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Liò et al (eds.) Taormina, Italy, Sept. 2–6, MIT Press, 8 pp. (To appear, accepted June 2013)

Evolved digital ecosystems: Dynamic steady state, not optimal fixed point
Randal S. Olson1,2, Masoud Mirmomeni1,2, Tim Brom1,2, Eric Bruger1,3,

Arend Hintze1,3, David B. Knoester1,3, and Christoph Adami1,3

1BEACON Center for the Study of Evolution in Action
2Department of Computer Science & Engineering

3Department of Microbiology & Molecular Genetics
Michigan State University, East Lansing, MI 48824

olsonran@msu.edu

Abstract

Traditional models of ecosystems often assume that the
species composing an unperturbed ecosystem become fixed
so that only the relative abundances of the species change
over time. Such ecosystems are said to have reached an
optimal fixed point. However, recent work has suggested
that neutral evolutionary processes can significantly alter the
species composition of an ecosystem, allowing the ecosys-
tem to exist in a dynamic steady state. Here, we investigate
the stability of ecosystems and the nature of the equilibrium
that forms using the digital evolution platform Avida, track-
ing evolving ecosystems over thousands of generations. We
find that the communities that form are remarkably stable,
and do not experience a significant loss of diversity in the
long run even in experimental treatments where the commu-
nities suffer catastrophic population bottlenecks. When diver-
sity rebounds, ecological communities are reconstituted in a
different form than the one that was destroyed, but this differ-
ence is comparable to the difference the system would have
accumulated if it had been left untouched. Thus, digital eco-
logical communities exist in a dynamic steady state, which
ultimately eliminates the effect of historical disturbances.

Introduction
While the complexity of cellular and organismal biology is
unquestionably stunning, it is often argued that the complex-
ity of ecological communities is even more staggering, as
they consist of co-adapted groups of organisms (Loehler,
2004). However, it is not immediately clear that ecolog-
ical communities are necessarily any more complex. It
is conceivable that general laws might guide the assem-
bly, evolution, and even decay of ecosystems, simply be-
cause the interactions between species, as well as species
with their environments, are simpler than the interactions
between cellular components, or between cells within tis-
sues that compose an organism. Indeed, simple ecosys-
tems are usually modeled by systems of coupled differen-
tial equations that keep track of species and resource abun-
dances (Tilman, 1982). In such models, ecosystems fre-
quently exhibit an ecological steady state (Brock, 1967;
Deakin, 1975; Aoki, 1988; Michaelian, 2005). In this state,
resources flow through the system by being consumed and

replaced. Individuals come and go, but the species composi-
tion of the community is largely intact over large time scales.
If this is so, then from the point of view of the species com-
position, the system has actually reached an optimal fixed
point. In other words, the identity and frequency of a species
is selected for, and does not change in the long run. Such
ecological fixed points have been found experimentally in
small systems (with a handful of species) (Rainey and Trav-
isano, 1998) with evolution limited to only several weeks.
Other experiments have found that communities will display
different patterns of succession upon disruption by bottle-
necks (e.g., in gut microbiota after administration of antibi-
otics), but the community ultimately arrives at a new stable
state (Peterfreund et al., 2012).

It is difficult to ascertain whether any of these observa-
tions carry over to real ecological assemblies because track-
ing ecosystems over geological times is not possible, and
modeling of such communities with standard methods such
as systems of differential equations cannot shed light on this
issue. While the stability of ecological communities can be
studied (May, 1972, 1974; Montoya et al., 2006; Mougi and
Kondoh, 2012), the existence of a dynamic steady state—
where the community is constantly changing over evolution-
ary time scales and the only (approximate) constant is the
number of species—cannot be studied because in the stan-
dard mathematical descriptions the number of possible par-
ticipants is necessarily fixed from the outset. In contrast, in
a dynamic steady-state, new species constantly emerge and
established ones go extinct, while the ecological cohesion of
the community remains intact.

