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ABSTRACT
Animal grouping behaviors have been widely studied due to
their implications for understanding social intelligence, col-
lective cognition, and potential applications in engineering,
artificial intelligence, and robotics. An important biological
aspect of these studies is discerning which selection pres-
sures favor the evolution of grouping behavior. The selfish
herd hypothesis states that concentrated groups arise be-
cause prey selfishly attempt to place their conspecifics be-
tween themselves and the predator, thus causing an endless
cycle of movement toward the center of the group. Using an
evolutionary model of a predator-prey system, we show that
the predator attack mode plays a critical role in the evolu-
tion of the selfish herd. Following this discovery, we show
that density-dependent predation provides an abstraction of
Hamilton’s original formulation of “domains of danger.” Fi-
nally, we verify that density-dependent predation provides
a sufficient selective advantage for prey to evolve the self-
ish herd in response to predation by coevolving predators.
Thus, our work verifies Hamilton’s selfish herd hypothesis
in a digital evolutionary model, refines the assumptions of
the selfish herd hypothesis, and generalizes the domain of
danger concept to density-dependent predation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—coherence and coordination, multiagent systems;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
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1. INTRODUCTION
Over the past century, biologists have devoted consider-

able effort into studying animal grouping behaviors due to
their important implications for social intelligence, collective
cognition, and potential applications in engineering, artifi-
cial intelligence, and robotics [1]. Indeed, grouping behav-
iors are pervasive across all forms of life. For example, Eu-
ropean starlings (Sturnus vulgaris) are known to form mur-
murations of millions of birds which perform awe-inspiring
displays of coordinated movement [2]. Western honeybees
(Apis mellifera) communicate the location of food and nest
sites to other bees in their group via a complex dance lan-
guage [3]. Even relatively simple bacteria exhibit grouping
behavior, such as Escherichia coli forming biofilms which
allow their group to survive in hostile environments [4].

Swarming is one example of grouping behavior, where an-
imals coordinate their movement with conspecifics to main-
tain a cohesive group while on the move. Although swarm-
like groups could arise by chance, e.g., Little Egrets (Egretta
garzetta) pursuing a common resource in water pools [5],
most of the time swarms are maintained via behavioral mech-
anisms that ensure group cohesion [6]. As with many traits,
swarming behavior entails a variety of fitness costs, such
as increased risk of predation and the requisite sharing of
resources with the group [7]. With this fact in mind, signifi-
cant effort has been dedicated to understanding the compen-
sating benefits that grouping behavior provides [8]. Many
such benefits of grouping behavior have been proposed, for
example, swarming may improve mating success [9], increase
foraging efficiency [10], or enable the group to solve prob-
lems that would be impossible to solve individually [1]. Fur-
thermore, swarming behaviors are hypothesized to protect
group members from predators in several ways. For exam-
ple, swarming can improve group vigilance [11], reduce the
chance of being encountered by predators [11], dilute an indi-
vidual’s risk of being attacked [12], enable an active defense
against predators [13], or reduce predator attack efficiency
by confusing the predator [14].

Unfortunately, many swarming animals take months or
even years to produce offspring. These long generation times
make it extremely difficult to experimentally determine which
of the aforementioned benefits are sufficient to select for
swarming behavior as an evolutionary response, and make
it even more difficult to study the properties of those behav-
iors as they evolve [14, 15]. In this paper, we use a digital
model of predator-prey coevolution to explore Hamilton’s
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selfish herd hypothesis [12]. Briefly, the selfish herd hypoth-
esis states that prey in groups under attack from a predator
will seek to place other prey in between themselves and the
predator, thus maximizing their chance of survival. As a
consequence of this selfish behavior, individuals continually
move toward a central point in the group, which gives rise
to the appearance of a cohesive swarm.

