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one of the great unknowns in modern science. Only one example of
life exists—one that proceeded from a single self-replicating organism
(or a set of replicating hypercycles) to the vast complexity we see
today in Earthʼs biosphere. We know that emergent life has the
potential to evolve great increases in complexity, but it is unknown if
evolvability is automatic given any self-replicating organism. At the
same time, it is difficult to test such questions in biochemical systems.
Laboratory studies with RNA replicators have had some success
with exploring the capacities of simple self-replicators, but these
experiments are still limited in both capabilities and scope. Here,
we use the digital evolution system Avida to explore the interplay
between emergent replicators (rare randomly assembled self-replicators)
and evolvability. We find that we can classify fixed-length emergent
replicators in Avida into two classes based on functional analysis. One
class is more evolvable in the sense of optimizing the replicatorsʼ
replication abilities. However, the other class is more evolvable in
the sense of acquiring evolutionary innovations. We tie this tradeoff
in evolvability to the structure of the respective classesʼ replication
machinery, and speculate on the relevance of these results to
biochemical replicators.

1 Introduction

The science surrounding the origin of life presents an obvious difficulty to scientists: Our data
consist of a single example. It is unknown whether the events that followed the origin of life are
deterministic consequences of life or unique to this specific origin. One question of interest is
whether all life, or specifically all self-replicators, are evolvable. Evolvability (the ability to evolve)
has many similar, but differing definitions [59, 29, 58]; here, we define it as the ability to increase in
fitness. We also distinguish between two possibilities for such fitness increases: optimization—defined
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as the ability to improve an already present phenotypic trait, and innovation—the ability to evolve
novel phenotypic traits.

A common assumption is that life originated with self-replicating RNA molecules [21, 28]. Thus,
most empirical studies have focused on RNA replicators, either emergent replicators [53, 8, 9] or
those created by experimenters [33, 48]. Experiments (both computational and biochemical) have
also explored the evolvability of RNA replicators, usually involving extensive mapping of their
fitness landscapes [25, 26, 6, 46]. While RNA is an enticing candidate for a pre-biotic molecule,
the so-called “RNA world hypothesis” has its own problems—foremost the “asphaltization” that
tends to befall formose carbohydrates under the expected conditions of an early Earth [14, 40]—
which has led researchers to explore other origins of life not necessarily RNA-based [42, 47], or even
to move the origin of life from Earth to Mars [37].

In recent years, more and more theoretical models concerning the origin of life have focused on ex-
ploring the abstract concepts that could possibly be involved in any potential origination, independent of a
particular biochemical system [60, 19, 2]. The field of artificial life is ideally suited to study various pos-
sibilities for the origin of life as it imagines life as it could be, not just as it is. The question of the random
emergence of replicators has been addressed in various digital systems before [43, 44, 3, 35], while
theoretical models have explored the factors that lead to differing evolvability [5, 16, 15]. Artificial life
tools have also been used to explore the potential of evolvability in different systems [54, 51, 7, 17, 18, 20].

Recently, Adami used information theory to calculate the likelihood of the random emergence of
a self-replicator—in a sense, the progenitor to life—without regard to a specific biochemistry [2].
Adami and LaBar tested this theory with Avida by generating billions of random Avidian sequences
and checking for their ability to replicate themselves [3]. Such an investigation is akin to studying the
chance emergence of self-replicating RNA molecules [8]. In previous work we explored the relation-
ship between evolvability and self-replication using these emergent replicators [30], and found that
almost all emergent replicators were evolvable, both in terms of optimization for replication and in
terms of evolving beneficial phenotypic innovations. We also discovered that these replicators came
in two forms: proto-replicators and self-replicators. Proto-replicators deterministically copy
themselves inaccurately, but eventually evolve into self-replicators; self-replicators, on the other hand,
produce an exact copy of themselves in the absence of stochastic mutation. We also noted the
possibility of an optimization-innovation tradeoff in some of these replicators, especially the default
Avida ancestor (a hand-written self-replicator specifically designed for evolution experiments).