If ecological assemblies are governed predominantly by
neutral evolutionary processes (see, e.g., Chu and Adami
1999; Hubbell 2001; Volkov et al. 2003) rather than niche-
specific adaptation, then dynamically changing fixed points
should be expected. Here, we use digital evolution (Adami,
1998; Ofria and Wilke, 2004; Adami, 2006) as a tool to study
the question of ecosystem evolution and stability from an
“experimental” rather than mathematical point of view (see
also Fortuna et al. 2013). We put the word experimental in
quotes because not everyone is satisfied that what we learn



from digital experiments can carry over to biological assem-
blies of species. However, a significant amount of work
with digital models has shown that they reproduce the ba-
sic phenomena associated with long-term evolution (Lenski
et al., 2003; Wagenaar and Adami, 2004; Adami, 2006).
Digital evolution experiments have even pointed to undis-
covered effects in evolutionary theory (Wilke et al., 2001),
which have subsequently been verified in “biochemicals.”
The adaptive radiation of species in Avida has been stud-
ied previously (Cooper and Ofria, 2002; Chow et al., 2004;
Walker and Ofria, 2013), but only a handful of studies have
investigated the role of chance events on the outcome of evo-
lution in digital systems. Previous studies on fluctuating
environments, such as periods of resource scarcity (Yedid
et al., 2008) and sudden changes in environment resource
compositions (Wagenaar and Adami, 2004), and their ef-
fects on the evolution of specific tasks (i.e., specializing on a
specific resource) have hinted that chance events do indeed
affect the final outcome of evolution. Additionally, press
(gradual) and pulse (instant) extinctions have been shown
to alter the evolutionary path of a population enough to re-
sult in an entirely dissimilar final population (Yedid et al.,
2009). Finally, an analysis of different forms of perturba-
tions on digital ecosystems (such as mass extinctions) has
shown that they affect the phylogenetic structure of the pop-
ulation, but leave little trace elsewhere (Yedid et al., 2012).
These promising results highlight the need for more exper-
iments studying the impact of historical contingency in the
realm of digital evolution.

Here, we investigate the impact of population bottlenecks
on the species composition of populations observed over
the course of digital evolution. First, we show that pop-
ulation bottlenecks—even bottlenecks as small as a single
organism—do not change the mean number of species in an
ecosystem in the long run. Next, we provide evidence that
populations evolve to use the same resources regardless of
whether they experience a bottleneck. Finally, we demon-
strate that while these populations use the same resources,
the species that compose these populations do not remain at
a single optimal fixed point. Rather, we suggest that evolv-
ing digital populations are in a dynamic steady state.

Methods
We use the digital evolution platform Avida (Adami, 1998;
Ofria and Wilke, 2004; Adami, 2006) to investigate the im-
pact of population bottlenecks on populations of evolving
digital organisms over long periods of evolutionary time.
Avida has previously been used to investigate many fun-
damental aspects of evolution, including the evolutionary
origins of complexity (Lenski et al., 2003), genetic orga-
nization (Misevic et al., 2006), adaptive radiation (Chow
et al., 2004), and the division of labor (Goldsby et al.,
2012). In this study, we subject the evolving populations
to bottlenecks of varying size, then compare (1) the num-
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Figure 1: An Avida population containing multiple genomes (left), and the structure of an individual
organism (right).

their virtual CPU. The particular instructions that are executed during an organism’s lifetime comprise its

behavior, or phenotype. The virtual CPU architecture used in this study contains a circular list of three

general-purpose registers {AX, BX, CX}, two general-purpose stacks {GS, LS}, and four special-purpose

heads, which may be thought of as pointers into the organism’s genome, similar to a traditional program

counter and stack pointer.

Each cell in the Avida environment has a facing, which is simply a pointer to another cell. The occupant

of a cell can manipulate that cell’s facing, and the facing in turn a↵ects the operation of various instructions.

For example, the send-msg instruction (described in more detail shortly) enables the caller to send a message

to the occupant of the faced cell. The allowed cell facings are user-configurable, and include a grid (where

cells can face only their immediate neighbors in the spatially-structured environment) and a torus (which, in

addition to the facings allowed by the grid, also enables wrap-around facings at the edges of the environment),

among others. For brevity, we refer to the set of cells that can be faced by a given organism as its neighbors.

