complex dance language [9]. Even relatively simple bacteria exhibit
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grouping behavior, such as Escherichia coli forming biofilms that allow their group to survive in hostile
environments [17].

Swarming is one example of grouping behavior, where animals coordinate their movement with
conspecifics to maintain a cohesive group. Although swarmlike groups could arise by chance—as
with little egrets (Egretta garzetta) pursuing a common resource in water pools [28]—typically swarms
are maintained via behavioral mechanisms that ensure group cohesion [2]. As with many traits,
swarming behavior entails a variety of fitness costs, such as increased risk of predation and the req-
uisite sharing of resources with the group [44]. With this fact in mind, significant effort has been
dedicated to understanding the compensating benefits that grouping behavior provides [30]. Many
such benefits of grouping behavior have been proposed; for example, swarming may improve mat-
ing success [68, 8], increase foraging efficiency [47], or enable the group to solve problems that
would be impossible to solve individually [5]. Furthermore, swarming behaviors are hypothesized
to protect group members from predators in several ways. For example, swarming can improve
group vigilance [57, 27, 59, 46], reduce the chance of being encountered by predators [59, 22], dilute
an individualʼs risk of being attacked [23, 58, 13, 18], enable an active defense against predators [30],
or reduce predator attack efficiency by confusing the predator [24, 26, 29].

Unfortunately, many swarming animals take months or even years to produce offspring. These long
generation times make it extremely difficult to experimentally determine which of the aforementioned
benefits are sufficient to select for swarming behavior as an evolutionary response, let alone study the
behaviors as they evolve [26, 3]. In this article, we use a digital model of predator-prey coevolution to
explore Hamiltonʼs selfish herd hypothesis [18]. Briefly, the selfish herd hypothesis states that prey in
groups under attack from a predator will seek to place other prey in between themselves and the pred-
ator, thus maximizing their chance of survival. As a consequence of this selfish behavior, individuals
continually move toward a central point in the group, which gives rise to the appearance of a cohesive
swarm. This article expands on earlier work [41] by studying the long-term evolutionary effects of
differing attack modes, exploring a new attack mode that directly selects against swarming behavior,
and providing an analysis of the control algorithms that evolved in the swarming prey.

2 Related Work

Hamiltonʼs original formulation of the selfish herd hypothesis introduced the concept of domains of
danger (DODs, Figure 1), which served as a method to visualize the likelihood for a prey inside a

Figure 1. Example domains of danger (DODs) from Hamiltonʼs selfish herd hypothesis. Each triangle represents a prey in
the group, and the area around each triangle is its DOD. Prey on the inside of the group have smaller DODs, which
means they are less likely to be targeted when a predator attacks. As a consequence, selfish prey that move inside the
group to minimize their DOD will have an evolutionary advantage.
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group to be attacked by a predator [18]. Prey on the edges of the group would have larger DODs
than prey on the inside of the group; thus, prey on the edges of the group would be attacked more
frequently. Moreover, Hamilton proposed that prey on the edges of the group would seek to reduce
their DOD by moving inside the group, thus placing other group members between themselves and
the predator. Further work has expanded on this hypothesis by adding a limited predator attack
range [25], investigating the effects of prey vigilance [4], considering the initial spatial positioning
of prey when the group is attacked [38], exploring the role of prey body characteristics in shaping
herd characteristics [31, 20], and even confirming Hamiltonʼs predictions in biological systems [48].

Additional studies have focused on the movement rules that prey in a selfish herd follow to
minimize their DOD [62]. This line of work began by demonstrating that the simple movement
rules proposed by Hamilton reduce predation risk for prey inside the group [39], then opened some
parameters of the movement rules to evolution in an attempt to discover a more biologically plau-
sible set of movement rules [49, 65]. Importantly, these studies demonstrated that it is possible for
selfish herd behavior to evolve by natural selection on movement rules that rely on only local in-
formation for each agent, rather than global information about the entire group. This article builds
on this work by studying the effects of coevolving predators and predator attack mode (i.e., how
predators select a prey in a group to attack) on the evolution of the selfish herd.

That said, there are many other potential causes of swarming behavior that we do not address in this
study. For example, some studies have investigated the evolution of predator behavior in response to
prey density [56] and the role of relative predator and prey speeds in the evolution of grouping behavior
[66], elaborated upon the interaction between ecology and the evolution of grouping behavior [55, 64],
and explored the role of group vigilance (i.e., the “many eyes” hypothesis) in the evolution of grouping
behavior [16, 43]. Two recent studies have explored the coevolution of predator and prey behavior in
the presence of the predator confusion effect [40, 32], and found that the predator confusion effect is
sufficient to select for the evolution of swarming behavior in the absence of any other group benefits.
Further, it has been shown that predators can adapt composite tactics to improve their efficacy against
swarms of prey, which greatly reduces the defensive benefit of swarming [7]. It is therefore necessary to
keep in mind that while this study investigates the evolution of swarming behavior according to
Hamiltonʼs selfish herd hypothesis, in natural populations there are often many interacting benefits
and costs of swarming behavior that must be taken into account [30].