Here, we extend our previous study and test a fundamental question concerning lifeʼs origins:
How does the genetic composition of the first replicator determine the future evolution of life? One
extreme possibility is that all emergent replicators have similar genetic compositions and thus the
future evolution of life will occur in a similar manner, no matter what the progenitor. On the
opposite end of the spectrum is the possibility that every emergent replicator is sufficiently different
from every other replicator in genetic composition. In this case, the future outcome of life may be
entirely dependent on which replicator emerges first. In experiments with the artificial life system
Avida, we find that the interplay between the genetic composition of the first emergent replicator
and future evolutionary outcomes is between these two extremes. Emergent replicators can be
classified into two distinct classes based on a functional analysis of their replication machinery. These
classes differ in their ability to optimize their replication ability. However, those replication classes
that display high evolvability towards optimizing replication also demonstrate low evolvability
towards evolving novel phenotypic traits, and vice versa. Finally, we show that this difference in
evolvability is due to differences in the replication machinery between the different replicator classes.

2 Methods

2.1 Avida
In order to study the interplay between emergent replicators and evolvability, we used the Avida
digital evolution platform [1, 41]. In Avida, simple computer programs (Avidians) in a population
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compete for the memory space and CPU time needed to replicate themselves. Each Avidian consists
of a genome of computer instructions, where each locus in the genome can be one of 26 possible
instructions. Contained within each genome are the instructions necessary for the Avidian to allocate
a daughter genome, copy itself into this new daughter genome, and divide off the daughter genome.
As the replication process is mechanistic (i.e., Avidians execute their genomeʼs instructions, includ-
ing those to replicate, sequentially), the speed at which replication occurs is also genome-dependent.
Therefore, fitness is genome-dependent, as an organismʼs ultimate success is determined by its rep-
lication speed in these simple environments.

As Avidians directly copy and pass their genomes to their daughters, Avida populations also have
heredity. During the copying process, errors may be introduced, resulting in mutations and popu-
lation variation. Therefore, Avida populations possess heredity, variation, and differential fitness:
They are an instantiation (as opposed to a simulation) of Darwinian evolution [45]. This simpler in-
stantiation of evolution by natural selection has allowed for the exploration of many topics hard to
test in biological systems; see for example [31, 4, 39, 12, 13, 22, 62].

Avida has been explained in greater detail elsewhere (see [41] for a full description); here, we will
cover the details relevant for this study. An Avidian consists of a variety of elements: a genome of
instructions, a read head that marks which instruction should be copied, a write head that denotes
where the read-head-marked instruction should be copied to, and three registers to hold integer
numbers (AX, BX, and CX), among other elements.

In order to undergo reproduction, an Avidian needs to perform four operations in the follow-
ing order. First, it must execute an h-allocate instruction, which allocates a fixed number of nop-A
instructions to the end of its genome (here 15, as we work exclusively with length-15 genomes).
These nop-A instructions are inert by themselves, and serve as placeholders to be replaced by
actual information. Allocation of this memory prepares the daughter genome space to receive
the information from the parent. Next, the read head and write head must be set 15 instructions
apart, allowing for the instructions in the parent genome to be copied into the daughter genome.
These operations are algorithmically similar to creating a DNA replication fork at the origin of
replication, preparing for the assembly of a copied sequence. Following this step, the genome
must find a way of looping over the h-copy instruction in the genome to actually copy instructions
from the parent into the daughter genome, similar to the action of a DNA polymerase fusing the
new (daughter) nucleotides on the former parent strand. This copying can be done either by looping
through the entire genome (using the circular nature of the genome to reuse a single h-copy command
as many times as necessary to copy all instructions) or else by continuously looping over a smaller set
of instructions in the genome (called the copy loop). The latter algorithm requires marking the set of
instructions (the “replication gene”) so as to control the forking of execution flow. Finally, an Avidian
must execute an h-divide instruction to divide the duplicated genome into two Avidians, and thus
successfully reproduce.

In the experimental design used here, we used two different mechanisms to produce mutations
during replication. The first mechanism produces at most one point mutation at a random locus in the
genome at a rate of 0.15 mutations per genome per generation upon successful division. The second
mechanism is a deterministic (or incipient) mutation, which occurs when the instructions in an
Avidian cause it to copy instructions into the daughter genome in the wrong place. For example,
if the copy process skips the first one or two instructions of the genome, those instructions will
remain in the default state (here nop-A) instead of in the state of the parent genome, that is, they
appear to be mutated. In many cases, such a faulty copy algorithm results in the offspring being
nonviable; however, in some cases viable offspring are produced. Sometimes, this incipient muta-
tion mechanism results in the phenomenon of proto-replicators, defined as those replicators that de-
terministically (i.e., reproducibly because genetically controlled) make an offspring different from
themselves [30]. Replicators that instead deterministically make an identical offspring are called
self-replicators.