Each cell can also be assigned an integer, which is referred to as cell-data; in this study, cell-data is used to

assign each organism an identifier. Finally, digital organisms in Avida are (generally) self-replicating, that

is, their genomes must contain instructions that copy the genome and produce an o↵spring. As the genome is

copied, mutations are introduced according to predefined probabilities. These mutations may be replacements

(substitution of a random instruction), insertions (inserting an additional, random instruction into the
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Figure 1: An Avida population containing multiple genomes
(left) and the internal structure of an individual organism,
called an Avidian (right).

ber of species, (2) the resource usage of the entire popu-
lation, and (3) the resource usage of individual species be-
tween each experimental treatment. With these three mea-
surements, we experimentally determine whether chance
events such as population bottlenecks can significantly al-
ter the evolutionary result of an evolving population. In
the remainder of this section, we describe the main fea-
tures of Avida and the experimental design of the study pre-
sented in this paper. All experiments were conducted with
Avida version 2.12.3, which can be freely downloaded from
http://avida.devosoft.org/.

Avida
Figure 1 shows a typical Avida population and the internal
structure of a digital organism, called an Avidian. These
Avidians metabolize resources and reproduce in a common
environment that is split up into individual cells, where a
single Avidian inhabits each cell. During their lifetime, the
Avidians execute their genome—a circular list of assembly-
like instructions—using their virtual CPU. Executing these
instructions allows the Avidians to perform various tasks in
the environment (e.g., metabolize resources, described in
more detail below), which can be thought of as the Avid-
ian’s phenotype. In this study, each Avidian’s virtual CPU
contains a circular list of three general-purpose registers,
two general-purpose stacks, and four special-purpose heads,
which are pointers into the Avidian’s genome, similar to a
traditional program counter and stack pointer.

Further, each Avidian in this study is self-replicating,
which means that it must contain instructions in its genome
to copy itself and produce an offspring. During the self-
replication process, the genome copy experiences mutations
that change a single instruction to a different random in-
struction. Once the Avidian finishes copying itself, the copy
is placed into a random cell elsewhere in the environment,
i.e., the population is well-mixed. If the chosen cell is al-
ready inhabited by another Avidian, the existing Avidian
is replaced by the new Avidian. By repeatedly following
this metabolization-replication-mutation process, the Avid-



ian population is able to evolve and adapt to the environment
over long time periods.

The Avida environment can be thought of as a “digital
chemostat,” where simulated resources are constantly flow-
ing in and out of the environment at predefined rates. Avid-
ian genomes change over evolutionary time, and adapt to
perform various logic tasks (e.g., AND, OR, and XOR), be-
cause the performance of such tasks is rewarded by “SIP”
(single instruction processing) units. Each SIP unit gives an
Avidian the ability to execute exactly one instruction, and
can be thought of as the digital equivalent of ATPs, which
power biochemical cells. Without SIPs, Avidian genomes
cannot be executed. In order to perform a logic task, the
Avidian program must have the correct sequence of instruc-
tions to input random binary numbers from the environment,
perform a computation on them using a single logic instruc-
tion available to them (NAND), then write the resulting value
back into the environment. At the same time, a resource
associated with that logic task must be present in the envi-
ronment. Because complex logic operations (such as EQU
and XOR) can and must be built from simpler ones, Avidians
must evolve the equivalent of metabolic pathways, only on
a computational level. As an Avidian metabolizes more and
more resources over its lifetime, it is able to execute more in-
structions faster than Avidians that have not metabolized any
resources. Consequently, Avidians are indirectly selected
to adapt to their environment and consume the available re-
sources in the digital chemostat.

In this study, we use the “resource-9” environment, in
which 9 logic tasks (NOT, NAND, AND, ORN, OR, ANDN,
NOR, XOR, and EQU) are rewarded equally for complet-
ing them. The resource associated with each task flows into
the digital chemostat at a fixed rate of 10 units/update. In
general this rate can be varied, but we chose here the level
at which the highest speciation rate was observed in Chow
et al. (2004). Each Avidian can only consume each partic-
ular resource up to 5 times per update. Because resources
are limited, the average amount of resource an Avidian con-
sumes is proportional to the mean abundance of that re-
source across the population. In this limited resource en-
vironment, generalists that consume all 9 resources are se-
lected against because they would consume each and every
resource to the point that the net benefit of generalization is
smaller than if each species specializes on one resource. As
a consequence, mutants that evolve to tap into an unused re-
source have an advantage at first, and over time communities
assemble that divide up the resource space roughly equally
(as each resource is valued the same).

