DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Evolution of Genetic Organization in Digital Organisms

Charles Ofria and Christoph Adami

ABSTRACT. We examine the evolution of expression patterns and the organiza-
tion of genetic information in populations of self-replicating digital organisms.
Seeding the experiments with a linearly expressed ancestor we witness the
development of complex, parallel secondary expression patterns. Using prin-
ciples from information theory, we demonstrate an evolutionary pressure to-
wards overlapping expressions causing variation (and hence further evolution)
to sharply drop. Finally we compare the overlapping sections of dominant
genomes to those portions which are singly expressed and observe a significant
difference in the entropy of their encoding.

1. Introduction

Life on Earth is the product of approximately four billion years of evolution,
with the vast majority of beginning and intermediate states lost to us forever. The
exact details of how we evolved to become what we are may be impossible to know
for sure, but what we can do is better understand the evolutionary pressures exerted
on life, and from that reconstruct sections of the path our evolution is likely to have
taken.

Here we look at a fundamental issue to life as we know it; the organization
of genetic code and the differentiation in its expression. DNA is structured into
many distinct genes which can be concurrently active, transcribed and expressed in
an asynchronous, (i.e., differentiated) manner. Extant living systems have evolved
to a state where multiple genes influence each other, typically without sharing
genetic material. It appears that in all higher life forms each gene has its own
unique position on the genome, while the transcription products often interact with
unique positions “downstream”. Those organisms which do exhibit overlapping
expression patterns are mostly virii and bacteriophages [1]. This suggests that
genomes containing only purely localized, non-overlapping genes must have evolved
later on [2].

Upon initial inspection, the reason for a spatially separated layout appears
uncertain. A modular design may be quite common in artificially created coding
schemes such as computer programs, but, in fact, only reflects a designer’s quest
to create human-understandable structures. Evolution has no such incentive, and
will always exert pressure towards the most immediate solution given the current
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circumstances. A more compressed coding scheme, perhaps with overlapping genes,
would allow a sufficiently shorter code that would minimize the mutational load
and hence be able to preserve its information with a higher degree of accuracy.
Furthermore, such overlapping regions might be used for gene regulation. Why this
is not much more common becomes clearer when we observe those examples from
nature where these overlapping reading frames do exist, such as DNA phages [1] and
eukaryotic viruses [3]. Even in these organisms only some sections of code overlap,
but examination of those sections reveals that they contain little variation—almost
all of the nucleotides are effectively frozen in their current state from one generation
to the next [4, 5]. This occurs because for any mutation to be neutral in such a
section of genetic code, it must be neutral to both of the genes which it would affect.
Further, most of the mutations that occur in DNA which are neutral occur in the
third nucleotide of a codon, as substitutions in that position are often synonymous.
When overlapping genes have offset (out-of-phase) reading frames, however, the
position of the third nucleotide in one gene maps to the first or second in the other,
leaving no redundancy.

We have investigated the development of genome organization and differenti-
ation in digital organisms: populations of self-replicating computer-code living in
a computer’s core memory. Such “Artificial Life” systems have proven to be use-
ful test cases to investigate the biochemical paradigm because the computational
chemistry the digital organisms are based on share Turing universality with their
biochemical cousins, i.e., just as any type of organism appears to be implementable
in biochemistry, the digital organisms can in principle compute any (partially-
recursive) function [6]. Due to the ease with which experiments can be prepared,
data can be gathered, and trials can be repeated, digital organisms present an imn-
portant tool to study universal traits in the evolution and development of symbolic
sequences. Differentiation in digital organisms was first investigated within the
tierra architecture [7, 8, 9] and we comment on those results below.

