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Abstract
The evolution of cooperation has been a perennial problem in evolutionary biology because
cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while
compromising the long-term viability of the population. Evolutionary game theory has shown that
under certain conditions, cooperation nonetheless evolves stably, for example if players have the
opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common
pool.However, punishment has remained enigmatic because it is costly and difficult tomaintain. On
the other hand, cooperation emerges naturally in the public goods game if the synergy of the public
good (the factormultiplying the public good investment) is sufficiently high. In terms of this synergy
parameter, the transition fromdefection to cooperation can be viewed as a phase transitionwith the
synergy as the critical parameter.We showhere that punishment reduces the critical value at which
cooperation occurs, but also creates the possibility ofmeta-stable phase transitions, where populations
can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating
populations are unstable even above the critical value, because a group of defectors that are large
enough can ‘nucleate’ such a transition.We study themean-field theoretical predictions via agent-
based simulations offinite populations using an evolutionary approachwhere the decisions to
cooperate or to punish are encoded genetically in terms of evolvable probabilities.We recover the
theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems
that exhibit super-heating and super-cooling.We conclude that punishment can stabilize populations
of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above
the critical point.

1. Introduction

When individuals maximize their self-interest by
exploiting a public good, they are often doing so by
harming their (and others’) own long-term interest,
and create a social dilemma termed the ‘tragedy of the
commons’ [1]. The tragedy of the commons is often
discussed in environmental politics (for example,
overgrazing and overfishing), as well as social science
and politics (for example, vandalism and taxation) [1].
However, the tragedy of the commons also plays an
important role in evolutionary biology [2]: rate-yield
tradeoffs in bacterial metabolism [3], the evolution of
virulence [4], and the manipulation of a host by a

group of parasites [5] can be viewed as social dilemmas
involving a public good. Social dilemmas [6] (such as
the tragedy of the commons) can be studied within the
framework of evolutionary game theory (EGT) [7–
12], which describes populations of agents engaging in
pairwise (or groupwise) interactions, with defined
payoffs for different strategies. The tragedy of the
commons is usually described by a particular game
formknown as the ‘public goods’ game.

The public goods game is a standard within the
field of experimental economics [13–15]. In this game,
players possess tokens that they can invest into a com-
mon pool (the public good). The total sum con-
tributed by the players is then multiplied by a ‘synergy
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factor’ thus creating a positive yield. This amount
(typically larger than the invested sum) is then equally
distributed to the players in the pool, irrespective of
whether they invested or not. A group of players max-
imizes their investment if all the players contribute (so
as to take maximum advantage of the synergy). How-
ever, this behavior is vulnerable to ‘free-riders’: indivi-
duals that share in the pool but do not invest
themselves. It can easily be shown that the rational
Nash equilibrium for this game is not to pay in,
because this strategy clearly dominates all others
regardless of their play [1].

Hardin originally suggested that the tragedy of the
commons can only be avoided by punishing free riders
[1]. Indeed, it has been shown that punishment can
counteract defectors effectively [16–26], but punish-
ment is difficult to maintain because it is costly and
may reduce the mean payoffs of groupmembers com-
pared to groups in which punishment of free-riders is
not possible [27].

It was previously thought that punishment cannot
bemaintained in well-mixed populations [28] somost
of the literature has focused on the spatial version of
the game, where analytical results are difficult (but not
impossible) to obtain [29]. More recent work has
uncovered a decidedly more complicated picture, in
particular because punishment can be performed in a
number of different ways, that each change the
dynamics of the population considerably. For exam-
ple, if the punisher also rewards cooperators at the
same time [30], complex dynamics that depend on the
strength of punishment and the size of the synergy can
emerge in the spatial game; however the reward/pun-
ish strategy is only stable in rare circumstances. It is
also possible to punish in such a manner that the
severity of punishment depends on the number of
defectors [31]. In the spatial version of the game,
introducing such an ‘adaptive’ punishment leads to a
strong enhancement of the cooperative phase, as rare
punishers protect the boundary between the phases
with maximum punishment. Another variation of
punishment is to introduce a conditional punisher,
that scales punishment with the number of defectors
in the group [32]. In that game (also in the spatial set-
ting), conditional and unconditional punishers can-
not coexist, and who ultimately wins depends on the
strength of punishment. There are variations of the
public goods game in which punishment can bemain-
tained in other ways, for example by voluntary punish-
ment [29, 33–36] or by using a pool (that is
institutionalized) as opposed to peer punishment [36–
39], but we do not study those here.