Any settings differing from the Avida defaults are de-
scribed in Table 1. These settings are drawn from Chow
et al. (2004) to replicate their Avida adaptive radiation ex-
periments.

Setting Value
Copy mutation rate 0.005
Insertion/deletion mutation rate 0.0
Min/max genome length 100
Max population 3000

Table 1: Custom Avida settings for this study.

Control and bottleneck experiments
As a control, we first perform a set of Avida experiments
for 106 updates with no population bottlenecks. These ex-
periments provide a base expectation for what the evolved
communities should look like if bottlenecks have no im-
pact on the evolutionary outcome of a population. Next,
we carry out another set of Avida experiments for 106 up-
dates, but with the populations experiencing a single bottle-
neck of varying sizes (1, 5, 10, 20, 100, 200, 300, 400, and
500) at update 5×105. We execute the bottleneck procedure
by removing random Avidians from the population until the
population is reduced to the desired bottleneck size. After
the bottleneck is applied, we allow the population to evolve
without intervention for the remaining 5× 105 updates.

We initialize each Avida experiment with the same default
ancestor, an Avidian with a genome length of 100 that is
only capable of self-replicating. We repeat each experiment
in replicate 100 times with random number seeds of 1-100.
Before every bottleneck and at the end of every Avida run,
we record the entire current population and the population
history for use in a species clustering algorithm (in order to
count species), described below. In addition, we collect the
standard Avida statistics (averages, counts, resource, tasks,
etc.) every 100 updates to perform population resource us-
age comparisons.

Species clustering algorithm
To determine the species present in a population, we employ
the species clustering algorithm from Chow et al. (2004),
which clusters species based on phylogenetic distance. We
calculated the phylogenetic distance between two Avidians
by counting the number of ancestors between them along
the lines of descent leading to their last most recent com-
mon ancestor. First, the algorithm requires the user to cali-
brate a threshold phylogeny depth value (T ) by calculating
the T value necessary for the clustering algorithm to pre-
dict ≤ 25% of runs having 2 species, ≤ 2.26% of having 3
species, and ≤ 0.1% showing 4 species, when the algorithm
is run on a set of 100 or more Avida runs with unlimited re-
sources. It is known that when resources are unlimited, gen-
eralists will evolve, and the community will have exactly
one species (Cooper and Ofria, 2002; Chow et al., 2004).
With this calibrated T (here, T = 200,142), the clustering
algorithm then forms clusters of species in the reconstructed
phylogeny by grouping genotypes less than T away from the
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Figure 2: Average number of species for differing experi-
ments based on the phylogenetic depth clustering algorithm.
Each experimental treatment is listed along the bottom. The
control experiment is labeled “C” and the bottleneck experi-
ments are labeled with the size of the bottleneck. Error bars
are two standard errors over 100 replicates.

computed genotype “species basins.” After the clustering al-
gorithm identifies all of the species clusters, it outputs (1)
the number of species and (2) the representative genotype of
each species basin. This output allows us to compare species
counts and species resource utilization between experimen-
tal treatments with and without population bottlenecks to de-
termine whether the bottleneck had a significant effect on
the evolutionary outcome of the population. The number
of species predicted by this algorithm compares well with
the “ecological” number of species, which is obtained by
turning off mutation rate and counting the number of geno-
types that remain in equilibrium after a long time (Cooper
and Ofria, 2002; Chow et al., 2004).

Difference in resource usage
After identifying the species for a given time point, we use
Avida’s Analyze mode to determine each of the species’ re-
source utilization vector ~φ = (φ1, φ2, ..., φ9), where φr is
the average number of times the species has obtained re-
source r (associated with task r) during its lifetime. We then
normalize this vector so that the φr of the resource that is
used most by that species is set to 1.0.