For the present study, we have extended our avida Artificial Life system [6] to
allow for the expression of a second gene to occur in parallel. We then processed
the evolution of 600 populations from a seed program to complex information-
processing sequences for an average of over 9000 generations each. The 600 trials
were divided into four sets which differ in the length of the seed program, con-
straints on size evolution, and their ability to express multiple portions of code in
parallel. All populations with a genetic basis allowing for the development of mul-
tiple threads learn to use them almost immediately (each thread is an instruction
pointer which executes the code independently), but the methods by which this
happens are quite distinct and varied. In the next section, we outline the most im-
portant design characteristics of the avida system, focusing mostly on the particular
experimental setup needed for this study. Also, we outline the kind of observables
which we record, and discuss measures of differentiation. In Section 3 we present re-
sults obtained with our multiple-expression digital chemistry and compare them to
controls in which no secondary expression was allowed. In Section 4 we study the
evolution of differentiation for different experimental boundary conditions, while
Section 5 explores in more detail the organization and development of genes at
the hand of an example. We close in Section 6 with a discussion of the evidence
and conclusions, and issue caveats about applying the lessons learned directly to
biochemistry.
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2. Experimental Details

2.1. The Avida Platform. The computer program avida is an auto-adaptive
genetic system [10] designed primarily for use as a platform in Artificial Life re-
search. The system consists of a population of self-reproducing strings of instruc-
tions with a Turing-complete genetic basis subjected to Poisson-random mutations
during reproduction. The population adapts to a combination of an intrinsic fitness
criterion (self-reproduction) and an externally imposed (extrinsic) fitness landscape
provided by the researcher by creating an information-rich environment.

A normal avida organism is a computer program written in a very simple as-
sembly language, with 28 possible commands for each line (Table I).

TABLE 1. Standard (single expression) avida instruction set

Instruction type Mnemonic
flow control jump-b, jump-f, call, return
conditionals if-n-eq, if-less, if-bit-1
self analysis search-f, search-b
computation shift-1, shift-r, inc, dec, swap
swap-stk, push, pop, add, sub, nand
metabolic alloc, divide, copy
I/0 get, put
labels nop-4, nop-B, nop-C

These programs exist on a two-dimensional lattice with toroidal boundary con-
ditions, and are executed on simple virtual CPUs residing at the lattice-sites which
process their code allowing them to interact with their environment and perform
functions such as self-replication, as well computations on numbers which are found
in the external environment. For more details on the virtual CPUs in avida, see [11].

In order to study the evolution of code expression, we have extended the in-
struction set of Table I to allow for more than one instruction pointer to execute
a program’s code. Within the biochemical metaphor, the simultaneous execution
of code is viewed as the concurrent expression of two genes, i.e., the chemical ac-
tion of two proteins. The first new instruction allows a program to initiate a new
expression: fork-th. Its execution creates a new instruction pointer (“forking
off a thread”) which immediately executes the next instruction, while the original
thread skips it. Thus, fork-th is the rough equivalent of a promoter sequence
in biochemistry. In a sense, this secondary expression is rather trivial and leads
to redundancy: if the second thread is not sufficiently altered by the instruction
following the fork-th, it simply executes the identical code as the first thread in
lock-step. Of course, we are interested in how the organisms use this redundancy
as a starting point to diversify the expression.

The second new instruction inhibits an expression: kill-th removes the in-
struction pointer which executed it, while the third addition id-th identifies which
pointer is currently executing the code, i.e., which pattern is currently being ex-
pressed. We expect the three commands together to be useful in the regulation
of expression. In principle, more than two instruction pointers can be generated
by repeated issuing of the fork-th command, but here we restrict ourselves to a
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maximum of two threads in order not to complicate the analysis. In nature, of
course, complex genomes express hundreds of proteins simultaneously.

As our experiments begin with a self-replicating program which does not use
any of the multiple expression commands, the first question might be whether or
not multiple expression will develop at all. In fact, it does almost instantly, as
secondary expression (typically in the trivial mode mentioned earlier) appears to
be immediately beneficial, perhaps in the same manner as simple gene doubling
or a second promoter sequence. From here on, differentiation evolves, i.e., the
two instruction pointers begin to adapt independently, to express more and more
different code. Ultimately one might expect that each pointer executes an entirely
different section of code, achieving local separation of genes and fully parallelized
execution. The mode and manner in which this separation occurs is the subject of
this investigation.