In our model, both predators and prey have the ability to
detect and interact with other agents in the environment.
We evolve the agents with a genetic algorithm by prefer-
entially selecting predators and prey based on how effec-
tive they are at consuming prey and surviving, respectively.
Forming a selfish herd is a possible solution for the prey
to survive longer, but is not selected for directly. In this
study, we first test whether a selfish herd evolves within
a two-dimensional virtual environment with different forms
of simulated predation. Doing so enables us to experimen-
tally control the effects of specific modes of predation on
the evolution of the selfish herd. We found that if preda-
tors are able to consistently attack the center of the group
of prey, the selfish herd will not evolve. In subsequent ex-
periments, we discovered that density-dependent predation
can provide a generalization of Hamilton’s original formu-
lation of “domains of danger.” Following these findings, we
coevolve groups of predators and prey in a similar virtual en-
vironment to determine if coevolving predators impact the
likelihood of the selfish herd to evolve. Finally, this study
demonstrates that density-dependent predation provides a
sufficient selective advantage for prey to evolve the selfish
herd in response to predation by coevolving predators.

2. RELATED WORK
Hamilton’s original formulation of the selfish herd hypoth-

esis introduced the concept of “domains of danger” (DODs),
which served as a method to visualize the likelihood of a prey
inside a group to be attacked by a predator [12]. Prey on
the edges of the group would have larger DODs than prey on
the inside of the group; thus, prey on the edges of the group
would be attacked more frequently. Furthermore, Hamilton
proposed that prey on the edges of the group would seek to
reduce their DOD by moving inside the group, thus placing
other group members between themselves and the predator.
Further work has expanded on this hypothesis by adding a
limited predator attack range [16], investigating the effects
of prey vigilance [17], considering the initial spatial posi-
tioning of prey when the group is attacked [18], and even
confirming Hamilton’s predictions in biological systems [19].

Additional studies have focused on discovering the move-
ment rules that prey in a selfish herd follow to minimize their
DOD [20]. This line of work began by demonstrating that
the simple movement rules proposed by Hamilton do indeed
reduce predation for prey inside the group [21], then opened
some parameters of the movement rules to evolution in an
attempt to discover a more biologically plausible set of move-
ment rules [22]. Finally, some work has gone into studying
the evolution of predator behavior in response to prey den-
sity [23], the coevolution of predator and prey behavior in
the presence of the predator confusion effect [24], and elab-
orating upon the interaction between ecology and the evo-
lution of grouping behavior [25, 26]. This paper builds on
this work by studying the effects of coevolving predators and
predator attack mode, i.e., how the predator selects a prey
in the group to attack, on the evolution of the selfish herd.

Figure 1: A screen capture of the simulation envi-
ronment in which the agents interact. Black dots are
prey agents, the black triangle is a predator agent,
and the lines around the predator agent indicate its
field of view. Agents wrap around the edges of the
toroidal simulation environment.

More broadly, in the past decade researchers have focused
on the application of locally-interacting swarming agents to
optimization problems, called Particle Swarm Optimization
(PSO) [27]. PSO applications range from feature selection
for classifiers [28], to video processing [29], to open vehicle
routing [30]. A related technique within PSO seeks to com-
bine PSO with coevolving “predator” and “prey” solutions
to avoid local minima [31]. Researchers have even sought
to harness the collective problem solving power of swarming
agents to design robust autonomous robotic swarms [32].
Thus, elaborations on the foundations of animal grouping
behavior has the potential to improve our ability to solve
engineering problems.

3. METHODS
To study the evolution of the selfish herd, we developed an

agent-based simulation in which agents interact in a continu-
ous, toroidal virtual environment (736×736 virtual meters),
shown in Figure 1. At the beginning of each simulation, we
place 250 agents in the environment at random locations.
These agents are treated as “virtual prey.” Each agent is
controlled by a Markov Network (MN), which is a proba-
bilistic controller that makes movement decisions based on
a combination of sensory input (i.e., vision) and internal
states (i.e., memory) [33]. We evolve the agent MNs with a
genetic algorithm (GA) [34] under varying selection regimes,
which will be described in more detail below.