In order to calculate the difference in resource usage be-
tween two species i and j, consider two resource utiliza-
tion vectors ~φi and ~φj . We define the difference in uti-
lization between those species as the Euclidean distance
dij = |~φi − ~φj |. What is the difference between two com-
munities? If community Ca is defined by the assembly
Ca = (~φ1, ..., ~φn) and community b by Cb = (~φ1, ..., ~φm),
we first pad the assembly vector C of the community with
the smaller number of species with null vectors, and define

the assembly difference matrix as

D
(ab)
ij = |~φ(a)i − ~φ

(b)
j | , (i, j = 1, ..., n) . (1)

Because this distance depends on the ordering of species in
the community vector, we define the community distance D
as the minimum of the trace of the distance matrix, mini-
mized over all permutations of the species order. Thus, let
P be a permutation matrix (of the set of n!). Then

D = min
P

Tr(PD(ab)) . (2)

In other words, to find the difference between two com-
munities, we compute all pairwise distances between the
species of both populations. If both communities are identi-
cal, the sum of the diagonal of this pairwise distance ma-
trix must be 0.0, but only if we have correctly matched
all species. If the populations have a different number of
species, we supplement the population with fewer species
with a species using no resources. To perform the match, we
test all permutations of the distance matrix (i.e., with dif-
ferent species orders) to minimize the trace (the sum of the
diagonal elements) of the matrix. This measure provides the
minimum distance between two communities in species re-
source usage space.

Results
Species counts
Figure 2 shows the species counts based on phylogenetic
depth for the control experiment in comparison to the vary-
ing bottleneck experiments. On average, the control re-
sulted in 3.55±0.22 species (mean ± two standard errors)
and none of the experiments resulted in a significantly dif-
ferent species count. It is interesting to note that even exper-
iments with a bottleneck size of only one organism did not
have their ultimate species counts significantly impacted.

Comparison of task distributions
Next, we compare the average population resource usage

~R =
1

Ntot
(N1, ..., N9) , (3)

where Nr is the number of times resource r has been con-
sumed by the population per update, and Ntot =

∑9
i=1Ni,

for the final populations of each experiment. Differences in
~R allow us to examine if there is a significant difference in
overall resource usage before and after bottlenecks of differ-
ent sizes.

Figure 3 shows the ~R of the final control and bottleneck
populations. Qualitatively, there appears to be little dif-
ference in the resource usage between the different exper-
iments, indicating that the populations recovered from the
bottleneck and eventually reconstituted an ecosystem that
consumes resources at a rate comparable to an untouched
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Figure 3: Average fraction of tasks performed per updateRr

(defined in Equation 3) by the Avidians in the final popula-
tion of different experiments over 100 replicates. The exper-
iments are listed along the left side. The control population
at update 106 is labeled “C” and the experimental popula-
tions are labeled with the size of the bottleneck. Each task
along the bottom is a logical function in Avida which can
be considered a resource that a digital organism can adapt to
metabolize.

ecosystem. To confirm our qualitative analysis, we compute
the Pearson correlation coefficient between the ~R of the bot-
tleneck populations and the control populations. The small-
est correlation is between the control populations and the 5-
organism bottleneck experimental populations (ρ = 0.98),
which still indicates a strong correlation in the resource us-
age vectors. Thus, even the most severely bottlenecked pop-
ulations reconstituted the same resource usage after a long
period of evolutionary time, even though the species com-
position could be very different. Similar overall resource us-
age by different communities could be an indication of func-
tional redundancy (Tilman et al., 1997; Wohl et al., 2004).

Comparison of individual species resource usage
The populations evolve to use the same resources over all
experimental conditions, but the species within a population
(the community assembly) may look very different from one
experiment to another. To establish a baseline, we look at the
differences in species resource usage among the experimen-
tal populations after 5 × 105 updates. Shown in Figure 4,
we compute the mean difference in species resource usage
between communities evolved in 100 independent popula-
tions (excluding a direct comparison of a population with
itself) and find D = 2.26 ± 0.025. With this measure, we
characterize the differences that arise in communities simply
because each population takes its own historical path.