Several hundred independent experimental trials and controls were obtained in
this study, testing different experimental conditions. For each of these trials we
keep a record of a variety of statistics, including the dominant genotype at each
time step, from which we can track the progression of evolution of the population,
in particular by studying the details of its expression patterns.

2.2. Basic Analysis Metrics.

In order to track the differentiation of the threads, we need to develop a means
to monitor the divergence between the two instruction pointers roaming the genome.
Also, to study the evolutionary pressures such as the mutational load, we need to
introduce some standard (and some less standard) observables which allow us to
track the adaptability of the population. This is one of the major advantages of
digital chemistries: some of the data that we collect is impossible to accurately
obtain in biochemical systems, and even less practical to analyze.

Fitness is measured as the number of offspring a genome produces per unit
time, normalized to the replication rate of the ancestor. Thus, in all experiments the
fitness of the dominant genotype starts at one and increases. Fitness improvements
are due to two effects: the optimization of the gene for replication (the “copy-loop”)
leading to a smaller gestation time, as well as the development of new genes which
accomplish computations on externally provided random numbers. These compu-
tations are viewed as the equivalent of exothermic catalytic reactions mediated by
the expression products. We reward the accomplishment of all bit-wise logical oper-
ations performed on up to three numbers by speeding-up the successful organism’s
CPU at a rate commensurate to the difficulty of the computation.

Fidelity is the probability for an organism to produce an offspring perfectly
identical to itself, i.e., the probability that the offspring is unaffected by muta-
tions during the copy process. For pure copy-mutations (each instruction copied is
mutated with a probability R..)

(2.1) F=(1-R)

where £ is the organism’s sequence length. In an adapting population, other factors
can affect the fidelity and lead to low-fidelity organisims even while the theoretical
fidelity is high. On the other hand, the development of error-correction schemes
could increase the actual fidelity.
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Neutrality v is the probability that an organism’s fitness is unaffected by a
single point mutation in its genome. This is calculated by obtaining all possible one-
point mutations of the examined genome, and processing each of them in isolation
to determine fitness. The neutrality is then the number of neutral mutations divided
by the total tested:

Nﬂ(‘.llt
(D —-1)"
where D is the number of different instructions in the digital chemistry, i.e., the
size of the instruction set.

The preceding three indicators are key in determining the ability of an organ-
ism to thrive in an avida environment. Fitness, fidelity, and neutrality correspond
respectively to an organism’s ability to create offspring, for those offspring to have
a minimum mutational load, and for them to survive those mutations which they
do bear. Apart from this, however, there is another aspect which is necessary for a
phylogenetic branch to be successful, and that is its ability to further adapt to its
environment. To characterize this, we define two more genomic attributes:

Neutral Fidelity is a measure which can be calculated once an organism’s
neutrality is known. It is the probability that an organism will give birth to an
identical or equivalent offspring. Taking f. = R.(1 — v) to be the probability for
a line to be mutated and be non-neutral to the organism, we obtain the neutral
fidelity as:

(2.3) Fheut — (1 - f(:)/ :

Genomic Diffusion Rate is the probability for an offspring to have a genome
different from its parent, but to be otherwise equivalent (i.e., neutral.) This is
obtained by subtracting the genome’s fidelity from its neutral fidelity

(2.4) Dy = Faeut — F .

(2.2) v=

This is a particularly important indicator as it is the rate at which new, viable
genotypes are being created, which in turn is the pace at which genetic space is
being explored, and therefore directly proportional to the rate of adaptation.

2.3. Differentiation Measures.

The following measures and indicators keep track of code-differentiation. In
biochemistry, the differentiation of expression can be very varied, and includes
overlapping reading frames (in-phase and out-of phase), overlapping operons and
promoter sequences, and gene regulation. Obviously, there are no reading frames in
our digital chemistry, but it is possible for a sequence of instructions to give rise to a
different computation depending on which thread is executing it, in particular if one
gene contains another (as is very common in overlapping biochemical genes [12]).
Also, thread-identification may lead one thread to execute instructions which are
skipped by the other thread, and threads may interact to turn each other on and
off: a case of digital gene regulation. All such differentiation however has to evolve
from the trivial secondary expression discussed earlier, and we consequently need
to monitor the divergence of thread-execution with suitable measures.