In the standard experimental evolution scenario, Avidians are placed into a landscape that re-
wards a variety of phenotypic traits. These traits commonly refer to the ability to perform certain
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Boolean logic calculations on binary numbers that the environment provides. During an Avidianʼs
life span, they can input (read from) and output (write to) binary numbers from/to the environ-
ment. Whenever a number is written, the Avida world checks if a Boolean logic calculation was
performed. Successful performance results in an increase in the replication speed of that individualʼs
descendants. In the standard Avida design (also the one used here in the experiments to explore
evolvability in the sense of innovation), that environment rewards the performance of nine different
calculations. This environment is usually referred to as the “Logic-9” environment and rewards
calculations such as NOT and EQUALS [32]. The more complex the calculation performed, the
greater the replication speed increase. The performance of such logic calculations can be viewed as
an algorithmic analogue of performing different metabolizing reactions using different sugar re-
sources (the binary numbers provided by the environment).

2.2 Experimental Design
To study the evolvability of emergent replicators, we first had to generate a collection of emergent
replicators. We re-analyzed a list of 109 random Avidian length-15 genomes generated previously [3].
In order to discover replicators of fixed genome size, we set the OFFSPRING SIZE RANGE pa-
rameter in the main Avida configuration file to 1.0, which guarantees that the allocate command al-
locates exactly as much space as needed by the daughter genome. For our focus on replicators of
length 15, this guaranteed that exactly 15 instructions are allocated for the daughter to receive.1

Next, we looked at the relative abundance of proto-replicators compared to true self-replicators.
We re-analyzed the above set of replicators, but made one additional parameter change: We set
REQUIRE EXACT COPY to 1. Any replicator that registered as having zero fitness in this analysis
would deterministically copy its genome inaccurately, and would be classified as a proto-replicator.
Any replicators that could reproduce themselves accurately under this treatment were classified as
self-replicators.

In order to test the evolvability of the these replicators, we performed three different experi-
mental tests. For all experiments, we used a population size of 3600. Individualsʼ offspring were
placed in any random cell in the 60 × 60 grid, thus mimicking a well-mixed environment. Point
mutations were applied upon division, and the genomic mutation rate was 0.15 mutations per gen-
eration. The genome size was fixed at 15 instructions. The first experiments tested the replicatorsʼ
evolvability in the sense of replication optimization (optimization experiments). In this experiment,
each replicator was used to seed 10 populations; these populations evolved for 103 generations.
Phenotypic traits were not under selection in these experiments, that is, evolution only optimized
the replication machinery. Next, we performed evolution experiments (referred to as the innovation
experiments) where we rewarded individuals for evolved phenotypic traits (i.e., logic tasks) besides
any increase in replicatory prowess.

We ran the innovation experiments for 104 generations (an order of magnitude longer than the
optimization experiments). These experiments were designed to decrease the likelihood that our
data resulted from one of the replicator classes taking longer to evolve complex traits. Finally, we
repeated the innovation experiments, but used each ancestral replicatorʼs fittest descendant from the
optimization experiments to initialize the populations (tradeoff experiments). These experiments
tested the presence of an optimization–innovation tradeoff.

2.3 Data Analysis
Once we determined the set of replicators, we first tried to determine if there were similarities in the
genomes of the replicators. We realized that many of the genomes had similar instruction motifs
within the sequence. To test whether different replication algorithms existed in different replicators,

1 In previous studies [3, 30], OFFSPRING SIZE RANGE was set to 2.0, which allocated an extra number of loci that typically would not be
filled by the replication process, and could interfere with accurate self-replication).
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we used Avidaʼs TRACE function to analyze the step-by-step execution of the replicatorsʼ ge-
nomes. This allowed us to cluster the emergent replicators into two main distinct functional repli-
cator classes.

To examine the results from the evolution treatments, we analyzed the most abundant genotype
at the end of each experiment. The data collected included the final evolved fitness and the number
of evolved phenotypic traits. All Avida analysis was performed using Avidaʼs Analyze mode with
settings matching those under which the relevant experiments were performed. Statistical analyses
were performed using the NumPy, SciPy, and Pandas Python modules [55, 27, 36]. Figures were
generated using the Matplotlib Python module [24].