During each simulation time step, all agents read infor-
mation from their sensors and take action (i.e., move) based
on their effectors. In our first set of treatments, we simu-
late an ideal, disembodied predator by periodically remov-
ing prey agents from the environment and marking them as
consumed, e.g., when they are on the outermost edges of the
group. Subsequent treatments introduce an embodied, coe-
volving predator agent which is controlled by its own MN.
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Figure 2: An illustration of the agents in the model.
Light grey triangles are prey agents and the dark
grey triangles are predator agents. The agents have
a 360◦ limited-distance retina (200 virtual meters) to
observe their surroundings and detect the presence
of other agents. The current heading of the agent
is indicated by a bold arrow. Each agent has its
own Markov Network, which decides where to move
next based off of a combination of sensory input and
memory. The left and right actuators (labeled “L”
and “R”) enable the agents to move forward, left,
and right in discrete steps.

The source code1 and data2 for these experiments are avail-
able online. In the remainder of this section, we describe the
sensory-motor architecture of individual agents and present
details related to the function and encoding of MNs.

3.1 Agent Model
Figure 2 depicts the sensory-motor architecture of the

agents used for this study. A prey agent can sense preda-
tors and conspecifics with a limited-distance (200 virtual me-
ters), pixelated retina covering its entire 360◦ visual field. Its
retina is split into 24 even slices, each covering an arc of 15◦,
which is an abstraction of the broad, coarse visual systems
often observed in grouping prey [35]. Regardless of the num-
ber of agents present in a single retina slice, the prey agent
only knows whether a conspecific or predator resides within
that slice, but not how many. For example, in Figure 2, the
fourth retina slice to the right of the agent’s heading (la-
beled “A”) has both the predator and prey sensors activated
because there are two predator agents and a prey agent in-
side that slice. Once provided with its sensory information,
the prey agent chooses one of four discrete actions, as shown
in Table 1. Prey agents turn in 8◦ increments and move 1
virtual meter each time step.

1Code: https://github.com/adamilab/eos-selfish-herd
2Data: http://dx.doi.org/10.6084/m9.figshare.663680

Table 1: Possible actions encoded by the agent’s
output. Each output pair encodes a discrete action
taken by the agent. The agent’s MN changes the
values stored in output states L and R to indicate the
action it has decided to take in the next simulation
time step.

Output L Output R Encoded Action
0 0 Move forward
0 1 Turn right
1 0 Turn left
1 1 Stay still

In our coevolution experiments, the predator agents detect
nearby prey agents and conspecifics using a limited-distance
(200 virtual meters), pixelated retina covering its frontal
180◦ that works just like the prey agent’s retina (Figure 2).
Similar to the prey agents, predators make decisions about
how to move next using their MN, as shown in Table 1, but
move 3× faster than the prey agents and turn correspond-
ingly slower (6◦ per simulation time step) due to their higher
speed. Finally, if a predator agent moves within 5 virtual
meters of a prey agent that is visible to it, the predator agent
makes an attack attempt on the prey agent. If the attack
attempt is successful, we remove the prey agent from the
simulation and mark it as consumed.

3.2 Markov Networks
Each agent is controlled by its own Markov Network (MN),

which is a probabilistic controller that makes decisions about
how the agent interacts with the environment and other
agents within that environment. Since a MN is responsi-
ble for the control decisions of its agent, it can be thought
of as an artificial brain for the agent it controls. Similar to
an Artificial Neural Network (ANN), a MN receives input
via sensors (e.g., visual retina), performs a computation on
inputs and any hidden states (i.e., memory), then places the
result of the computation into hidden or output states (e.g.,
actuators). In contrast to many ANNs, MN states are bi-
nary and only assume a value of 0 or 1. When we evolve
MNs with a GA, mutations affect (1) which states the MN
pays attention to as input, (2) which states the MN outputs
the result of its computation to, and (3) the internal logic
that converts the input into the corresponding output.

