A Bottom-Up Approach to the Evolution of Swarming
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Extended Abstract

One of nature’s most evident examples of self-
organization is the formation of swarms, schools, or flocks
of animals. These groups of individuals coordinate their
movement on an individual basis to form self-organized
collectives. It has been hypothesized that these aggrega-
tions of individuals improve mating success (Diabate et al.,
2011), or may be an adapted defense against predators by
confusing the potential predator (Krause and Ruxton, 2002;
Jeschke and Tollrian, 2007). In the past, these ostensibly
complex swarming behaviors have been explained by the
swarm members adhering to three simple rules: 1) Move
in the same direction as your neighbors; 2) Remain close to
your neighbors; and 3) Avoid collisions with your neighbors
(Reynolds, 1987). We characterize this model as a top-down
approach, where the behavior of the group is explained by
simple rules that were conceived ad hoc and work only when
applied to that particular system. Generally, this approach
requires knowledge about the position and motion vector of
nearby agents and therefore requires complex mathematical
computations to determine the motion of each agent in the
swarm (Oboshi et al., 2002; Chen and Fang, 2006; Hemel-
rijk and Hildenbrandt, 2011).

We find it implausible that biological creatures in swarms
are performing complex computations, such as determin-
ing the relative position and motion vector of nearby con-
specifics, every millisecond to make a decision about where
to move next. We suggest instead that there must be a
simpler, more computationally tractable mechanism (for bi-
ological organisms) that is guiding swarming behavior in
nature. In this abstract we present a bottom-up approach,
where each agent in the swarm is controlled individually by
a Markov network brain (Edlund et al., 2011) as opposed to
genetic programming (Reynolds, 1993) or neural networks
(Kwasnicka et al., 2007). The information provided to each
swarm agent is limited to the information that the agent’s
retina conveys, and every agent’s actions depend only on
a combination of the swarm agent’s current sensory input
(e.g., eyes and ears) and the state of internal nodes in the
swarm agent’s Markov brain (i.e., memory). We suggest
that this is a more realistic model of swarms observed in

nature, since the information provided to the brain is sim-
ple to compute and decisions are made on an individual ba-
sis rather than by a top-down controller. This evolutionary
agent-centered approach enables us to examine the environ-
mental conditions that are conducive for swarming, and how
these conditions influence the evolution of swarming behav-
ior.

In nature, we observe two varieties of swarming behav-
ior: insect swarms which remain at one location during their
breeding period to facilitate mating (Diabate et al., 2011),
and flocks of birds or schools of fish that roam while still
maintaining a coherent swarm. Swarm coherence is be-
lieved to be influenced by the rate of predation (Beauchamp,
2004), thus some swarming behaviors can be understood as
a group effort to deter potential predators (Krause and Rux-
ton, 2002; Jeschke and Tollrian, 2007). Examples of anti-
predator swarming behavior can be observed in nature, such
as in flocks of starlings (Feare, 1984). While predation is
believed to be the key selection pressure causing the differ-
ence between stationary and roaming swarms, there is little
evidence to support this (Beauchamp, 2004). Evolutionary
experiments on natural swarms are inconvenient and time-
consuming, while our bottom-up approach of evolving agent
controllers allows these questions to be addressed in an ex-
perimental model system.

Every swarm agent has its own retina consisting of two
rows of 12 pixels covering a range of 180 ° facing forward.
Each of the 12 pixels covers a 15° segment and indicates
if at least one other swarm agent is within viewing range
within that segment. The second row of pixels functions
identically to the first, but instead indicates the presence of a
predator. Each swarm agent is controlled by its own Markov
network brain, defined by a network of Markov variables
that are connected by stochastic logic gates (as in Edlund
et al. 2011), except that we also allow deterministic along
with stochastic gates. We evolve the Markov network brains
with a standard Genetic Algorithm, where mutations alter
the brain by adding or removing connections between in-
put, output, and memory nodes, or modifying the logic of
one of the brain’s Markov gates. The swarm agents have the



choice every update to travel straight ahead at a speed of 1
unit (normal speed), to travel straight ahead at a speed of 2
units (rushing speed), or to travel a distance of 1 unit and
turn left or right by 8 ° (turning), for a total of 4 possible
actions. In the experiments where we study the effects of
predation on swarm behavior, we include a hand-designed
predator that performs swooping attacks on the swarm. The
predator has a retina covering 40 ° in front of it and targets
agents in its field of view with a probability of é where d
is the agent’s distance from the predator, such that closer
agents are more likely to be targeted for predation. In simu-
lation, the predator moves at a constant speed of 1.5 units
and has a 25% chance of successfully killing any swarm
agent that gets within 3 units of it.

We used three different fitness functions to evolve the
swarms: rewarding coherence, rewarding avoidance of the
predator, and rewarding avoidance of the predator while also
maintaining coherence. The fitness of a swarm being re-
warded for coherence is W, = > _gme< 377, L, where n is
the number of agents alive in the swarm (here, n = 20), tax
is the total number of updates for which the swarm is eval-
vated, and r is the distance of the agent to the center of the
swarm at update ¢. The fitness of a swarm under predation
is computed as W, = S22 ™7 d, where d is defined as
the distance between agent and predator. Dead agents have
a distance of 0 to the predator. If both selection pressures
for coherence and predation are applied, the total fitness is
the sum of both components: W, + +W,,. Each of the three
selection regimes were tested in 100 replicate experiments
with a standard Genetic Algorithm with fitness proportional
selection, 1% per-gene mutation rate, 5% gene duplication,
and 2% deletion rate, and no cross-over.

B

Figure 1: Trajectories of individuals in swarms with only
predation (A), with only rewarding coherence (B), and with
predation and rewarding coherence (C). Swarming agent
paths in black, predator paths in red. All three figures have
the same scale.

Selecting only for predator avoidance results in complete
dissipation of the swarm (Figure 1A), and shows that pre-
dation alone is insufficient for driving swarming behavior
in this system. On the other hand, selecting for coherence
alone results in agents that aggregate but move in small, pre-
dictable circles that do not roam (Figure 1B). When select-
ing for predation avoidance and coherence at the same time,
some swarms show similar behavior than those evolved

without predation, but we also find several swarms that ac-
tively avoid the predator and roam unpredictably (Figure
1C), similar to predated swarms observed in nature. Taken
together, these results demonstrate that realistic swarming
behavior can be evolved in an agent-based model with min-
imal information provided to each agent, suggesting that
more complex models (e.g., models that require processing
of relative positions and motion vectors) are not proper mod-
els of natural swarms. Our results suggest that a bottom-up
approach using Markov brains represents a promising new
platform that can be used to study the evolution of swarm-
ing behaviors in an experimental system.
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