3 Results

3.1 Emergence of Replicators
Among the one billion randomly generated genomes, we found 75 genomes that could replicate
themselves when genome size was fixed. Of these replicators, 22 were true self-replicators in the
sense that they could perfectly copy their genomes even when mutations were turned off. The re-
maining 53 replicators were “proto-replicators” in the sense that they could not produce a perfect
copy of their genome when the mutation rate was set to zero. This deterministic miscopying is due
to the specific nature of a proto-replicatorʼs genome (see Section 2). However, these replicators still
produced viable offspring that would eventually lead to a self-replicator. The discovery of these
proto-replicators extends the definition of proto-replicators from [30] to include fixed-length
proto-replicators.

3.2 Replication Mechanisms of Emergent Replicators
Upon examination of these replicators, we detected the presence of distinct instruction motifs in
their genomes. These motifs consist of instructions involved in genome replication and suggested
that different replicators used different replication mechanisms. To explore this possibility, we per-
formed a step-by-step analysis of each replicatorʼs lifestyle by looking at the execution of their ge-
nomeʼs instructions. Avidians must perform four steps to successfully reproduce: allocate a blank
daughter genome, separate their read and write heads, copy their genome into the daughter genome
through some looping process, and divide off the daughter genome (see Section 2 for a fuller de-
scription). We were able to cluster the replicators into two replication classes based on a difference in
two traits: (1) how they separated their read and write heads to copy their genome and (2) how they
looped through their genome in order to copy their genome.

We named the first class of replicators hc replicators because of the hc instruction motif they all
share (see Table 1 for the Avida instructions and their descriptions). This class contains 62 replica-
tors (9 self-replicators). Only 8 of these replicators have a standard copy loop (see Section 2 for a
definition of a copy loop), which appears at the end of their genomes; these copy loops were marked
by the presence of a mov-head (g) instruction.2

Not having a copy loop, the remaining hc replicators loop through their entire genome in order to
replicate, that is, they use the circular nature of their genome to achieve self-replication without a
dedicated copy loop. In order to separate their read and write heads, replicators of this class move
the entry of the AX register placed by the h-alloc (w) execution into the CX register through the
execution of one or more instructions (in all but one case, one or two swap (r) executions). Then,
they would execute jmp-head (h) to move the write head 15 positions ahead to allow for genome
copying (the read-head location is usually between the first instruction and the third instruction
in the genome).

We named the second type of replicators the fg replicator class (given the fg motif they share).
The class consists of 12 replicators (11 self-replicators). All of these replicators have a copy loop at

2 Although Avidian genomes are circular, they have a defined beginning instruction where genome execution starts.

T. LaBar et al. Evolvability Tradeoffs in Emergent Digital Replicators

Artificial Life Volume 22, Number 4 487



Table 1. Instruction set of the Avidian programming language used in this study.