Expression Distance is a metric we use to determine the divergence of the
two instruction pointers. Simply put, this measurement is the average distance (in
units of instructions) between the sections of the genome actively being expressed
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by the individual threads. At the initial point leading to secondary expression,
this distance is zero as the two threads execute the same code in lock-step. If this
value is high relative to the length of the genome, it is a strong indication that the
instruction pointers are expressing different sections of the genetic code at any one
time, while if it is low, they most likely move together with identical (or nearly
$0) execution patterns. However, this measure only indicates the differentiation
between execution at a particular point in time, implying that if the execution is
simply time-offset, this metric may be misleading.

Expression Differentiation distinguishes execution patterns with character-
istically differing behavior. Each execution thread is recorded with time, and a
count is kept of how often each portion of the genome is expressed. The expression
differentiation is the fraction of the genome in which those counts differ. Thus, the
ordering of execution (time-delay) is irrelevant for this metric; only whether the
code ends up getting expressed differently by one thread vs. the other is important.

2.4. Information Theoretic Measures.

We use information theory in order to distinguish sequences which do or do
not code for genes. In our digital chemistry, regions which do not code for a
gene are either unezecuted, i.e., the instruction pointer skips over them, or else
neutral implying that their execution will typically not affect the behavior of the
program. Trivial neutral instructions often involve the nop instructions (see Table
I) which perform no function on their own when executed, but act to modify other
instructions. Thus, even though their execution is neutral their particular value can
still severely affect the functioning of the organism. A perfectly neutral position
sports any of the D instructions with equal probability among a population of
sequences, while a maximally fixed position can only have one of the D instructions
there. To distinguish these, we define the

Per-Site Entropy of a locus by trying out each of the D instructions at that
position and evaluating the fitness of the resulting organisms. All neutral positions
are assigned an equal probability to be expected at that site, while deleterious
mutations are assigned a vanishing probability (as they would be selected against).
Due to the uniform assignment of probabilities, the per-site entropy of locus ;
(normalized to the maximum entropy log(D)) is

(2:5) H(z;) = %

In an equilibrated population, this theoretical value of the per-site entropy is a
good indicator for the actual per-site entropy, measured across the population (if
the population is large enough). As positive mutations are extremely rare and we
are only interested in the diversity of the population when it is in equilibrium, for
the purposes of this measurement they are treated as if they were neutral. An
indicator for the randomness within a sequence is the

Per-Genome entropy, which we approximate by the sum of the per-site
entropies

(2.6) H=> H(z).

i



EVOLUTION OF GENETIC ORGANIZATION IN DIGITAL ORGANISMNS 7

The actual per-genome entropy is in fact smaller, as the above expression neglects
epistatic effects which lead to correlations between sites. For most purposes, how-
ever, the sum of the per-site entropies is a good approximation for the randomness.
Measuring the entropy of the population by recording the individual genomic abun-
dances is fruitless as the sampling error is of the order of the entropy [13].

3. Single Expression vs. Multiple Expression

Let us first examine adaptability as measured by the average increase in fitness
for both single and multiple expression chemistries. In Fig. 1A, the fitness is aver-
aged for the 200 trials' which were seeded with small (¢ = 20) seed sequences and
no size constraint (set I), for each of the chemistries. While the average increases
relatively smoothly in time?, it should be noted that each individual fitness history
is marked by periods of stasis interrupted by sharp jumps, giving rise to a “stair-
case” picture reminiscent of the adaptation of E. coli [14]. During adaptation, the
sequence length increases commensurately with the acquired information, as shown
in Fig. 1B.