How Markov Networks Function
As seen in Figure 2, when we embed an agent into the sim-
ulation environment, we provide it sensorial inputs from the
retina into its MN every simulation step (labeled “retina”
and “Markov Network”, respectively). Once we provide a
MN with its inputs, we activate it and allow it to store the
resulting computation into its hidden and output states for
the next time step. MNs are networks of Markov Gates
(MGs), which perform the computation for the MN. In Fig-
ure 3, we see two example MGs, labeled “Gate 1” and “Gate
2.” At time t, Gate 1 receives sensory input from states 0
and 2 and retrieves state information (i.e., memory) from
state 4. At time t + 1, Gate 1 then stores its output in hid-
den state 4 and output state 6. Similarly, at time t Gate 2
receives sensory input from state 2 and retrieves state infor-
mation in state 6, then places its output into states 6 and 7
at time step t + 1. When MGs place their output into the

https://github.com/adamilab/eos-selfish-herd
http://dx.doi.org/10.6084/m9.figshare.663680
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Figure 3: An example Markov Network (MN) with
four input states (white circles labeled 0-3), two hid-
den states (light grey circles labeled 4 and 5), two
output states (dark grey circles labeled 6 and 7),
and two Markov Gates (MGs, white squares labeled
“Gate 1” and “Gate 2”). The MN receives input into
the input states at time step t, then performs a com-
putation with its MGs upon activation. Together,
these MGs use information about the environment,
information from memory, and information about
the MN’s previous action to decide where to move
next.

same state, the outputs are combined into a single output
using the OR logic function. Thus, the MN uses informa-
tion about the environment and memory to decide where to
move in the next time step t + 1.

In a MN, states are updated by MGs, which function sim-
ilarly to classic logic gates, e.g., AND & OR. A classic logic
gate, such as XOR, reads two binary states as input and
outputs a single binary value according to the XOR logic.
Similarly, MGs output binary values based on their input,
but do so with a probabilistic logic table. Table 2 provides an
example MG that could be used to control a prey agent that
avoids nearby predator agents. For example, if a predator
is to the right of the prey’s heading (i.e., PL = 0 and PR =
1, corresponding to the second row of this table), then the
outputs are move forward (MF) with a 20% chance, turn
right (TR) with a 5% chance, turn left (TL) with a 65%
chance, and stay still (SS) with a 10% chance. Thus, due to
this probabilistic input-output mapping, the agent MNs are
capable of producing stochastic agent behavior.

Table 2: An example MG that could be used to
control a prey agent which avoids nearby predator
agents. “PL” and “PR” correspond to the predator
sensors just to the left and right of the agent’s head-
ing, respectively, as shown in Figure 2. The columns
labeled P(X) indicate the probability of the MG de-
ciding on action X given the corresponding input
pair. MF = Move Forward; TR = Turn Right; TL
= Turn Left; SS = Stay Still.

PL PR P(MF) P(TR) P(TL) P(SS)
0 0 0.7 0.05 0.05 0.2
0 1 0.2 0.05 0.65 0.1
1 0 0.2 0.65 0.05 0.1
1 1 0.05 0.8 0.1 0.05

The MGs in this model can receive input from a maximum
of four states, and write into a maximum of four states, with
a minimum of one input and one output state for each MG.
Any state (input, output, or hidden) in the MN can be used
as an input or output for a MG. MNs can be composed of any
number of MGs, and the MGs are what define the internal
logic of the MN. Thus, to evolve a MN, mutations change
the connections between states and MGs, and modify the
probabilistic logic tables that describe each MG. Mutations
act directly on the genetic encoding of the MN, which is
described in the next section.

Genetic Encoding of Markov Networks
We use a circular string of bytes as a genome, which con-
tains all the information necessary to describe a MN. The
genome is composed of genes, and each gene encodes a sin-
gle MG. Therefore, a gene contains the information about
which states the MG reads input from, which states the MG
writes its output to, and the probability table defining the
logic of the MG. The start of a gene is indicated by a start
codon, which is represented by the sequence (42, 213) in the
genome.