Instruction Description Symbol

nop-A no operation (type A) a

nop-B no operation (type B) b

nop-C no operation (type C) c

if-n-equ Execute next instruction only-if ?BX? does not equal complement d

if-less Execute next instruction only if ?BX? is less than its complement e

if-label Execute next instruction only if template complement was just copied f

mov-head Move instruction pointer to same position as flow head g

jmp-head Move instruction pointer by fixed amount found in register CX h

get-head Write position of instruction pointer into register CX i

set-flow Move the flow head to the memory position specified by ?CX? j

shift-r Shift all the bits in ?BX? one to the right k

shift-l Shift all the bits in ?BX? one to the left l

inc Increment ?BX? m

dec Decrement ?BX? n

push Copy value of ?BX? onto top of current stack o

pop Remove number from current stack and place in ?BX? p

swap-stk Toggle the active stack q

swap Swap the contents of ?BX? with its complement r

add Calculate sum of BX and CX; put result in ?BX? s

sub Calculate BX minus CX; put result in ?BX? t

nand Perform bitwise NAND on BX and CX; put result in ?BX? u

h-copy Copy instruction from read head to write head and advance both v

h-alloc Allocate memory for offspring w

h-divide Divide off an offspring located between read head and write head x

IO Output value ?BX? and replace with new input y

h-search Find complement template and place flow head after it z

Notes. The notation ?BX? implies that the command operates on a register specified by the subsequent nop instruction (for
example, nop-A specifies the AX register, and so forth). If no nop instruction follows, use the register BX as a default. Table
from [30]. More details about this instruction set can be found in [41].
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the beginning of their genomes; the copy loop was marked by the presence of an if-label and mov-head
(fg) instruction motif. In order to separate their read and write heads, replicators of this class do not
move the sequence length (here, the number 15) from the AX register to the CX register, as hc
replicators do. Instead, they loop through their copy loop 14 or 15 times to set the location of both
the read head and write head to 15. Next, hc replicators send the read head to the origin of repli-
cation (the instruction with address 0), usually via the mov-head (g) instruction, although two repli-
cators used jmp-head (h). Then, the read and write heads are a sequence length number of units apart,
and copying of the genome commences through the copy loop.

We also found one replicator that was a hybrid of these two classes. This replicator had a copy
loop at the beginning of its genome that ended with an if-label and mov-head (fg) instruction motif.
However, that replicator also used swap (r) and jmp-head (h) to move its write head to 15 in order to
begin genome replication, so it uses elements of both classes. This sequence turns out to be a true
self-replicator, not a proto-replicator. All replicator sequences from the three classes are listed in
Table 2 in the Appendix.

3.3 Evolvability of Emergent Replicators
We performed experiments to explore the evolvability of these replicators. First, we tested how
evolvable these emergent replicators are in terms of replication optimization (i.e., the optimization
of the replication algorithm). The majority of replicators in any class had a fitness less than 0.1 off-
spring per unit of time, while, by comparison, the default Avida ancestor genotype has a fitness of
approximately 0.25 offspring per unit of time (Figure 1). The replicators with the largest fitnesses
were all from the hc class.

To test for optimization evolvability, we evolved ten populations seeded with each replicator for
1,000 generations in an environment where they could not evolve new phenotypic traits (i.e., Bool-
ean logic calculations), that is, they could only improve the speed at which they replicated. The
genotypes with the highest mean evolved fitness all were of the hc type (Figure 2). Meanwhile, many
of the least evolvable replicators came from the fg-replicator class. These results suggest that the
replication machinery of an Avidian determines how well it can optimize its replication speed, re-
gardless of its starting fitness.

Figure 1. Ancestral fitness of each emergent replicator. Blue bars are hc replicators, while red bars are fg replicators. The
one yellow bar represents the single hybrid replicator.
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Next, we performed experiments to test how an Avidianʼs replication class affected its ability to
evolve new phenotypic traits. We again evolved ten populations of each replicator, but here we
selected for the ability of these Avidians to perform Boolean logic calculations (traits). We evolved
these populations for 104 generations (as opposed to the 103 generations for replication optimiza-
tion) to compensate for the possibility that trait evolution takes longer than optimization. Although
most populations did not evolve any phenotypic traits within that time, the replicators that led
to trait evolution were not evenly distributed across replication classes (Figure 3). We found that

Figure 2. Mean evolved fitness of emergent replicators in the optimization experiments. Error bars are twice standard error.
Blue bars are hc replicators, while red bars are fg replicators. The one yellow bar represents the single hybrid replicator.

Figure 3. Number of populations (out of 10) that evolved any novel phenotypic traits in the innovation experiments for
each emergent replicator. Color scheme as in Figure 2.
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7/12 of the fg replicators evolved at least one trait in every replicate; only 2/12 fg replicators did not
evolve traits in any experiment. In comparison, only one hc replicator evolved traits in every repli-
cate, and 36 hc replicators never evolved any traits. However, the trend was less distinct when con-
sidering the number of traits evolved in replicates that evolved at least one trait (Figure 4). We found
that some hc replicators could evolve as many traits as fg replicators.

3.4 Mechanism of Evolvability Tradeoff
The above results indicate that one class of replicators is better at optimizing replication ability (the
hc-replication class) and the other is better at evolving innovations (the fg-replication class). This
observation suggests a tradeoff between evolvability in the sense of phenotypic optimization, and
evolvability in the sense of phenotypic innovation. To explore this further, we studied how the dif-
ferent replication mechanisms affect and determine evolvability. Specifically, we examined the re-
spective algorithms the two classes use, and estimated the minimal number of instructions needed to
replicate (as genotypes that execute fewer instructions have a greater fitness).