Next, we compare the communities between the reference
populations at 5× 105 updates to two sets of populations at
update 106: One set of control populations that never experi-
enced a population bottleneck, and another set of experimen-
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Figure 4: Overview of the population’s species resource
usage differences. The values shown are the mean differ-
ence D (± two standard errors) between and within popu-
lations. All populations from update 0 (labeled “origin”) to
update 5 × 105 had the same evolutionary history. At up-
date 5× 105, the experimental populations (labeled “bottle-
neck”) experienced a single bottleneck reducing the popu-
lation to one organism, whereas the control populations (la-
beled “control”) were untouched. After the treatment at up-
date 5 × 105, the populations were then allowed to evolve
for another 5 × 105 updates. The resulting populations are
labeled “update 1,000,000.”

tal populations that experienced a severe population bottle-
neck (a single organism) at update 5 × 105. We found that
there was no significant difference in inter-population differ-
ences between the reference populations at update 5 × 105

(mean ± two standard errors, D = 2.66 ± 0.025) and
the control population at update 106 (D = 2.61 ± 0.025).
In contrast, the inter-population differences within the ex-
perimental populations were significantly reduced (D =
1.94± 0.029).

While populations evolve to use the same resources re-
gardless of treatment (Figure 3), it is not clear whether or not
the populations are at a dynamic steady state or an optimal
fixed point. If the populations do not change over evolution-
ary time (i.e., the populations are at an optimal fixed point),
we would expect the difference in species resource usage
between the baseline populations at update 5 × 105 and the
control populations at update 106 to be minimal, if not 0.0.
Instead, when comparing each control population at update
106 with its corresponding reference population at update
5 × 105, we observe that the populations are composed of
significantly different species (Figure 4, D = 2.07 ± 0.24).
Additionally, we find a significant difference when perform-
ing the same comparisons between the reference populations
and experimental populations that experienced a population
bottleneck (D = 1.93 ± 0.27). This is the same difference
that we find when we again perform the same comparison
between the control populations and experimental popula-
tions at update 106 (D = 2.14 ± 0.27D). Thus, although
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Figure 5: Mean difference D in species resource usage be-
tween the populations at update 5 × 105 and the popula-
tions at update 106. Each experimental treatment is listed
along the bottom. The control populations are labeled “C,”
whereas the bottleneck populations are labeled with the size
of the bottleneck. Error bars are two standard errors over
100 replicates.

the experimental populations are significantly different from
the reference populations, they are just as different as they
would have become if they never experienced a population
bottleneck. Together, these data highlight our two major
findings:

(1) population bottlenecks do not have a significant effect
on the species composition of a population over long evolu-
tionary periods, and

(2) over sufficiently long evolutionary periods, popula-
tions are in a dynamic steady state rather than at an optimal
fixed point.

In a catastrophic population bottleneck, only one organ-
ism survives the bottleneck, which effectively destroys the
ecosystem and reduces the number of species to 1. By
subjecting the populations to such a severe population bot-
tleneck, the population is forced to re-evolve every other
species, which may explain the results above. What if the
populations experience a less severe population bottleneck?
A less severe population bottleneck would preserve most, if
not all, of the ecosystem and its species. In Figure 5, we
further demonstrate that regardless of the population bot-
tleneck size, populations do not maintain an optimal fixed
point. Additionally, we show in Figure 6 that regardless of
the population bottleneck size, all experimental populations
at update 106 have the same difference from the control pop-
ulation at update 106. Thus population bottleneck size does
not affect the species composition of populations over suffi-
ciently long evolutionary periods.
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Figure 6: Mean difference D in species resource usage be-
tween the control populations at update 106 and the bottle-
neck populations at update 106. Each experimental treat-
ment is listed along the bottom. The bottleneck populations
are labeled with the size of the bottleneck. Error bars are
two standard errors over 100 replicates.

Discussion
Competition over resources shapes ecological communities,
and creates assemblies that are highly adapted to their en-
vironment. Species (or ecotypes in microbial communi-
ties) can only be maintained if they are adapted to differ-
ent niches, which means that they must each “make a liv-
ing” differently. In our model system, this means that each
species must specialize to predominantly use a different re-
source. Here we have asked: Once an ecosystem is estab-
lished, will it maintain its species composition over long
periods of time (i.e., an optimal fixed point), or do species
continue to change over evolutionary time (i.e., a dynamic
steady-state)?