Of course, prior to this work there had been considerable research exploring the (co)evolution of
animal behavior in agent-based models. Craig Reynoldsʼ work on the evolution of prey behavior in
response to simulated predation was one of the earliest articles to demonstrate that predation can
directly select for aggregative behavior in prey populations [51]. Similarly, Karl Simsʼ work in 1994
established a new paradigm for the coevolution of agent behavior and morphology [54], which is still
an object of intense study to this day. The work in this article seeks to provide a stronger biological
grounding to these kinds of agent-based evolution experiments, in particular by implementing
specific selection pressures on the prey that are discussed in the animal behavior literature.

More broadly, in the past decade researchers have focused on the application of locally interacting
swarming agents to optimization problems, called particle swarm optimization (PSO) [45]. PSO applications
range from feature selection for classifiers [67] to video processing [60] to open vehicle routing [34]. A
related technique within PSO seeks to combine PSO with coevolving predator and prey solutions to
avoid local minima [53], and has proven effective in other evolutionary computation domains as well [1].
Researchers have even sought to harness the collective problem-solving power of swarming agents to
design robust autonomous robotic swarms [6]. Thus, elaborations on the foundations of animal group-
ing behavior have the potential to improve our ability to solve engineering problems.

3 Methods

To study the evolution of the selfish herd, we developed an agent-based model in which agents
interact in a continuous, toroidal virtual environment (736 × 736 virtual meters), shown in Figure 2.
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At the beginning of each simulation, we place 250 agents in the environment at uniformly random
locations. These agents are treated as “virtual prey.” Each agent is controlled by a Markov network
(MN), which is a probabilistic controller that makes movement decisions based on a combination
of sensory input (i.e., vision) and internal states (i.e., memory) [10]. We evolve the agent MNs
with a genetic algorithm (GA) [11, 14] under varying selection regimes, which will be described in
more detail below.

During each simulation time step, all agents read information from their sensors and take action
(i.e., move) based on their effectors. In our first set of treatments, we simulate an ideal, disembodied
predator by periodically removing prey agents from the environment and marking them as
consumed—for example, when they are on the outermost edges of the group. Subsequent treat-
ments introduce an embodied, coevolving predator agent that is controlled by its own MN. The
data1 and source code2 from these experiments are available online for further analysis. In the
remainder of this section, we describe the sensory-motor architecture of individual agents and
present details related to the function and encoding of MNs.

3.1 Agent Model
Figure 3 depicts the sensory-motor architecture of the agents used for this study. A prey agent can
sense predators and conspecifics with a limited-distance (200 virtual meters), pixelated retina cov-
ering its entire 360° visual field. Its retina is split into 24 even slices, each covering an arc of 15°,
which is an abstraction of the broad, coarse visual systems often observed in grouping prey [35].
Regardless of the number of agents present in a single retina slice, the prey agent only knows whether
a conspecific or a predator resides within that slice, but not how many. For example, in Figure 3, the
fourth retina slice to the right of the agentʼs heading (labeled “A”) has both the predator and prey
sensors activated, because there are two predator agents and a prey agent inside that slice. Once pro-
vided with its sensory information, the prey agent chooses one of four discrete actions, as shown in
Table 1. Prey agents turn in 8° increments and move 1 virtual meter each time step.

1 Data: http://dx.doi.org/10.6084/m9.figshare.663680
2 Code: https://github.com/adamilab/eos-selfish-herd

Figure 2. A depiction of the simulation environment in which the agents interact. Black dots are prey agents, the black
triangle is a predator agent, and the lines around the predator agent indicate its field of view. Agents wrap around the
edges of the toroidal simulation environment.
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In our coevolution experiments, the predator agents can detect only nearby prey agents, using a
limited-distance (200 virtual meters), pixelated retina covering its frontal 180° that works just like the
prey agentʼs retina (Figure 3). Similarly to the prey agents, predators make decisions about how to
move next using their MN, as shown in Table 1, but move 3 times faster than the prey agents and
turn correspondingly slower (6° per simulation time step) due to their higher speed. This dramat-
ically faster predator movement speed is meant to represent predators that perform rapid attacks on
groups of prey, such as a peregrine falcon dive-bombing a swarm of starlings. Finally, if a predator
agent moves within 5 virtual meters of a prey agent that is anywhere within its retina, the predator
agent attempts an attack on the prey agent. If the attempt is successful, we remove the prey agent
from the simulation and mark it as consumed.

3.2 Markov Networks
Each agent is controlled by its own Markov network (MN), which is a probabilistic controller that
makes decisions about how the agent interacts with the environment and other agents within that

Table 1. Possible actions encoded by the agentʼs output.

Output L Output R Encoded action

0 0 Move forward

0 1 Turn right

1 0 Turn left

1 1 Stay still

Notes. Each output pair encodes a discrete action taken by the agent. The
agentʼs MN changes the values stored in output states L and R to indicate
the action it has decided to take in the next simulation time step.