First, we explored the replication algorithm used by the fittest hc replicators. These replicators
execute their entire genome (15 instructions). During this execution step, it will allocate its daughter
genome, set the write head to 15 (the read head is set at 0 by default), and copy V instructions into
the newly allocated daughter genome, where V is the number of h-copy (v) instructions in the ge-
nome. So far, 15 instructions have been executed and V instructions have been copied. The Avidian
needs to copy a further 15 − V instructions and divide off the daughter genome to reproduce.
During this first genome execution, the last instruction executed is a mov-head (g), which moves
the instruction pointer back to the beginning of that Avidianʼs copy loop. The Avidian will then
loop through the copy loop until its entire genome is copied into its daughter genome. As it needs
to copy a further 15 − V instructions (and it can copy V instructions per traversal), it will loop
through 15−V

V times. During each traversal through the copy loop, L instructions are executed, where
L is the size of the copy loop. Thus, to replicate the rest of genome, 15−Vð ÞL

V instructions are exe-
cuted. Therefore, hc replicators execute 15þ 15−Vð ÞL

V ¼ 15 − L þ 15 L
V instructions to reproduce.

Next, we will calculate the minimal number of instruction executions needed to replicate an fg
replicator. Unlike the hc type with a copy loop at the end of their genomes, fg replicators have a

Figure 4. Mean number of evolved phenotypic traits in the innovation experiments. Only populations that evolved at least
one trait were included in the data. Error bars are twice standard error. Color scheme as in Figure 2.
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copy loop at the beginning of their genomes. Denote this copy loop size again by L, and the
number of h-copy (v) instructions by V. First, fg replicators will loop through their copy loop 15 times,
executing 15L instructions during this step. During this looping, the fittest replicators will have allo-
cated their daughter genomes. This repeated looping process sets the location of both the read and
the write heads to 15. After the last copy execution is complete, the rest of the genome is executed,
requiring 15 − L instruction executions. During this step, the read-head location is set to 0. Next, the
instruction pointer is moved back to the beginning of the genome to begin genome copying. As
there areV h-copy (v) instructions in the copy loop, the copy loop will need to be traversed 15

V times.
Because the copy loop is L instructions long, this step requires 15L

V instruction executions. Therefore,
in total, fg replicators require 15L þ 15 − L þ 15 L

V instruction executions to reproduce.
By comparing the numbers of instruction executions required for replication by the two classes,

we can see that fg replicators require 15L more instruction executions when the copy loop size and
the number of h-copy instructions are fixed. We note here that this does not mean that fg replicators
have a greater mutation rate than hc replicators, as mutations are applied during division, not
genome copying. One other factor contributes to the optimization advantage of hc replicators.
The copy loop of fg replicators is located at the beginning of their genomes. These copy loops
cannot easily expand, as they are bounded in the genome by the fg instruction motif; expansion
requires at least two mutations. However, hc replicators have a copy loop at the end of their
genome; this copy loop can more easily expand. While a copy loop expansion with a random in-
struction would increase the number of executions required for replication, a copy loop expansion
with an additional h-copy instruction would decrease the number of times the copy loop needs to be
traversed. This would decrease the number of instruction executions needed for reproduction and
increase the fitness of an hc replicator.

Finally, we explored what prevented hc replicators from evolving any novel traits in many pop-
ulations, for example whether there is an optimization–innovation tradeoff. Replicators from the hc
class tend to fix beneficial mutations that enhance their replication ability. These mutations accu-
mulate in regions of the genome that subsequently cannot be mutated into the type of instructions
that discover novel traits. In turn, fg replicators do not optimize their replication ability as well as hc
replicators, and therefore they do not (in a sense prematurely) fix as many beneficial mutations to

Figure 5. Number of populations (out of 10) that evolved any novel phenotypic traits in the tradeoff experiments for
each ancestral replicator. Color scheme as in Figure 2.
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optimize the replication machinery. The failure to do so appears to have opened the opportunity for
those sequences to instead neutrally accumulate mutations that would later lead to trait evolution.