A variant of the game that is closer to the one we
study here involves probabilistic punishment, where
rather than punishing any defector with certainty,
cooperators punish with probability π. Chen et al [40]
show that introducing a probability to punish changes
the fixed point structure of the game in the well-mixed

regime so that a repulsive interior fixed point can
appear, and this enhances cooperation also in the spa-
tial version of the game.

Here we study the well-mixed version of the public
goods game with probabilistic punishment and prob-
abilistic cooperation, establish a number of theoretical
results that suggest complex dynamics at the interface
between the cooperating and defecting phases (as a
function of the synergy factor) and clarify the role of
punishment as a catalyst of cooperation in extensive
agent-based simulations that agree with the theoretical
results.

2.Meanfield theory of public goods games

The public goods game emulates strategic decision
making by groups, in which an individual must select
between different decisions that affect the group as a
whole. Each individual in a group of k 1+ players (the
focal player and her k participants) can decide to
cooperate by making a contribution of 1 unit to the
public good, while defecting individuals do not
contribute.

The sum of all contributions from cooperating
players is multiplied by r (the synergy factor) and divi-
ded among all players. IfNC is the number of coopera-
tors within the group (but not counting the focal
player, i.e., N kC ⩽ ) and ND is the number of defec-
tors, then the cooperator obtains a payoff

P r
N

k

( 1)

1
1 (1)C

C= +
+ −

compared to the defector’s

P r
N

k 1
. (2)D

C= +

Adilemma exists if it is advantageous for the individual
to defect, while mutual cooperation would be best for
all. Clearly a defector does better if P P 0D C− > , so a
dilemma exists only if r k 1< + . At the same time, the
payoff for a cooperator playing within a group of
cooperators should be larger than the payoff for a
defector playing only with defectors, that is,
P N k P N( ) ( 0) 0C C D C= − = > which implies r 1> .
Thus, a dilemma exists only for r k1 1< < + (see
figure 1). Standard EGT arguments imply that defec-
tion is the rational (and optimal) strategy for
r k 1< + , while cooperation is selected for when
r k 1> + . The synergy parameter r can thus be viewed
as a critical parameter, dialing a phase transition from
defection to cooperation as r is increased through
k 1+ . This transition is (in the limit of infinite
population size and vanishing mutation rate) of first-
order (meaning an abrupt discontinuous transition
from defection to cooperation as the synergy para-
meter is raised across its critical value), as can be seen
from the replicator equation for the density of
cooperators Cρ
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( ) P P˙ 1 ( ). (3)C C C C Dρ ρ ρ= − −

Note that the public goods game turns into the
standard Prisoner’s dilemma for k= 1, with a dilemma
for r1 2< < .

How can this dilemma be solved? How can evolu-
tion achieve cooperation in the gray-shaded area in
figure 1? The answer is: this is impossible unless addi-
tional mechanisms change the critical point below
r k 1c = + . One such mechanism investigated in the
literature is giving players the option to punish players
who do not contribute. Following the notation of
Helbing et al [26], defecting players suffer a fine kβ
levied by each punisher in the group, which costs each
punisher a penalty kγ . LetNM be the number of play-
ers that cooperate as well as punish (the ‘moralists’)
and NI the number of defectors that punish (‘immor-
alists’). As before, NC and ND are the number of play-
ers that cooperate, namely defect but do not punish.
The payoffs for the four possible strategies then
become

P r
N N

k

( 1)

1
1, (4)C

C M= + +
+ −

P r
N N

k

N N

k

( )

1

( )
, (5)D

C M D Iβ= +
+ − +

P P
N N

k

( )
, (6)M C

D Iγ= − +

P P
N N

k

( )
. (7)I D

D Iγ= − +

2.1.Mean-field theory
Let us calculate the critical point for the game with
punishment, assuming a well-mixed population so
that each player encounters on average the same
fraction of strategies. Introducing the mean density of
cooperators Cρ and themean density of punishers Pρ

N N

k
, (8)C

C Mρ = +

N N

k
, (9)P

M Iρ = +

along with
N N

kD
D Iρ = +

we can write the average

payoffs for each of the four strategies as

( )
P r

k

k

1

1
1, (10)C

Cρ
=

+
+ −

P r
k

k 1
, (11)D

C
P

ρ
βρ= + −

P P , (12)M C Dγρ= −
P P . (13)I D Dγρ= −

Investigating P PC D− again, we notice that the area
where the dilemma exists is now shifted by Pβρ (see
alsofigure 2):

( )r k1 ( 1) 1 , (14)P Pβρ βρ− < < + −
where the right boundary corresponds to the critical
point r k( 1)(1 )c Pβρ= + − separating a cooperating
and a defecting phase. Because we will be concerned
with this critical point from now on, let us introduce
the re-scaled synergy parameter r k( 1)ξ = + . The
critical point is then 1c Pξ βρ= − . According to
standard population genetics, a single cooperating
individual cannot invade a population of defectors
unless its fitness advantage P PC D− is positive, which
implies 1 Pξ βρ> − . However, if the entire popula-
tion consists of defectors, punishment is expected to
be absent because defectors do not punish each other
(i.e., we assume here that immoralists do notmatter in
the long run, as was found in numerical simula-
tions [26]).