Clearly, the trials in which multiple expression is possible adapt more slowly
than the single-expression controls, a behavior that may appear at first glance to
be paradoxical as the only difference in the underlying coding of the multiple ex-
pression trials is an increased functionality. However, as we have noted previously,
the neutral fidelity of an organism directly determines the fraction of its offspring
which are viable. As this value is inversely correlated to the length of the genome,
there is a pressure for the genomes to evolve towards shorter length. Normally, this
pressure is counteracted hy the adaptive forces which require the organism to store
more information in its genome requiring increased length. Overlapping expres-
sion patterns (here, multiple parallelized execution) allows this adaptation to oc-
cur while minimizing the length requirement. Hence, multiple-expression genomes
adapt more slowly.

The pitfalls of compacting so much information into the same portion of the
genome are illustrated in Fig. 1C where we plot the average genomic diffusion rate
D, for both chemistries. It is evident in this graph that initially both sets of ex-
periments explore genetic space at a comparable rate, but around approximately
5000 updates (on average) the diffusion rates diverge markedly, followed by a cor-
responding divergence in the fitness of the organisms (that a higher diffusion rate
leads directly to higher fitness in an information-rich environment is shown in [15].)
Investigating the course of evolution further, we see that it is precisely at this point
that the differentiated, yet overlapping, use of multiple threads is typically estab-
lished.

To further implicate overlapping expression in reduced adaptation for the pop-
ulations, we consider (as was done in Ref. [4] for the bacteriophage ®X174)) the
substitution rate of instructions for overlapping versus non-overlapping genes. The
substitution rate in avida is equal to the neutrality (at equilibrium). We find the
substitution suppression (the neutrality in multiply expressed code divided by the

IFach trial is seeded with a single ancestor, which quickly multiplies to fill the maximum
number of programs in the population, sct to 3,600 for these trials. The population was subjected
to copy mutations at a rate of 7.5 x 1073 per instruction copied, and a rate of 0.5% of single insert
or delete mutations per gestation period.

’Time is measured in arbitrary units called updates. FEvery update represents the execution
of an average of 30 instructions per program in the population.
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Ficure 1. (A): Average fitness as a function of time (in updates)
for 200 populations evolved from ¢ = 20 ancestors, their average
sequence length (B) and the average genomic diffusion rate (C)
for the single expression chemistry controls (solid line) and the
multiple expression chemistry (dashed line).

neutrality in singly expressed code) to be between 0.53 and 0.56 for the three sets
of trials (Table II), similar (but not quite as severe) as the suppression ratio of
between 0.4 and 0.5 observed in the bacteriophages [4]. This was to be expected,
as there are no reading frames in avida which implies that two non-differentiated
threads do not constrain the evolution any more than a single thread. When the
instruction pointers do adapt independently and the threads differentiate, neutral-
ity is compromised. Consequently, the instructions within sections of overlapping
code are comparatively “frozen” into their state.
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TaBLE 2. Average neutrality of the final dominant genotype:
multiply-expressed code (column 1), singly expressed code (col-
umn 2), and their ratio (column 3), for 200 populations grown
from ¢ = 20 ancestors (variable length) [set I], 100 populations
grown from ¢ = 80 ancestors (variable length) [set II], and 100
populations grown from ¢ = 80 ancestors (constant length) [set
111].

Set || Vmult | Vsingle | ratio
I || 0.109 | 0.202 | 0.539
IT || 0.197 | 0.346 | 0.569
III || 0.082 | 0.145 | 0.566

4. Evolution of Differentiation

Let us now track the evolution of differentiation in more detail. We first ad-
dress the de novo evolution of multiple expression, i.e., the development of multi-
threading from linear execution. This question has previously been addressed
within tierra [7], a population of self-replicating computer programs that served
as the inspiration to our avida. In initial experiments, usage of multiple threads
would not evolve spontaneously, but hand-written programs that had secondary
expressions would evolve towards multiple expression [8]. More recently, experi-
ments were carried out within a network version of the tierra architecture, which
showed that a program which used different instruction pointers to execute different
genes would not lose this ability [9]. The failure of multiple expression to evolve
spontaneously in this system can be tracked back to problems with tierra’s digital
chemistry and the lack of an information-rich environment [16].