To test this idea, we took the fittest descendant of each ancestral replicator from the optimization
experiments and evolved them in an environment where phenotypic traits were under selection for
104 generations (Figure 5). These experiments are the same as the innovation experiments, except we
used evolved ancestors instead of the emergent replicators. Ten fg replicators and the hybrid replicator
evolved novel traits in at least one population, and many of these replicators evolved traits in all ten
populations. There is little difference in the evolution of traits in the fg replicators between these
experiments and the original innovation experiments (Figure 3). However, the rate of trait evolution
decreased in the hc replicators between these experiments and the original innovation experiments.
For the hc replicators, 26/62 evolved traits in at least one population in the original innovation
experiments; only 7/62 replicators evolved traits in these new innovation-after-optimization exper-
iments. The decrease of trait evolution between the original innovation experiments and these exper-
iments in the hc replicators (but not the fg replicators) indicates that their ability to optimize their
replication prevents the hc replicators from later evolving novel phenotypic traits.

4 Discussion

We explored the evolvability of a set of emergent (i.e., found through random search), fixed-length,
self-replicating sequences in the Avida digital life world. We found two distinct classes of replicators
that differ in their general (algorithmic) strategy for self-replication. We found that one of these
classes displayed an enhanced evolvability in terms of replication optimization, while the other
was more evolvable in terms of phenotypic innovation. The experiments performed here comple-
ment our previous work on the interplay between evolvability and self-replication, where we found
that most variable-length replicators were evolvable both in optimization and in innovation [30]. Using
the present (distinct) set of replicators, we were able to provide a functional explanation for the
differences of evolvability in emergent Avida replicators.

What consequences do these results have for the origin of life and its subsequent evolution?
There is some evidence to suggest that an optimization–innovation tradeoff may have existed in
the earliest RNA-based replicators. In experiments with RNA bacteriophage Qh, Mills, Peterson,
and Spiegelman showed that this virus would shrink to a minimal genome and remove the genes
essential for a viral lifestyle in order to optimize replication speed [38]. This suggests—although it
certainly does not prove—that a selection pressure to minimize genome size may have been part of
the RNA self-replication fitness landscape. When genome space is removed by selection, the ability
for phenotypic innovation to occur is impeded as the remaining genomic space may become too
small to contain the genes encoding novel traits.

We believe that the potential for an optimization–innovation tradeoff that hinders the evolution of
phenotypic novelty may be universal. However, we also know that the earliest replicators on Earth,
whether RNA-based replicators or other biochemical organisms, could eventually evolve phenotypic
innovations. Furthermore, Voytek and Joyce showed that two RNA enzymes could adapt to distinct
ecological niches in continuous evolution experiments, supporting the idea that novel phenotypic
traits could evolve in RNA replicators [56]. In fact, a similar tradeoff was also observed in exper-
iments with Avidian replicators (using a single hand-written ancestor ) [61], which showed that evo-
lution could take two different paths: one that favored fast replication, and another that traded
replication speed for the exploitation of complex phenotypes.

The optimization–innovation tradeoff we have argued for here can also be interpreted as a trade-
off for evolvability in two separate fitness components. In a previous article, this tradeoff between
replication rate and phenotypic complexity was compared to the well-known tradeoff between r and
K reproduction strategies [61]. However, the tradeoff between fitness components in these rep-
licators is not a fitness tradeoff, as classically discussed [52, 49, 23, 50]. Instead, the tradeoff is
one in terms of evolvability between two fitness components. Each replicator class is biased in terms
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of the generation of genetic variation, and this bias determines which fitness component is improved
by each replicator class. This result complements the previous observation in Avida, which argued
that historical contingency influenced which fitness component a population improved [61]. The
present results identify another factor, namely that genetic background alone may determine a pop-
ulationʼs evolutionary trajectory towards a specific ecological strategy.

One factor thought to influence evolvability is mutational robustness and the presence of neutral
mutations [58, 15, 34]. The presence of neutral mutations results in neutral networks throughout the
fitness landscape, allowing populations access to novel phenotypes [57]. We found a similar result
here. Replicators from the fg class fixed fewer beneficial mutations that optimize replication ability.
As a consequence, more of their genomeʼs instructions were neutral, and this in turn allowed them
to accumulate many mutations that eventually led to the evolution of complex traits.

What role did the presence or absence of neutral networks play in the origin of life? Early work
on (computational) RNA secondary structure predicted the existence of extensive neutral networks
in RNA landscapes [25]. However, more recent experimental work suggests instead that the empir-
ical fitness landscape of short RNAs contains isolated fitness peaks [26, 46]. It is possible that dif-
ferent emergent replicators could either be stuck on an isolated fitness peak (such as the hc
replicators) or else have access to a neutral network that leads to phenotypic innovation (such as
the fg replicators). Such a fitness landscape architecture would emphasize a strong role for historical
contingency in the origin and subsequent evolution of life.