What happens if a group of cooperators (rather
than a single individual) tries to invade the defectors
(or a group of defectors tries to invade the coopera-
tors)? Because the fitness of any group is frequency-
dependent, we have to recalculate themean fitness of a
group as follows: assume a population of strategies
given by the mean densities ( , )C Pρ ρ . Let us also
assume that, in general, cooperators punish with a
probability Cπ , while defectors punish with a

Figure 1.The phase diagramof the public goods gamewith a
synergy factor r. Below r=1 defection is the strategy with the
highest payoff and therefore favored by evolution. Conver-
sely, above r k 1= + cooperation is evolutionarily favored. A
dilemma exists in the gray-shaded area between r=1 and
r k 1= + , where cooperationwould be beneficial for a
cooperating group as awhole, but defection is theNash
equilibriumpoint and thus evolutionarily favored.

Figure 2.The phase diagramof the public goods gamewith a
synergy factor r and punishment. Compared tofigure 1, the
area where a dilemma occurs is shifted toward lower r,
implying that cooperation can occur for smaller r (right
boundary of dilemma area). A single defector cannot invade
the population to the right of the critical point, and a single
cooperator cannot invade to the left of rc.
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probability Dπ . Then, P C C D Dρ π ρ π ρ= + . The mean
fitness of a group of cooperators is then given by

w P P P¯ ( 1 ) , (15)C C C M C C Dπ π γπ ρ= − + = −
using the payoffs (10)–(13), and the fitness advantage
of the cooperating typewith respect to the defectors is

w w P P¯ ¯ ( )

1 ( )

( )( ) . (16)

C D C D C D D

C D

C D D

π π γρ
ξ β π π

π π β γ ρ

− = − − −
= − + +

− − +

We will see in the numerical results below that
immoralists go extinct quickly (because they bear the
double cost of meting out and receiving punishment).
As a consequence, we set 0Dπ = (defectors do not
punish), and write the cooperator’s probability to
punish as Cπ π≡ , so that

w w¯ ¯ 1 ( ) . (17)C D Dξ βπ π β γ ρ− = − + − +
Equation (17) implies that punishment enables a
‘premature’ phase transition to cooperation as long as
a ‘nucleus’ of cooperators C

inρ of sufficient size exists: a
hallmark of metastability (see figure 3). Thus, a
‘fluctuation’ of pure moralists ( 1, 1C

inρ π= = ) is
stable at 1ξ β= − , which can be significantly smaller
than 1 if the effect of punishment is large. However,
the opposite dynamics occur for groups of defectors:
they can invade stable cooperators at 1ξ > as long as
the density of invading defectors D

inρ is large enough.
As outlined in figure 3, a ‘fluctuation’ into all defectors

1D
inρ = is stable for 1ξ πγ= + , which can be

substantially larger than 1 when the defectors displace
perfect moralists ( 1π = ). Thus, punishment enables
both cooperation and defection in ameta-stable phase,
away from the critical point 1ξ = . This behavior is
akin to the phenomenon of supercooling/

superheating, and can result in hysteresis: a population
that starts in a defecting phase will stay in the
cooperating phase past the critical point 1ξ = as ξ is
raised adiabatically from low values, and remain in the
defecting phase past the critical point as ξ is lowered
from high values adiabatically. We will verify this
behavior in the numerical simulations that follow.

3. Evolutionary simulation of public goods
games

In this section we test the predictions of the (infinite
population size) mean-field theory using agent-based
simulations with finite population size. The popula-
tion consists of 1024 individuals who each have four
(randomly assigned) opponents, that is, we use k = 4
throughout in the results presented here (with some
results for k = 8). For populations of this size, neutral
drift is negligible and results do not change qualita-
tively if populations are larger. However, the steepness
of the transition between defection and cooperation
may depend on the population size in the standard
manner expected from finite-size scaling arguments
(see, e.g., [41, p 441]).