We find that populations evolve the same number of
species regardless of the bottleneck size, and that the num-
ber of species in a population is much smaller than the
number of available resources (on average around 4, com-
pared to the theoretical maximum of 9). Each population
has approximately the same distribution of consumed re-
sources, again regardless of experimental conditions. An-
alyzing populations in detail, we find that species partition
the resources (i.e., niches) in many different ways, and con-
tinue to do so during evolution. While techically speaking,
no new species form after the establishment of a community
(as opposed to what is observed in perfectly neutral models
of species diversity, e.g. de Aguiar et al. (2009), where the
rate of speciation is constant over time), we notice that the
species themselves continue to change, and the community
with them. Applying bottlenecks of different sizes, includ-
ing catastrophic events where only a single organism sur-
vives, has no effect on this phenomenon. Ecosystems re-



form after the catastrophic event (either in a form similar to
the community before the event, or differently), but continue
to change thereafter. Thus, evolving ecosystems resemble a
dynamic steady-state rather than an optimal fixed point.

These results have significant implications for experi-
mentalists who work with biological systems that require
regular bottlenecks on the population to conduct the ex-
periment, e.g., the E. coli long term evolution experiment
(LTEE) (Lenski, 2011). This study demonstrates that these
regular population bottlenecks do not affect the long-term
evolution of populations, nor do they significantly affect the
species composition of the population in the long-term. We
note that at least one population of the LTEE seems to have
developed a community of coexisting types (Blount et al.,
2012).

Prior biological experiments suggested that population
bottlenecks imposed on ecological communities leads to
several waves of succession followed by the establishment
of a new stable state with a similar degree of diversity com-
pared to the initial stable state (Peterfreund et al., 2012).
These experiments, however, were all conducted on a very
short time scale. We evolved our populations for 25,000
generations between measurements (assessment of species
composition), which allows for much more neutral evolu-
tion. We note that in these experiments, each of the 9 pos-
sible resources were worth the same to an Avidian, i.e.,
switching from one resource to another would not be ben-
eficial (nor detrimental) as long as the concentration of that
resource in the community is the same. It is possible that this
setting creates more neutrality in the landscape compared to
a setting where each resource has a distinct metabolic pay-
off, and it would be interesting to study a fitness landscape
with different metabolic payoffs in detail in future work.

It might also seem surprising that we observe drift in the
community even though the number of species in the com-
munity is quite low (between 2-6, on average). Most of
the interesting biological communities consist of many more
species: It has even been suggested that soil microbial com-
munities could harbor up to 106 species (Gans et al., 2005).
It would be interesting to test community drift and turnover
when there are an order of magnitude more niches to be oc-
cupied, which can be done in Avida by placing digital or-
ganisms in the “logic-77” environment, giving 77 distinct
niches. We have also not addressed the effect of trophic lev-
els on ecosystem stability and turnover. Recent modeling
efforts (Mougi and Kondoh, 2012) suggest that the variety
of trophic interactions stabilize these communities, which
could in principle lead to a reduction in community drift.

Conclusions
We found that populations of digital organisms exposed to
an environment with limited resources rapidly radiate to take
advantage of the available niches, but that the rate of specia-
tion stops long before all niches are occupied. Severe bottle-

necks can destroy these communities, but stable communi-
ties rapidly re-evolve, albeit with a different species compo-
sition. We have shown that the species composition of these
communities is not affected by bottlenecks of any size in the
long run, simply because these communities are in a state
of constant flux anyway: The communities form dynamic
steady-states, where the species are constantly changing the
resources they specialize on. While the evolved communi-
ties are resistant to invasion (Chow et al., 2004), they are
not resistant to change. Because the available niches can
be occupied by a multitude of functionally similar or even
identical species (and perhaps because each resource in the
logic-9 environment is worth the same), the communities
themselves are subject to a considerable amount of drift,
even when the community as a whole remains cohesive. The
communities are resistant to invasion due to the particular
trade-offs each species has incurred in its adaptive special-
ization. In this respect, Avidian communities behave much
as predicted by Tilman’s “stochastic niche theory” (Tilman,
2004): They are dominated by both adaptive forces (gen-
erating the trade-offs) as well as neutral forces (stochastic
assembly and drift). Thus, we suggest that further experi-
mentation with Avidian ecosystems can generate significant
progress in our understanding of ecological theory and ex-
periments.
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