Finally, in the work described here, Avidians obtain the “energy” necessary to replicate by per-
forming logic calculations on random binary numbers (the “tasks” metabolism), but the randomly
generated replicators do not have any such metabolic instructions. This is possible because an early
design decision gave each Avidian a certain amount of “base” energy for free, which they can aug-
ment by performing logic calculations. We can ask whether requiring that replicators possess some
basic metabolic process (such as, for example, NOT, the simplest of the logic operations) would
change the conclusions we arrived at here.

Requiring a minimal metabolism would certainly increase the minimal amount of information a
replicator must have from the I = −log26(75/10

9) ≈ 5.23 instructions [2] by a few instructions,
making the emergence of a replicator by chance that much more rare. We also would expect that
the metabolic instructions would be integrated with the replicator genes, which could affect the
ability of a replicator to optimize its replication machinery without affecting the metabolism. On
the other hand, having a seed metabolism present could also enhance the evolution of other logic
operations, for example by code duplication. While a detailed investigation of these questions must
await further work, an origin-of-life scenario without metabolic genes is not altogether far-fetched.
For example, the Lost City hydrothermal vents located near the summit of the Atlantis Massif [11,
10] on the mid-Atlantic seafloor produces hydrogen and simple carbohydrates “for free,” which
could be utilized by the simplest primordial replicators without the need for explicit genes. Such
replicators could then evolve the genes for autonomous metabolism later on, just as the Avidians
do in the experiments described here.
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Appendix: Sequences of Replicators

See Table 2.

Table 2. Sequences of fixed-length replicators organized by replication class.

hc Genomes

nuvhcwzscrchrxw wdphcrxswvprcff cxrphcwravgmspm dwtwrvhcbxivzrr

wmjrcshcikcivxg ahcqdqvwzjrcxet smvqztrchcwxxwj vvtxwfiwvzrchch

exwakshcvjjrckp zezvkrcwfsshclx dzzkzpvrcbwoxhc kpcchcpavbcrxwo

zwrchceekovxyzi rwvwtzubrcxkthc mzvjwmwrcuxhcng jvwpwhulxdarchc

pwzrvxqaarcchcl upathcvuwwwxkrc lxvwowxhcrcqnml lbrcwavhcwaahwx

yhcxxclwveblzrc whcwvemcxrchoxp qchcowvxrptjlbr nxzjvwzxsrchcjl

axzrchctvwijsca swvrhcxblrpwdir lvlkwovtrcxphcp xshcvxwrcdetbck

ynprcvxhcdfwlcj ezvxwpwrchcdkqc bwhcpvqzrcfhdtx awexwcbvrvbxhcr

qsozvdretrcwxhc xlczararhchvwxq izvrcqhczxbawdw oovwxnhrcqhclmy

ojrchcwxvfcwgzi fjyrrcbwhcixvbg kpavwrchcnbxupb wrchcsndlzfrvxg
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Table 2. (continued).

udptwrcxvnwvhca ozpvoabkwxcrchc unhcwklcvzrcxjg wwrcvohckqcxhvp

xhwfkmrcdjhcixv yzpftzvrctdhcwx frmvwzkrcvxvjhc slcrvhcwsslxzra

aarchcekvwxtpeg wifhorvthcxppwr awmmqlvxhmmrchc lbvxztawrcvlahc

szhcwrcwvxhcfwa lvxhtwjmwwrchcr mphcwvadiqslxrc lkexjvozxrchcwc

cpvzrcqxjhcwtdj bfqacswrcvxhczt peenvzwrchcxjgw pshcwrcpvfxqxld

eazhwxrchcvodsh iklkvwozljrchcx

fg Genomes

vfgxqhmwmfjphgb wvshxfgkfooxugb kvxfgwfyxukujgb dywqvphfguxqdgb

vmfifgwvpowxgbt aytvvmwxkfgohbi xnkwovyfgtxwqgb vnfgudsftwxwhgb

vlfgvmhwuxwlgbq cxvwfgepkhbtshi wvfghqtzoxjirgb wvfgxdmoprllwgb

Hybrid Genome

vmfgqwrmdkyxuhc
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