Figure 3. An illustration of the agents in the model. Light gray triangles are prey agents, and dark gray triangles are predator
agents. The agents have a 360° limited-distance retina (200 virtual meters) to observe their surroundings and detect
the presence of other agents. The current heading of the agent is indicated by a bold arrow. Each agent has its own
Markov network, which decides where to move next, based on of a combination of sensory input and memory. The
left and right actuators (labeled “L” and “R”) enable the agents to move forward, left, and right in discrete steps.
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environment. Since a MN is responsible for the control decisions of its agent, it can be thought of as
an artificial brain for the agent it controls. Although we specifically use MNs as the artificial brains in
these experiments, other artificial brains such as artificial neural networks, genetic programming, or
many other evolvable substrates that can produce agent-based behavior based on sensory inputs
could also be used in these experiments.

Every simulation time step, the MNs receive input via sensors (e.g., visual retina), perform a
computation on inputs and any hidden states (i.e., memory), then place the result of the computation
into hidden or output states (e.g., actuators). We note that MN states are binary and only assume a
value of 0 or 1. When we evolve MNs with a GA, mutations affect (1) which states the MN pays
attention to as input, (2) which states the MN outputs the result of its computation to, and (3) the
internal logic that converts the input into the corresponding output.

3.2.1 How Markov Networks Function
When we embed an agent into the simulation environment, we provide sensory inputs from its
retina into its MN every simulation step (Figure 3, labeled “retina” and “Markov network,” respec-
tively). Once we provide a MN with its inputs, we activate it and allow it to store the result of the
computation into its hidden and output states for the next time step. MNs are networks of Markov
gates (MGs), which perform the computation for the MN. In Figure 4, we see two example MGs,
labeled “Gate 1” and “Gate 2.” At time t, gate 1 receives sensory input from states 0 and 2 and
retrieves state information (i.e., memory) from state 4. At time t + 1, gate 1 then stores its output in
hidden state 4 and output state 6. Similarly, at time t gate 2 receives sensory input from state 2 and
retrieves state information in state 6, then places its output into states 6 and 7 at time step t + 1.
When MGs place their output into the same state, the outputs are combined into a single output
using the OR logic function. Thus, the MN uses information from the environment and its memory
to decide where to move in the next time step t + 1.

In a MN, states are updated by MGs, which function similarly to digital logic gates, such as AND

and OR. A digital logic gate, such as XOR, reads two binary states as input and outputs a single binary
value according to the XOR logic. Similarly, MGs output binary values based on their input, but do so
with a probabilistic logic table. Table 2 shows an example MG that could be used to control a prey
agent that avoids nearby predator agents. For example, if a predator is to the right of the preyʼs
heading (i.e., PL = 0 and PR = 1, corresponding to the second row of this table), then the outputs
are move forward (MF) with a 20% chance, turn right (TR) with a 5% chance, turn left (TL) with a
65% chance, and stay still (SS) with a 10% chance. Thus, due to this probabilistic input-output map-
ping, the agent MNs are capable of producing stochastic agent behavior.

Figure 4. An example Markov network (MN) with four input states (white circles labeled 0–3), two hidden states (light
gray circles labeled 4 and 5), two output states (dark gray circles labeled 6 and 7), and two Markov gates (MGs, white
squares labeled “Gate 1” and “Gate 2”). The MN receives input into the input states at time step t, then performs a
computation with its MGs upon activation. Together, these MGs use information about the environment, information
from memory, and information about the MNʼs previous action to decide where to move next.
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The MGs in this model can receive input from a maximum of four states, and write into a max-
imum of four states, with a minimum of one input and one output state for each MG. Any state
(input, output, or hidden) in the MN can be used as an input or output for a MG. MNs can be
composed of any number of MGs, and the MGs are what define the internal logic of the MN. Thus,
to evolve a MN, mutations change the connections between states and MGs, and modify the prob-
abilistic logic tables that describe each MG. Mutations act directly on the genetic encoding of the
MN, which is described next.

3.2.2 Genetic Encoding of Markov Networks
We use a circular string of bytes as a genome, which contains all the information necessary to de-
scribe a MN. The genome is composed of genes, and each gene encodes a single MG. Therefore, a
gene contains the information about which states the MG reads input from, which states the MG
writes its output to, and the probability table defining the logic of the MG. The start of a gene is
indicated by a start codon, which is represented by the sequence (42, 213) in the genome.

Figure 5 depicts an example genome. After the start codon, the next two bytes describe the
numbers of inputs (Nin) and outputs (Nout) used in this MG, where each N = 1 + (byte mod Nmax).
Here, Nmax = 4. The following Nmax bytes specify which states the MG reads from by mapping to a
state ID number with the function (byte mod Nstates), where Nstates is the total number of input,
output, and hidden states. Similarly, the next Nmax bytes encode which states the MG writes to with
the same equation as Nin. If too many inputs or outputs are specified, the remaining sites in that
section of the gene are ignored, designated by the # signs. The remaining 2NinþNout bytes of the gene
determine the probabilities in the logic table.

The maximum number of states allowed and which states are used as inputs and outputs are
specified as constants by the user. In these experiments, we provided 64 states for the MNs to work
with: 24 sensory inputs, 2 outputs for the actuators, and 38 hidden states for optional internal

Table 2. An example MG that could be used to control a prey agent that avoids nearby predator agents.