Figure 4 depicts an example genome. After the start
codon, the next two bytes describe the number of inputs
(Nin) and outputs (Nout) used in this MG, where each N =⌊

byte
255/Nmax

⌋
. Here, Nmax = 4. The following Nmax bytes

specify which states the MG reads from by mapping to a
state ID number with the equation:

⌊
byte×#states

255

⌉
− 0.5,

where # states is the total number of states in the MN and
b•e denotes the nearest integer. Similarly, the next Nmax

bytes encode which states the MG writes to with the same
equation as Nin. If too many inputs or outputs are specified,
the remaining sites in that section of the gene are ignored,
designated by the # signs. The remaining 2Nin+Nout bytes
of the gene define the probabilities in the logic table.

The maximum number of states allowed and which states
are used as inputs and outputs are specified as constants by
the user. Combined with these constants, the genome de-
scribed above unambiguously defines a MN. All evolutionary
changes such as point mutations, duplications, deletions, or
crossover are performed on the byte string genome, with
probabilities as shown in Table 3.

21342 207 100 8940 130 4 1 ....... 255

21342 134 97

Gene 1

Start N in outN Input State IDs Output State IDs Probabilities

Gene 2

11346# 140 # #

7120 238 # 248 ....... 1671017# 254 # #

Figure 4: Example circular byte strings encoding
the two Markov Gates (MGs) in Figure 3, denoted
Gene 1 and Gene 2. The sequence (42, 213) repre-
sents the beginning of a new MG (red blocks). The
next two bytes encode the number of input and out-
put states used by the MG (green blocks), and the
following eight bytes encode which states are used
as input (blue blocks) and output (yellow blocks).
The remaining bytes in the string encode the prob-
abilities of the MG’s logic table (cyan blocks).
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Table 3: Genetic algorithm and experiment settings.

GA Parameter Value
Selection Fitness proportionate
Population size 250
Per-gene mutation rate 1%
Gene duplication rate 5%
Gene deletion rate 2%
Crossover None
Generations 1,200
Replicates 100

4. ARTIFICIAL SELECTION
In our first set of experiments, we observe the evolution

of prey behavior in response to various forms of artificial
selection. This enables us to experimentally control the ef-
fects of certain modes of predation on the evolution of the
selfish herd. We evolve the prey genomes with a GA with
the settings described in Table 3. We begin the evolution-
ary process by seeding the prey genome pool with a set of
randomly-generated ancestor MNs. Following this, we eval-
uate the relative fitness of each prey genome by competing
the genomes in a simulation environment for 1,000 simula-
tion time steps. This evaluation period is akin to the agents’
lifespan, hence each agent has a potential lifespan of 1,000
time steps. We assign each prey an individual fitness ac-
cording to the following equation:

Wprey = T

where T is the number of time steps the individual prey
survived in the simulation environment. Thus, individual
prey are rewarded for surviving longer than other group
members. Once all of the prey genomes are assigned fit-
ness values, we perform fitness-proportionate selection on
the population via a Moran process [36], increment the gen-
eration counter, and repeat the evaluation process on the
new population until the final generation (1,200) is reached.

In all cases, we give the prey an initial 250 simulation time
steps without predation to move around, so that prey start-
ing on the outside of the group have the chance to move
toward the center of the group if they wish to. Once the
initial 250 simulation time steps elapse, we apply artificial
selection every 4 simulation time steps to simulate an ideal
predator attacking the group. We limit the artificial preda-
tor attack rate to one attack attempt every 4 simulation
time steps, which is called the handling time. The handling
time represents the time it takes the simulated predator to
consume and digest a prey after successful prey capture, or
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Figure 5: An illustration of the three artificial preda-
tor attack modes. A) Random attacks, B) Random
walk attacks, C) Outside attacks.
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Figure 6: Mean swarm density over all replicates
over evolutionary time, measured by the mean num-
ber of prey within 30 virtual meters of each other
over a lifespan of 1,000 simulation time steps. Prey
in groups attacked randomly (light grey triangles
with a full line) evolved dispersive behavior, whereas
prey in groups attacked by a predator that follows
a random walk (dark grey circles with a dashed
line) or always from the outside of the group (black
squares with a dotted line) evolved cohesive swarm-
ing behavior. Error bars indicate two standard er-
rors over 100 replicates.

the time it takes to refocus on another prey in the case of
an unsuccessful attack attempt.