3.1. Game dynamics and genetic algorithm
Since all opponents are also players, each individual
plays k 1+ games per update. The actual play of each
individual is determined by their probabilities to
cooperate pC and to punish pP encoded as two genetic
loci, which can be thought of as the outcome of a
network of genes that encode this decision. When
mutating strategies, instead of mutating the individual
genes that make up the decision pathway, we simply
replace the parental probability pC by a uniformly
drawn random number in the offspring. We will call
the locus encoding the probability pC simply the ‘C
gene’ and similarly for the punishment gene.

When every individual has played against its k
partners, 2% of the population is replaced using a
Moran-like process [42] in a well-mixed fashion. The
Moran-like process with a finite replacement rate
interpolates between a true Moran process (replace-
ment rate equal to inverse population size) and a
Wright–Fisher process, where the entire population is
replaced every update. In our replacement scheme, the
identity of the players in any group is unrelated to their
ancestry so that, effectively, the members of a parti-
cular playing group are randomly selected from the
population [43]. With a replacement rate of 2%, it
takes on average 50 population updates until the entire
population is replaced, that is, a single generation has
elapsed. In our simulations, the fitness of each indivi-
dual is cumulative, that is, the payoff obtained in the
next update of the population is added to the payoff
already obtained (until that player is removed). How-
ever, we have tested that zeroing out the fitness after
each update does not alter the game dynamics.We also

Figure 3. Invasion probabilities for afixed density of
cooperators C

inρ , as a function of the critical parameter ξ.
Cooperation is stable for 1ξ < as long as the initial density of
cooperators C

inρ is high. For 1C
inρ = , cooperators are stable

at 1ξ βπ= − , which corresponds to the point
k( 1)(1 )Pβρ+ − infigure 2. For general C

inρ the critical
point is 1 ( )(1 )C

inξ βπ π β γ ρ= − + + − , whichmay be
larger or small than 1. For C

inρ =0, the critical point is actually
to the right of the critical point in the absence of punishment,
that is, punishment hinders the establishment of cooperation.
We sketch invasion probabilities as continuous across the
critical lines to indicate the effect of finite population size.
Increasing the population size creates steeper transitions
approaching a sudden transition.
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verified that varying the replacement rate does not
change the dynamics of the population in this game,
unlike in the case where strategies communicate [44].
Indeed, if strategies make their play dependent on the
last play, then replacing the opponent can introduce
noise into the communication, resulting in different
levels of cooperation.

We verified that the probability for a player to
encounter cooperators is independent of whether that
player is a cooperator or a defector, as is required for
well-mixed populations [45]. The accumulated payoff
(fitness) is used to calculate the probability that this
player’s strategy will be chosen to replicate and fill the
spot of a player that was removed in the Moran pro-
cess. In case payoffs (calculated according to the
equations above) are negative, we add a constant pay-
off to each and every strategy so that the relative pay-
offs are unchanged (it is known that such an offset
does not alter the population dynamics). While the
spatial version of the game shows somewhat different
dynamics than studied here, we study the well-mixed
version because it is amenable to theoretical predic-
tion (see section 2).

The two genes of every individual mutate with a
probability μ when replicated. As mentioned earlier,
mutating a probability replaces the probability with a
uniformly distributed random number. We used a
fixed mutation probability ( 2%μ = per locus) in the
results presented here, except when we test the influ-
ence of the mutation rate on the broadening of the
phase transition.We have previously studied the effect
of varying mutation rate in this game [46] and found
only a weak dependence on the location of the fixed
point.

3.2. Line of descent (LOD)
After 500 000 updates, the LOD of the population is
reconstructed [47, 48], by picking a random organism
of the final population and following its ancestry all
the way back to the starting organism. This is possible
because no recombination occurs between genotypes:
descent is entirely asexual. The LOD recapitulates the
evolutionary dynamic of the population, because it
contains the successive list of genotypes that have
achieved fixation in the population. Because the
population size is large, only a small fraction of
mutations (on the order 1/NwhereN is the population
size) find themselves on the LOD by chance. Thus, the
LOD reflects the selective pressures operating on the
population, and the fixed point of the evolutionary
trajectory faithfully characterizes these pressures. The
ancestral genotype that anchors all lines of descent is
given by the random strategy pC = 0.5 and pP = 0.5.
Because there is only one species in these populations,
the individual LODs of the population coalesce to a
single LOD fairly rapidly (which is why it is sufficient
to pick a random genotype for following the LOD). In
other words, the common ancestor of the entire

population is invariably fairly recent. To be certain
that we deal with LODs that have coalesced when
calculating strategy fixed points from the LOD, we
routinely discard the last 50 000 updates (about 1000
generations) from every run. When determining
evolutionary fixed points for the trajectory, we also
discard the first half, as the population trajectory may
still be transient.