PL PR P(MF) P(TR) P(TL) P(SS)

0 0 0.7 0.05 0.05 0.2

0 1 0.2 0.05 0.65 0.1

1 0 0.2 0.65 0.05 0.1

1 1 0.05 0.8 0.1 0.05

Notes. PL and PR correspond to the predator sensors just to the left and right of the agentʼs heading, respectively, as
shown in Figure 3. The columns labeled P(X) indicate the probability of the MG deciding on action X given the correspond-
ing input pair. MF = move forward; TR = turn right; TL = turn left; SS = stay still.

Figure 5. Example circular byte strings encoding the two Markov gates (MGs) in Figure 4, denoted gene 1 and gene 2.
The sequence (42, 213) represents the beginning of a new MG (white blocks). The next two bytes encode the numbers
of input and output states used by the MG (light gray blocks), and the following eight bytes encode which states are used
as input (medium gray blocks) and output (darker gray blocks). The remaining bytes in the string encode the probabilities
of the MGʼs logic table (darkest gray blocks).
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computations. Combined with these constants, the genome described above unambiguously defines
a MN.

All evolutionary changes such as point mutations, duplications, deletions, or crossover are per-
formed on the byte string genome, with probabilities as shown in Table 3. During a point mutation,
a random byte in the genome is replaced with a new byte drawn from a uniform random distribu-
tion. If a duplication event occurs, two random positions are chosen in the genome and all bytes
between those points are duplicated into another part of the genome. Similarly, when a deletion
event occurs, two random positions are chosen in the genome and all bytes between those points
are deleted. Crossover for MNs is not implemented in this experiment, to allow for a succinct
reconstruction of the line of descent of the population [33] (described further below), which is a
useful tool in evolutionary studies that we harness in this article.

4 Artificial Predation

In our first set of experiments, we observe the evolution of prey behavior in response to various
forms of artificial predation. This enables us to experimentally control the specific modes of preda-
tion and observe their effect on the evolution of the selfish herd. We evolve the prey genomes with a
GA with the settings described in Table 3. We begin the evolutionary process by seeding the prey
genome pool with a set of randomly generated ancestor genomes of length 5,000 with four random
MGs. Following this, we evaluate the relative fitness of each prey genome by translating the genome
into its corresponding MN, embodying each MN in a prey agent, and competing the prey agents in a
simulation environment for 1,000 simulation time steps. This evaluation period is akin to the agentsʼ
life span; hence each agent has a potential life span of 1,000 time steps. We assign each prey genome
an individual fitness according to how long its corresponding prey agent survived, following the
equation

Wprey ¼ T (1)

where T is the number of time steps the prey agent survived in the simulation environment. Thus,
individual prey genomes are rewarded for their agent surviving longer than other agents in the group.
Once all of the prey genomes are assigned fitness values, we perform fitness-proportional selection
on the population of genomes via a Moran process [36], increment the generation counter, and

Table 3. Genetic algorithm and experiment settings.

GA parameter Value

Selection Fitness-proportional

Population size 250

Per-gene mutation rate 1%

Gene duplication rate 5%

Gene deletion rate 2%

Crossover None

Generations 40,000

Replicates 100
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repeat the evaluation process on the new population of genomes until the final generation (40,000)
is reached.

In all cases, we give the prey an initial 250 simulation time steps without predation to move
around, so that prey starting on the exterior of the group have the chance to move toward the center
of the group if they wish to. Once the initial 250 simulation time steps elapse, we apply artificial
predation every 4 simulation time steps to simulate an ideal predator attacking the group. Artificial
predators succeed in their attacks every time. We limit the artificial predator attack rate to one attack
attempt every 4 simulation time steps, which is called the handling time. The handling time represents
the time it takes the simulated predator to consume and digest a prey after successful prey capture,
or the time it takes to refocus on another prey in the case of an unsuccessful attack attempt. We
selected a handling time of 4 because it reduces the herd of prey down to 25% of its original size by
the end of the simulation, therefore applying strong selection pressure for survivorship in the herd.

For each experiment, we characterize the grouping behavior by measuring the swarm density of the
entire prey population every generation [21]. We measure the swarm density as the mean number of
prey within 30 virtual meters of each other over a life span of 1,000 simulation time steps, which we
have experimentally shown to differentiate between swarming and non-swarming behavior in pre-
vious published experiments [40]. Qualitatively, a swarm density ≥ 15 indicates cohesive swarming
behavior, between 15 and 5 loosely grouping behavior, and ≤ 5 random, non-grouping behavior.
Thus, the swarm density captures how cohesively the prey are swarming, or whether the prey are
even grouping at all.

In the following sections, we study the effect of four different attack modes on the evolution of
swarming behavior: uncorrelated random attacks (Figure 6a), correlated random attacks (random
walk attacks, Figure 6b), peripheral attacks (Figure 6c), and attacks that target the densest area of
the swarm (Figure 6d).