For each experiment, we characterize the grouping behav-
ior by measuring the swarm density of the entire prey popu-
lation every generation [37]. We measure the swarm density
as the mean number of prey within 30 virtual meters of each
other over a lifespan of 1,000 simulation time steps. Qualita-
tively, a swarm density of ≥ 15 indicates cohesive swarming
behavior, between 15 and 5 loosely grouping behavior, and
≤ 5 random, non-grouping behavior. Thus, swarm density
captures how cohesively the prey are swarming, or if the
prey are even grouping at all.

Random Attacks. Our initial study sought to verify
Hamilton’s selfish herd hypothesis by simulating evolving
prey under attack by predators that ambush prey from a
random location in the simulation environment. If the self-
ish herd hypothesis holds, we expect prey to minimize their
“domain of danger” to the predators by placing as many con-
specifics as possible around them [12]. Similar to previous
models studying the selfish herd [22], a random attack pro-
ceeds by selecting a uniformly random location inside the
simulation space, then attacking the prey closest to that lo-
cation, as shown in Figure 5A.

As seen in Figure 6, if the predators make uniformly ran-
dom attacks on the prey, the selfish herd did not evolve3

(light grey triangles with a full line). Instead, the evolu-
tionary response to predators performing uniformly random
attacks on groups of prey was to move randomly to avoid
potential attacks. This finding has important implications,
namely that one of the key assumptions of the selfish herd
hypothesis—uniformly random predator attacks—does not
appear to select for the evolution of the selfish herd. Follow-
ing this discovery, we hypothesized that the directionality of
the predators’ attacks play a critical role in the evolution

3Video of evolution of prey behavior under Random Attack
treatment: http://dx.doi.org/10.6084/m9.figshare.658857

http://dx.doi.org/10.6084/m9.figshare.658857
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Figure 7: Mean swarm density over all replicates
over evolutionary time, measured by the mean
number of prey within 30 virtual meters of each
other over a lifespan of 1,000 simulation time steps.
Even when experiencing density-dependent preda-
tion, prey in groups attacked randomly (light grey
triangles with a full line) evolved dispersive behav-
ior, whereas prey in groups attacked by a persistent
artificial predator (dark grey circles with a dashed
line) or always from the outside of the group (black
squares with a dotted line) evolved cohesive swarm-
ing behavior. Error bars indicate two standard er-
rors over 100 replicates.

of the selfish herd. To test this hypothesis, we next explore
two different predator attack modes, each with their own
distinct directionality of predation.

Random Walk Attacks. Our next experiment alters
the mode of predation from a predator that attacks ran-
domly selected locations to a predator that follows a ran-
dom walk within the simulation environment. Shown in
Figure 5B, after each attack made by this predator, it is
then moved to a random location within 50 virtual meters.
This models a predator that persistently feeds on a group of
prey, rather than ambushing prey.

Figure 6 shows that swarming did evolve when the prey
were attacked by a predator following a random walk4 (dark
grey circles with a dashed line). Therefore, this experiment
demonstrated that the selfish herd can indeed evolve if the
predators follow a persistent hunting pattern. However, the
selection pressure exerted by such predators appears to be
weak since it took roughly 800 generations for prey to evolve
swarming behavior. Thus, the random walk predator attack
mode appears to capture an important aspect of predation
that selects for the selfish herd, but the strength of selection
for the selfish herd is relatively weak.