Within avida, the ability to use more than a single thread begins to develop
within the first 5000 updates and is very common after about 10,000 updates,
depending on the experimental boundary conditions. Fig. 2A shows the (averaged)
percentage of a programn’s lifetimne in which more than one thread is active, for the
populations of set T (solid line), set IT (dashed line) and set IIT (dotted line). It is
apparent that multiple expression develops much more readily in smaller genomes,
due to the fact that the logistics are less daunting.

In panels B and C of Figure 2 we display two indicators of differentiation
(defined earlier), the expression distance and the expression differentiation, respec-
tively. The expression distance appears to be sensitive to the experimental starting
condition, as set II and set IIT show a value over twice that of set I. We observe
that this is due to the small size of the ancestor used in set I: as that ancestor de-
velops threading very quickly, it loses adaptability earlier and lags both in average
fitness and average sequence length. In fact, those averages are dragged down by
a significant percentage of the trials in set I which were stuck in an evolutionary
dead-end. Set II and IIT were seeded with an ancestor of length £ = 80 and did not
suffer from this lot. Fig. 2C shows the expression differentiation, i.e., the fraction of
code that is executed differently by the two threads. This fraction is less dependent
on experimental conditions, and the genomes appear to develop towards 0.5. Note,
however, that this measure cannot accurately reflect differentiation which is more
subtle than threads executing particular instructions a different number of times.
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Ficure 2. Differentiation measures. (A): Average fraction of life-
time spent with secondary expression, as a function of time (in
updates), (B): average expression distance, (C): average expres-

sion differentiation. Set I (solid line), set 11 (dashed line), and set
IIT (dotted line).

For example, two threads which execute a stretch of code in an identical manner
but that start execution at different points “upstream” may end up calculating very
different functions, and thus have quite different behaviors. This difference will thus
be underestimated. While the preceding graphs seem to indicate that differentia-
tion stops about half-way through the duration we record, this is actually not so,
as the more microscopic analysis of the following section reveals. Finally, Fig. 3
shows the evolution of the fraction of code that is executed by multiple threads.
We anticipate that this fraction rises swiftly at first, but then levels off, as it
is not advantageous to multiply express all genes (see below). However, we might
anticipate that the fraction would start to decline at some point, when the organism
develops the ability to localize its genes and use independent instruction pointers
for each of themn. We do not witness this trend in Fig. 3 presumably because there
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Ficure 3. Average fraction of doubly expressed code for the three
experimental sets. Solid line: set I, dashed line: set II, dotted line:
set III.

is no cost associated with the development of secondary expression. This should be
viewed as a peculiarity of the digital environment rather than a universal feature,
which we hope to eliminate with future refinements of the avida world.

5. Evolution of Genetic Locality

To get a better idea of how evolution is acting upon programs harboring multi-
ple threads, we must look at exactly what is being expressed. We can loosely char-
acterize all organisms by tracking three separate genes. They are “self-analysis”
(slf), “replication” (rpl) , and ”computation” (emp). To follow the progression of
these genes through time, we examine a sample experiment seeded with an ancestor
of size 80 (as before, capable only of self-replication), in an environment in which
size-altering mutations are strictly forbidden (a trial from set III). This limitation
was enforced in order to better study the functionality of the organism and the
location of its genes. Similar studies have been done with all 400 trials used to
collect the bulk of the data for this report, showing comparable behavior.

In Fig. 4A we follow the per-site entropies for each locus as a function of time.
Positions are labeled by 1 to 80 on the vertical axis, while tiine proceeds horizontally.
A grey-scale coding has been employed to denote the variability of each locus, where
the white end denotes more variable positions and the dark end more fixed positions.
Because the per-site entropies have been calculated by obtaining the frequency with
which each instruction appears at that locus within the population (as opposed to
the theoretical estimate based on neutrality), major evolutionary transitions are
identifiable by dark vertical bands. Fig. 4B shows which portion of the code is
expressed by which pointer, by two pointers simultaneously, or not at all.