4.1 Random Attacks
Our initial study sought to verify Hamiltonʼs selfish herd hypothesis by modeling evolving prey
under attack by predators that ambush prey from a random location in the simulation environment.
If the selfish herd hypothesis holds, we expect prey to minimize their domain of danger by placing as
many conspecifics as possible around the predators [18]. Similarly to previous models studying the
selfish herd [65], a random attack proceeds by selecting a uniformly random location inside the sim-
ulation space, then attacking the prey closest to that location, as shown in Figure 6a.

As seen in Figure 7, swarming behavior is weakly selected for when the predators make uniformly
random attacks on the prey3 (light gray triangles). In particular, we found that prey took upwards of
5,000 generations to evolve cohesive swarming behavior when experiencing random attacks, com-
pared to less than 1,000 generations with the other attack modes. However, even random attacks
selected for more cohesive swarming behavior than no attacks at all, which resulted in completely
dispersive behavior (Figure 7, light gray stars).

3 Video: evolution of prey under random attack treatment: http://dx.doi.org/10.6084/m9.figshare.658857

Figure 6. An illustration of the four artificial predator attack modes: (a) random attacks, (b) random walk attacks,
(c) outside attacks, and (d) high-density area attacks.
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This finding has an important implication, namely that one of the original assumptions of the self-
ish herd hypothesis—that the predator attack mode has no effect on the evolution of swarming
behavior—is not corroborated by this model. Following this discovery, we hypothesized that the
directionality of the predatorsʼ attacks plays a critical role in the evolution of the selfish herd. To test
this hypothesis, we next explore two different predator attack modes, each with its own distinct
directionality of predation.

4.2 Random Walk Attacks
Our next experiment alters the mode of predation from a predator that attacks randomly selected
locations to a predator that follows a random walk within the simulation environment. As shown in
Figure 6b, after each attack made by this predator, it is then moved to a random location within
50 virtual meters of its previous location. This models a predator that persistently feeds on a group
of prey, rather than ambushing.

Figure 7 shows that swarming evolved quickly when prey were attacked by a predator following a
random walk4 (dark gray circles). Notably, even by generation 40,000, prey experiencing random
walk attacks formed significantly more cohesive swarms than prey experiencing random attacks.
Thus, the random walk predator attack mode appears to capture an important aspect of predation
that selects for swarming behavior.

4.3 Outside Attacks
In the last of our initial artificial predation experiments, we simulate a predator that always ap-
proaches from outside the group and attacks the prey nearest to it, as in [63]. This predator attack
mode effectively has the predators consistently attacking prey on the outer edges of the group. As
shown in Figure 6c, we simulate this predator attack mode by first choosing a random angle out-
side the group for the predator to approach from. Once an angle is chosen, we convert the angle
into a location on the edge of the visible simulation space and attack the prey nearest to that
location.

As shown in Figure 7, this form of predation has the most significant influence on the evo-
lution of the selfish herd so far. When attacked by predators that consistently target prey on the

4 Video: evolution of prey under random walk treatment: http://dx.doi.org/10.6084/m9.figshare.658856

Figure 7. Mean swarm density over all replicates over evolutionary time, measured by the mean number of prey within
30 virtual meters of each other over a life span of 1,000 simulation time steps. Prey in groups attacked randomly (light
gray triangles) took much longer to evolve cohesive swarming behavior than prey in groups attacked by a predator that
followed a random walk (dark gray circles) or always from outside the group (black squares). When prey experience no
attacks, they do not evolve swarming behavior at all (light gray stars). Error bars indicate two standard errors over
100 replicates.
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edges of the group, prey quickly evolve cohesive swarming behavior5 (black squares). Taken to-
gether, the results of these artificial predation experiments demonstrate another discovery of this
work: The more predators attack prey in the outer parts of the group, the faster the selfish herd will
evolve.

One translation of this finding is that in order for the selfish herd to evolve, prey must experience
a higher predation rate in the outer parts of the group than in the middle of the group. While this
phenomenon can be explained by each prey having a domain of danger (DOD) influenced by its
relative position in the group [18, 25, 39], an alternative hypothesis is that of density-dependent
predation.

4.4 Density-Dependent Predation
To study the influence of density-dependent predation on the evolution of the selfish herd, we im-
pose a constraint on the predator that reduces its attack efficiency when it attacks areas of the group
with high prey density. This reduced attack efficiency is meant to represent the increased predation
rate that prey on edges of the group are expected to endure [18, 25, 39], and such density depen-
dence can also be thought of as a proxy for group defense. We compute the predatorʼs probability of
capturing a prey during a given attack (Pcapture) with the following equation:

Pcapture ¼
1

Adensity
(2)

where Adensity is the number of prey within 30 virtual meters of the target prey, including the target
prey itself. For example, if the predator attacks a prey with four other prey nearby (Adensity = 5), it
has a 20% chance of successfully capturing the prey. As a consequence of this mechanism, prey
experience density-dependent predation.