Outside Attacks. Finally, we simulate a predator that
always approaches from the outside of the group and attacks
the prey nearest to it. This predator attack mode effectively
has the predators consistently attacking prey on the outer
edges of the group. As shown in shown in Figure 5C, we
simulate this predator attack mode by first choosing a ran-
dom angle outside of the group for the predator to approach
from. Once an angle is chosen, we convert the angle into a
location on the edge of simulation space and attack the prey
nearest to that location.

As shown in Figure 6, this form of predation has the most

4Video of evolution of prey behavior under Random Walk
treatment: http://dx.doi.org/10.6084/m9.figshare.658856

significant impact on the evolution of the selfish herd so far.
When attacked by predators that consistently target prey on
the edges of the group, prey quickly evolve cohesive swarm-
ing behavior5 (black squares with a dotted line). Taken
together, the results of these artificial selection experiments
demonstrate another discovery of this work: the more con-
sistently predators attack prey on the outside of the group,
the more likely the selfish herd is to evolve.

One translation of this finding is that in order for the self-
ish herd to evolve, prey must experience a higher predation
rate on the outside of the group than in the middle of the
group. While this phenomenon can be explained by each
prey having a “domain of danger” (DOD) influenced by its
relative position in the group [12, 16, 21], an alternative
hypothesis is that of density-dependent predation.

Density-Dependent Predation. To study the impact
of density-dependent predation on the evolution of the selfish
herd, we impose a constraint on the predator which reduces
its attack efficiency when it attacks areas of the group with
high prey density. This reduced attack efficiency is meant
to represent the increased predation rate that prey on edges
of the group are expected to endure [12, 16, 21], and such
density-dependence can also be thought of as a proxy for
group defense. We compute the predator’s probability of
capturing a prey during a given attack (Pcapture) with the
following equation:

Pcapture =
1

Adensity

where Adensity is the number of prey within 30 virtual me-
ters of the target prey, including the target prey itself. For
example, if the predator attacks a prey with 4 other prey
nearby (Adensity = 5), it has a 20% chance of successfully
capturing the prey. As a consequence of this mechanism,
the prey experience density-dependent predation.

Figure 7 demonstrates the effect of density-dependent pre-
dation on the previous artificial selection experiments. Just
as before, when predators did not preferentially attack prey
on the outside of the group, as in the random attack exper-
iment (light grey triangles with a full line), the selfish herd
did not evolve. Thus, even if the prey experience density-
dependent predation, the evolutionary pressure for prey to
disperse will outweigh the evolutionary pressure for prey to
swarm if predators can consistently attack prey in the cen-
ter of the group. In contrast, when the predators followed a
random walk (dark grey circles with a dashed line) or always
attacked from the outside of the group (black squares with
a dotted line), the prey experiencing density-dependent pre-
dation evolved the selfish herd. The most noticeable effect
of density-dependent predation is on the random walk treat-
ment, where the the mean nearby prey at generation 1,200
increased from 14.39±1.97 (mean ± two standard errors) to
19.11±2.32, indicating stronger selection for swarming.

In summary, the artificial selection experiments provided
us with two important pieces of information regarding the
evolution of the selfish herd: (1) the predator cannot consis-
tently attack prey on the inside of the group and (2) prey in
less dense areas, such as those on the outside of the group,
must experience a higher predation rate than in areas of
dense prey, such as found in the center of the group.

5Video of evolution of prey behavior under Outside Attack
treatment: http://dx.doi.org/10.6084/m9.figshare.658854
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5. PREDATOR-PREY COEVOLUTION
Building upon the artificial selection experiments, we im-

plemented density-dependent predation in a predator-prey
coevolution experiment. Adding predators into the simula-
tion environment enables us to observe how embodied coe-
volving predators affect the evolution of the selfish herd.