The first gene slf uses pattern matching on nop instructions in order to find
the limits of its genome and from that calculate it’s length. This value is used for
elongation (via the command alloc), which adds empty memory to the genome
and prepares it for the “execution” of the replication gene. Note that avidian
genomes are circular. There are two interesting points to note about the evolution
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Ficure 4. (A): Per-site entropy for each locus as a function of
time for a standard (set III) trial. Random (variable) positions
with near-unit per-site entropy are bright, while “fixed” instruction
with per-site entropy near zero are dark. (B): Thread identification
within a genome. Black indicates instructions which are never
directly executed, dark grey denotes instructions executed by a
single thread when no other thread is active, while sections which
are executed by a single thread while another thread is executing
a different section are colored in lighter shades of grey. Sections
with overlapping expression are in white.

of slf First, there are many methods by which the organism can determine its
own genomic length, so this gene tends to vary widely. Most of the time the
organism keeps pattern matching techniques, but matches different portions of the
code. However, often an organism shifts to purely numerical methods performing
mathematical operations upon itself which yield the genome length “by accident”.
The other evolutionary characteristic of this gene is that there is no benefit in
expressing it multiple times as it has a fixed result which needs only be applied
once during the gestation cycle. Looking at Figure 4, the slf gene initially spans
from lines 44 to 61 plus the first four lines and last four lines of the genome which are
boundary markers fashioned from nop instructions. The first major modification
to the sif gene occurs around update 3000. The pattern used to mark the limits of
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the genome is a series of four nop-A instructions. As a newly allocated genome has
all of its sites initialized to nop-A, the genome is re-organized such that these lines
are no longer copied. This reduces the possibility of variation in these sections of
code to zero. This is apparent in Fig. 4A as the positions of these limit patterns
become completely black indicating vanishing entropy.

The slf gene is continuously undergoing minor changes as is becomes more
optimized to require fewer lines of code to perform its function. Near update
13,000 it shifts dramatically and is replaced by one in which size is calculated using
only the final boundary markers. The distance from the gene to the final marker is
determined, and then manipulated numerically in order obtain the number which
is the size of the organism. Looking at the first four lines of Fig. 4A around this
update, we see that they are slowly phased out and increase in entropy as they
are no longer as critical to the organism’s survival. Finally the size of the pattern
marking the end boundary of the organism is shortened until it becomes only a
single line. By the end of the evolution shown, the sif gene only occupies lines 48
through 56. Note that all of these lines are only expressed a single time.

The next gene under consideration is the actual replication gene rpl. This
sequence of instructions uses the blank memory allocated in the self-analysis phase
and enters a 'copy-loop’ which moves line by line through the genome, copying each
instruction into the newly available space. When this process is finished, it severs
the newly created copy of itself which is then placed in an adjacent lattice site.
This dynamics spawns off a new organism which, if the copy process was free of
mutations, would be identical to the parent. In Fig. 4, the organism being tracked
has its replication gene on lines 65 to 71 until update 24,000 at which time this
gene actually grows an additional line becoming much more efficient by “unrolling”
its copy-loop. What this means is that it is now able to copy two lines each time
through the loop. From the dark color of these lines, it is obvious that they have
very low entropy, and are therefore very difficult to mutate. The copy-loop is a
very fragile portion of code, critical to the self-replication of the organism, yet we
do see some evolution occurring here when multiple threads are in use. Often the
secondary thread will simply “fall through” the copy-loop (not actually looping
through to copy the genome) and move on to the next gene, while the other thread
performs the replication. However, sometimes the two threads will actually evolve
together to use the copy loop in different ways, with each thread copying part of
the genome. In Fig. 4, most of the rpl gene is executed by only one thread. The rpl
gene is followed by junk code which, while executed sporadically, does not affect
the fitness in any way (as evidenced by the light shading in Fig. 4A for these lines).