Figure 8 demonstrates the effect of density-dependent predation on the previous artificial pre-
dation experiments. Just as before, when predators did not preferentially attack prey in the outer
parts of the group, as in the random attack experiment (light gray triangles), swarming behavior took
much longer to evolve. In contrast, when the predators followed a random walk (dark gray circles) or
always attacked from outside the group (black squares), prey experiencing density-dependent

5 Video: evolution of prey under outside attack treatment: http://dx.doi.org/10.6084/m9.figshare.658854

Figure 8. Mean swarm density over all replicates over evolutionary time, measured by the mean number of prey within
30 virtual meters of each other over a life span of 1,000 simulation time steps. Even when experiencing density-
dependent predation, prey in groups attacked randomly (light gray triangles) took much longer to evolve swarming
behavior than prey in groups attacked by a persistent artificial predator (dark gray circles) or always from outside
the group (black squares). Error bars indicate two standard errors over 100 replicates.
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predation again quickly evolved swarming behavior. The most noticeable effect of density-dependent
predation is on the random attack treatment, where the swarm density measurement at generation
5,000 increased from 11.19 ± 2.58 (mean ± 2 standard errors) to 17.61 ± 2.72, indicating significantly
stronger selection for swarming.

4.5 High-Density Area Attacks
Thus far, we have explored attack modes that select for the evolution of swarming behavior. It is not
surprising that there are also attack modes exhibited by natural predators that must select against
swarming behavior in their prey. For example, blue whales (Balaenoptera musculus) are known to dive
into the densest areas in swarms of krill, consuming hundreds of thousands of krill in the middle of
the swarm in a single attack [15]. We call this mode of attack a high-density area attack. Such an attack
clearly selects against swarming behavior, because it targets the prey that swarm the most. If krill
swarms consistently experience these high-density area attacks, then why do they still evolve swarm-
ing behavior?

It is important to note that krill swarms are also fed on by smaller species, such as crabeater seals
(Lobodon carcinophagus), that consistently attack the krill from outside the swarm [37]. Thus, krill
swarms are experiencing two attack modes simultaneously: high-density area attacks from whales,
and outside attacks from crabeater seals. Thus, it is possible that the selection pressure to swarm
from outside attacks (Figure 7) could outweigh the selection pressure to disperse from high-density
area attacks.

As shown in Figure 6d, we model high-density area attacks as an artificial attack that always tar-
gets the prey at the most dense area of the swarm (i.e., highest Adensity). We note that this attack
mode is the opposite of the density-dependent mechanism explored in the previous section, which
favors predators that target prey in the least dense area of the swarm. Once the target is selected, we
execute the attack by removing the target prey and all other prey within 30 virtual meters of the
target prey. Outside attacks are modeled as described above. To study the effect of high-density area
attacks on the evolution of swarming behavior, we allow the prey to evolve while experiencing both
attack modes simultaneously. We vary the relative handling times of both attacks (Table 4) to ex-
plore whether relative attack frequency could explain why some swarming animals evolved swarming
behavior despite the fact that they experience high-density area attacks.

As shown in Figure 9, prey experiencing only outside attacks quickly evolve cohesive swarming
behavior (light gray triangles). However, when we introduce infrequent high-density area attacks
(dark gray circles), the selection pressure for prey to swarm is reduced. Finally, when we introduce
frequent high-density area attacks (black squares), prey do not evolve swarming behavior at all.
Thus, one possible explanation for animals evolving swarming behavior despite experiencing
high-density area attacks is that the high-density area attacks are too infrequent relative to other
attack types to exert a strong enough selection pressure for prey to disperse.

In summary, the artificial predation experiments provided us with two important findings regard-
ing the evolution of the selfish herd: (1) attacks on prey on the periphery of the herd exert a strong
selection pressure for prey to swarm, and (2) prey in less dense areas, such as those in the outer parts

Table 4. High-density area attack (HDAA) experiment treatments.

HDAA? Outside attack frequency HDAA frequency

No 10 N/A

Infrequent 10 250

Frequent 10 25

Notes. The values listed for each treatment are the handling times for the
corresponding predator attack mode.
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of the herd, must experience a higher predation rate than in areas of dense prey, such as those in the
middle of the herd.

5 Predator-Prey Coevolution

Building upon the artificial predation experiments, we implemented density-dependent predation in
a predator-prey coevolution experiment. Adding predators into the simulation environment enables
us to observe how embodied coevolving predators affect the evolution of the selfish herd.

For this experiment, we coevolve a population of 100 predator genomes with a population of 100
prey genomes, using a GA with settings described in Table 3. Specifically, we evaluate each predator
genome against the entire prey genome population for 2,000 simulation time steps each generation.
During evaluation, we place 4 clonal predator agents inside a 512 × 512 virtual meters simulation
environment with all 100 prey agents and allow the predator agents to attempt attacks on the prey
agents. The prey genome population size, simulation environment area, and total number of GA
generations were decreased in this experiment, due to computational limitations imposed by
predator-prey coevolution. We assigned the prey individual fitness values as in the previous experi-
ments, and evaluated predator fitness according to the following equation:

Wpredator ¼
Xtmax

t¼1

S0 − Atð Þ (3)

where t is the current simulation time step, tmax is the total number of simulation time steps (here,
tmax = 2,000), S0 is the starting group size (here, S0 = 100), and At is the number of prey alive at
update t. Thus, predators are selected to consume more prey faster, and prey are selected to survive
longer than other prey in the group. Once all of the predator and prey genomes are assigned fitness
values, we perform fitness-proportional selection on the populations via a Moran process [36], in-
crement the generation counter, and repeat the evaluation process on the new populations until the
final generation (1,200) is reached.