For this experiment, we coevolve a population of 100 pred-
ator genomes with a population of 100 prey genomes using a
GA with settings described in Table 3. Specifically, we eval-
uate each predator genome against the entire prey genome
population for 2,000 simulation time steps each generation.
During evaluation, we place 4 clonal predator agents inside
a 512×512 simulation environment with all 100 prey agents
and allow the predator agents to make attack attempts on
the prey agents. The prey genome population size and sim-
ulation environment area were decreased in this experiment
due to computational limitations imposed by predator-prey
coevolution. We assigned the prey individual fitness values
as in the previous experiments, and evaluated predator fit-
ness according to the following equation:

Wpredator =

tmax∑
t=1

S0 −At

where t is the current simulation time step, tmax is the total
number of simulation time steps (here, tmax = 2,000), S0

is the starting group size (here, S0 = 100), and At is the
number of prey alive at update t. Thus, predators are se-
lected to consume more prey faster, and prey are selected to
survive longer than other prey in the group. Once all of the
predator and prey genomes are assigned fitness values, we
perform fitness proportionate selection on the populations
via a Moran process [36], increment the generation counter,
and repeat the evaluation process on the new populations
until the final generation (1,200) is reached.

To evaluate the coevolved predators and prey quantita-
tively, we obtained the line of descent (LOD) for every repli-
cate by tracing the ancestors of the most-fit prey MN in the
final population until we reached the randomly-generated
ancestral MN with which the starting population was seeded
(see [38] for an introduction to the concept of a LOD in the
context of digital evolution). We again characterized the
prey grouping behavior by measuring the swarm density of
the entire prey population every generation.

Figure 8 depicts the prey behavior measurements for the
coevolution experiments with density-dependent predation6

(black circles with a dashed line; mean swarm density at
generation 1,200 ± two standard errors: 26.2±2.3) and with-
out density-dependent predation (light grey triangles with a
full line; 3.9±0.8). Without density-dependent predation,
the prey evolved purely dispersive behavior as a mechanism
to escape the predators. However, with density-dependent
predation, the prey evolved cohesive swarming behavior in
response to attacks from the predators.

This result highlights the final discovery of this work:
density-dependent predation provides a sufficient selective
advantage for prey to evolve the selfish herd in response to
predation by coevolving predators. Accordingly, these re-
sults uphold Hamilton’s hypothesis that grouping behavior
could evolve in animals purely due to selfish reasons, with-

6Video of prey behavior from predator-prey coevolution
treatment: http://dx.doi.org/10.6084/m9.figshare.658855
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Figure 8: Mean swarm density over all replicates
over evolutionary time, measured by the mean num-
ber of prey within 30 virtual meters of each other
over a lifespan of 1,000 simulation time steps. Prey
in groups experiencing density-dependent predation
(black circles with a dashed line) evolved cohesive
swarming behavior, whereas prey in groups not ex-
periencing density-dependent predation (light grey
triangles with a full line) evolved dispersive behav-
ior. Error bars indicate two standard errors over
100 replicates.

out the need for an explanation that involves the benefits
to grouping [12]. Moreover, the discoveries in this work re-
fine the selfish herd hypothesis by clarifying which modes of
predation would allow for the evolution of the selfish herd.

6. CONCLUSIONS AND FUTURE WORK
The contributions of this work are as follows. First, we

demonstrate Hamilton’s selfish herd hypothesis in a digital
evolutionary model and highlight that it is the attack mode
of the predator which critically determines whether the self-
ish herd evolves. Second, we show that density-dependent
predation is sufficient for the selfish herd to evolve as long
as the predators cannot consistently attack prey in the cen-
ter of the group. Finally, we show that density-dependent
predation is sufficient to evolve grouping behavior in prey
as a response to predation by coevolving predators. Con-
sequently, future work exploring the evolution of the selfish
herd in animals should not only consider the behavior of
the prey in the group, but the attack mode of the predators
as well. While this work shows one method by which the
the evolution of grouping behavior can be studied, there re-
main many different hypotheses explaining the evolution of
grouping behavior [8] that have yet to be studied using dig-
ital evolutionary models. As such, future work in this area
should focus on directly testing these hypotheses in digital
evolutionary models, such as the model described here.
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