The most interesting of the genes is the computation gene emp. The ancestor
does not possess this gene at all, so it evolves spontaneously during the adaptive
process. There are 78 different computations rewarded in this environment, all of
which are based on bit-wise logical operations. The organisms have three main
commands which they use to accomplish those: a get instruction which retrieves
numbers from the environment, a put instruction to return the processed result,
and a nand instruction which computes the logical operation not-and (see Table I).
Any logical operation can be computed with a properly arranged collection of nand
instructions.

The emp gene(s) evolve uniquely in each trial, enabling the organisms to per-
form differing sets of tasks. There are, however, certain themes which we see used
repeatedly whereby the same section of code is used by both threads, but their
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initial values (i.e., the processing performed thus far on the inputs) differs. Conse-
quently, this section of code performs radically different tasks, actually encouraging
this overlapping. Portions of this algorithin which might have some neutrality for a
single thread of execution will now bhe frozen due to the added constraints immposed
by a secondary execution. The size of c¢mp grows during adaptation as a number
of computations are performed, and the gene is almost always expressed by both
threads as this is always advantageous. In Fig. 4, the cmp gene stretches from line 1
to line 42 (at update 30,000), while it is considerably smaller earlier. Furthermore,
the genome manages to execute the entire gene by both threads (the transition
from single expression of part of ¢mp to double expression is visible around update
20,000). This gene ends up being expressed many times (as the instruction pointers
return to this section many times during execution). All in all, 17 different logical
operations are being performed by this gene.

By the end of the evolution tracked in Fig. 4, most of the genes appear to oc-
cupy localized positions on the genome. The cmp gene (white sections in Fig. 4) is
revisited many times by both threads with differing initial conditions for the regis-
ters, allowing the genome to maximize the computational output. In the meantime,
those sections have become fixed (their variability is strongly reduced) as witnessed
by their dark shading in Fig. 4A.

6. Discussion and Conclusions

The path taken by evolution from simple organisms with few genes towards
the expression of multiple genes via overlapping and interacting gene products in
complex organisms is difficult to retrace in biochemistry. Artificial Life, the cre-
ation of living systems based on a different chemistry but using the samme universal
principles at work in biochemical life, may help to understand some key principles
in the development of gene regulation and the organization of the genetic code.
We have examined the emergence and differentiation of code expression in parallel
within a digital chemistry, and found some of the same constraints affecting multi-
ply expressed code as those observed in the overlapping genes of simple biochemical
organisms. For example, multiply expressed code is more fragile with respect to
mutations than code that is “transcribed” by only one instruction pointer, and
as a result evolves more slowly. During most stages of evolution, two constraints
are most notable: the pressure to reduce sequence length to lessen the mutational
load, and the pressure to increase sequence length in order to be able to store more
information. Simple organisms can give in to both pressures by using overlapping
genes, gaining in the short term but mortgaging the future: the reduced evolvability
condemns such organisms to a slower pace of adaptation, and exposes them to the
risk of extinction in periods of changing environmental conditions.

This trend is clearly visible in the evolution of digital organisms, as is a trend
towards multiple expression of as much of the code as possible. This latter feature
we believe not to be universal, but rather due to the fact that multiple expression in
avida is cheap, i.e., no resources are being used in order to express more code. In a
more realistic chemistry, this would not be the case: adding an instruction pointer
should put some strain on the organism and use up energy; in such circumstances
multiple expression would only emerge if the advantage of the secondary expression
outweighs the cost of it. We also expect more complex gene regulation in such an
environment, as genes would be turned on only when needed.
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Still, under extreme conditions we believe that multiple overlapping genes are a
standard path that any chemistry might follow. Even though evolution slows down,
such organisms can be rescued either by the development of error-correction algo-
rithius; or an external change in the error rate. In either case, a drastic reduction of
the mutational load would enable the sequence length to grow and the overlapping
genes to be “laid out” (for example by gene-duplication). The corresponding easing
of the coding constraints might give rise to an explosion of diversity and possibly
the emergence of multi-cellularity.
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