To evaluate the coevolved predators and prey quantitatively, we obtained the line of descent
(LOD) for every replicate by tracing the ancestors of the fittest prey MN in the final population until
we reached the randomly generated ancestral MN with which the starting population was seeded
(see [33] for an introduction to the concept of a LOD in the context of digital evolution). We again

Figure 9. Mean swarm density over all replicates over evolutionary time, measured by the mean number of prey within
30 virtual meters of each other over a life span of 1,000 simulation time steps. Swarm density was measured from
evolved populations that were not experiencing predation during measurement, eliminating any possible effects of
attack modes that kill more prey faster. Prey in groups subjected only to outside attacks (light gray triangles) evolved
cohesive swarming behavior. Increasing the relative frequency of high-density area attacks from infrequent (dark gray
circles) to frequent (black squares) caused the prey to evolve increasingly dispersive behavior. Error bars indicate two
standard errors over 100 replicates.
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characterized the prey grouping behavior by measuring the swarm density of the entire prey popu-
lation every generation.

Figure 10 depicts the prey behavior measurements for the coevolution experiments with density-
dependent predation6 (black circles; mean swarm density at generation 1,200 ± two standard errors:
26.2 ± 2.3) and without density-dependent predation (light gray triangles; 3.9 ± 0.8). Without
density-dependent predation, the prey evolved purely dispersive behavior as a mechanism to escape
the predators, even after 10,000 generations of evolution (see Figure S1 in the online supplement
http://www.mitpressjournals.org/doi/suppl/10.1162/ARTL_a_00206). In contrast, with density-
dependent predation, the prey quickly evolved cohesive swarming behavior in response to attacks from
the predators, within 400 generations. As expected, the coevolving predators adapted to the prey
swarming behavior in the density-dependent treatments by focusing on prey on the edges of the swarm,
where the density of prey was lowest. As a caveat, density-dependent predation only selects for cohesive
swarming behavior when the predators are faster than the prey (Figure S2 in the online supplement
http://www.mitpressjournals.org/doi/suppl/10.1162/ARTL_a_00206), which corroborates earlier
findings exploring the role of relative predator-prey speeds in the evolution of swarming behavior [66].

Here we see that density-dependent predation provides a sufficient selective advantage for prey to
evolve the selfish herd in response to predation by coevolving predators, despite the fact that swarming
prey experience an increased attack rate from the predators due to this behavior (see [40]; Figures S3 and
S4 in the online supplement http://www.mitpressjournals.org/doi/suppl/10.1162/ARTL_a_00206).
Accordingly, these results uphold Hamiltonʼs hypothesis that grouping behavior could evolve in
animals purely for selfish reasons, without the need for an explanation that involves the benefits to
the whole group [18]. Moreover, the discoveries in this work refine the selfish herd hypothesis by
clarifying the effect that different attack modes have on the evolution of the selfish herd.

6 Evolved Prey Markov Network Analysis

Now that we have evolved emergent swarming behavior in an agent-based model under several
different treatments, we can analyze the resulting Markov networks (MNs) to gain a deeper under-
standing of the individual-based mechanisms underlying swarming behavior. For this analysis, we
chose the most-abundant prey MN from each of the outside attack artificial predation experiment
replicates, resulting in 100 MNs that exhibit swarming behavior.

6 Video: prey from predator-prey coevolution treatment: http://dx.doi.org/10.6084/m9.figshare.658855

Figure 10. Mean swarm density over all replicates over evolutionary time, measured by the mean number of prey within
30 virtual meters of each other over a life span of 2,000 simulation time steps. Prey in groups experiencing density-
dependent predation (black circles) evolved cohesive swarming behavior, whereas prey in groups not experiencing
density-dependent predation (light gray triangles) evolved dispersive behavior. Error bars indicate two standard
errors over 100 replicates.
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First, we analyze the structure of the 100 MNs by looking at the specific retina sensors that the
MNs evolved to connect to. As shown in Figure 11, the prey MNs show a strong bias for connecting
to the prey-specific retina sensors in front of the prey, but not to the sides. Strangely, there appears
to be a strong preference to connect to the front right sensor but not the front left sensor, which is
an artefact of the fact that the front right sensor is the only sensor that activates when other prey are
directly in front of the prey. Additionally, some of the prey MNs show a preference for connecting
to the prey-specific retina sensors behind the prey. From this analysis alone, we can deduce that the
retina sensors that are most conducive to swarming behavior are in front of the prey agent.

To understand how prey make movement decisions based on their sensory inputs, we map every
possible input combination in the preyʼs retina to the corresponding movement decision that the
prey made. This mapping is accomplished by generating all 224 possible input combinations
(000000000000000000000000, 000000000000000000000001, 000000000000000000000010, etc.)
and passing them into the evolved MN as a simulated sensory input. Upon activating the MN,
we receive an output that corresponds to the action that the prey decided to make in response
to the simulated sensory input. Due to the stochastic nature of MNs, the prey agents do not always
make the same movement decision when given the same input. Thus, we take the most likely output
from 1,000 repeats as the representative decision for a given sensory input combination. Effectively,
this process produces a truth table that maps every possible sensory input to its corresponding
movement decision. An example truth table can be seen in Table 5.

Once we have the truth table of all 224 input-output mappings, we pass it to the logic minimi-
zation software espresso [52], which eliminates the inputs that have no effect on the outputs and
provides the minimal representative logic of the truth table. This process results in a truth table that
is reduced enough to make the evolved prey behavior comprehensible by humans. An example out-
put minimal logic table can be seen in Table 6.

Surprisingly, the individual-based mechanisms underlying the emergent swarming behavior are
remarkably simple. Most of the prey MNs evolved to make their movement decisions depend on
only one prey sensor in front of the prey agent. If the prey sensor does not detect another prey
agent, the agent repeatedly turns in one direction until it detects another prey agent in that sensor.
Once the agent detects another prey agent in the sensor, it moves forward until the agent is no

Figure 11. Number of sensory input connections from 100 evolved prey Markov networks mapped onto a prey agent.
Only causal connections from the sensory inputs to the actuators are shown. The arrow indicates the facing of the agent.
The prey Markov networks evolved a strong preference for connecting to prey sensors at the front and a slight
preference for sensors at the rear of the prey agent, but tended not to connect to the sensors on the sides.
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longer visible. This mechanism alone proved sufficient to produce cohesive swarming behavior in
the majority of our experiments. Interestingly, this discovery corroborates the findings in earlier
studies suggesting that complex swarming behavior can emerge from simple movement rules when
applied over a population of locally interacting agents [40, 61, 50].

In a small subset of the evolved prey MNs, we observe MNs that occasionally connect to one of
the prey sensors behind them. These MNs watch for a prey agent to appear in a single prey sensor
behind the agent and turn repeatedly in one direction until a prey agent is no longer visible in that
sensor. Once no prey agent is visible in the back sensor, the MN moves forward or turns, depending
on the state of the frontal sensor. We note that this mechanism only evolved in prey MNs that
already exhibited swarming behavior using one of the frontal sensors, which suggests that this
mechanism does not play a major role in swarming behavior. Instead, this mechanism seems to
cause the prey agent to turn toward the center of the swarm instead of swarming in a circle with
the rest of the prey agents. This mechanism can be thought of as a “selfish herd” mechanism that
attempts to selfishly move the agent toward the center of the swarm to avoid predation.

7 Conclusions and Future Work

The contributions of this work are as follows. First, we demonstrate Hamiltonʼs selfish herd hypoth-
esis in a digital evolutionary model and highlight that it is the attack mode of the predator that

Table 5. An example truth table mapping every possible sensory input combination to the corresponding most likely
movement decision from the evolved prey Markov network.

Table 6. An example minimal logic table resulting from a Markov network.

Input 12 Input 19 Corresponding output

0 0 01

1 0 00

0 1 01

1 1 00

Notes. Input 12 corresponds to a frontal sensor, whereas input 19 corre-
sponds to a back-right sensor, where 1 indicates that the sensor detects a
prey agent and 0 means no prey are in that sensor. The output 01 translates
into the agent turning right, and the output 00 translates into the agent
moving forward. Thus, this example agent moves forward if it sees anything
in its frontal sensor. Otherwise, the agent turns right if it sees another prey
in its back-right sensor or if it sees nothing at all.

Sensory input Corresponding output

000000000000000000000000 00

000000000000000000000001 10

⋮ ⋮

111111111111111111111111 00
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critically determines the evolvability of swarming behavior. Second, we show that density-dependent
predation is sufficient for the selfish herd to evolve as long as the predators cannot consistently
attack prey in the middle of the group. Finally, we show that density-dependent predation is suf-
ficient to evolve grouping behavior in prey as a response to predation by coevolving predators.
Consequently, future work exploring the evolution of the selfish herd in animals should consider
not only the behavior of the prey in the group, but the attack mode of the predators as well. Fol-
lowing these experiments, we analyzed the evolved control algorithms of the swarming prey and
identified simple, biologically plausible agent-based algorithms that produce emergent swarming be-
havior, including a mechanism that produces “selfish” behavior that drives the prey toward the cen-
ter of the swarm.

Of course, the evolved prey behavior shown in the videos accompanying this article may not closely
resemble the anti-predator behavior of many species of group-living prey that we observe in nature. We
provide these videos to demonstrate that grouping-like behavior has indeed evolved—and to confirm
that the swarm density count metric accurately captures when the prey evolve grouping-like behavior—
but we do not seek to claim that we have evolved a particular behavioral phenotype that would
match the grouping behavior we observe in nature. Presumably such grouping behavior has been
selected for by a variety of environmental factors that are not completely captured in this model.
Including those factors would make a fascinating venue of research in the future.

While this work shows one method by which the the evolution of grouping behavior can be
studied, there remain many different hypotheses explaining the evolution of grouping behavior
[30]. Our future work in this area will focus on directly exploring these hypotheses in similar digital
evolutionary models, as detailed in [42].
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