4. Results

4.1. Evolutionary trajectories andfixed points
As the strategies adapt to the environmental condi-
tions (specified by the parameters that define the
game, including the neighborhood size, the mutation
rate, and the replacement rate), the probabilities
change from their initial values p p( , ) (0.5, 0.5)C P =
toward the selected ‘fixed point’ strategy. In order to
visualize the evolutionary trajectory of a population,
we reconstruct the evolutionary LODof an experiment
(LOD, see section 3.2), which tells the story of that
adaptation, mutation by mutation. While the LOD in
each particular run can show probabilities varying
wildly, averaging many such LODs can tell us about
the selective pressures the populations face. In parti-
cular, averaging the probabilities on the LODs after
they have settled down, can tell us the fixed point of
evolutionary adaptation [44]. We determine this fixed
point by discarding the first 250 000 updates of every
run (the transient), along with the last 50 000 (in order
to remove the dependence of the LOD on the
randomly chosen anchor genotype) and averaging the
remaining 200 000 updates. Note that this fixed point
is a computational fixed point only: we do notmean to
imply that the population’s genotypes all end up on
this exact point. Rather, due to the nature of the game
and the selective pressures that change as the composi-
tion of the population changes, the evolutionary
trajectories approach this point and then fluctuate
around or near it. Thus, the fixed point reflects the
mean successful strategy given the conditions of
the game.

We show in figure 4 the average trajectories for
three different synergy factors r = 3, 4, and 5 all
anchored at the random strategy p p( , ) (0.5, 0.5)C P =
that was used as the seed strategy for every evolu-
tionary run.We can see that, depending on the synergy
(and the values chosen for the cost and effect of pun-
ishment), populations evolve toward a cooperating or
defecting fixed point, and take different trajectories to
get there. For r = 3, synergy is too low to lead to coop-
eration, and the fixed point of that trajectory is
p p( , ) (0, 0)C P = , that is, defection. For r = 4, how-
ever, the population moves toward a fixed point cen-
tered around p p( , ) (0.7, 0.2)C P = , that is, players
cooperate most of the time. (The location of the end-
point of the trajectory does not depend on the starting
point.) Note, however, that the players engage in
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punishment only sparingly. For r = 5, cooperation is
almost fully established, while punishment occurs
about 40% of the time on average. However, the aver-
age trajectory (average over ten independent runs)
only tells part of the story, because at this level of coop-
eration there is very little difference between a punish-
ing and a non-punishing player (given there are very
few players to punish) and as a consequence the pun-
ishment gene has begun to drift. An unselected (and
thus drifting) probability pP is a uniformly distributed
random number, withmean 1/2 and variance 1/12. As
p 1C → , the average pP and its variance approach pre-
cisely these numbers.

When mapping the strategy fixed point (average
strategy on the LOD over 20 independent runs, again
discarding the transient and the last 50 000) as a func-
tion of the parameters β (effectiveness) and γ (cost) of
punishment (defined in section 2) each in the range
from 0.0 to 1.0 and at low synergy r = 3.0, we find that
defection is the most prevalent strategy on the LOD
(see figure 5(A)), as was found previously [25, 26].
When 0γ = there is no cost associated with the pun-
ishment, which implies that the P gene is not under
selection and drifts. Thus, for this value of synergy
(and lower), we find that the strategy fixed point is
defection without punishment, except for the values

0γ = , where punishment is random.
As the degree of synergy increases to r = 3.5, coop-

eration starts to appear even in this well-mixed popu-
lation (see figure 5(B)), while it appears as early as r= 2
for sufficiently high β and low γ in the spatial (but
deterministic) version of the game, see [25, 26]. For
r = 4 we find players cooperating (p 0.8C ≈ ) at high β
and low γwhich indicates that under conditions where

punishment is not very costly or even free, punish-
ment pays off. In addition we notice that the prob-
ability to punish increases under the same conditions
that allows cooperation (high β and low γ, that is high
impact, low cost of punishment), indicating that pun-
ishment is indeed used to enforce cooperation
(figure 5(C)). The mean punishment probability
grows to 0.5, but at the same time the variance shows
that this gene is not under selection (as long as 0γ ≠ ).

Increasing the synergy level even more toward
r = 4.5 we witness the emergence of dominance of
cooperation (p 0.5C > ) for most of the range of pun-
ishment cost and effectiveness, see figure 5(D). At the
same time the punishment probability reaches 0.5 for
a larger range of parameters, but the mean punish-
ment probability on the LOD never exceeds 0.5,
implying that full persistent punishment is not stable,
and probably not necessary. Note that, in an imple-
mentation where decisions are deterministic (such as
in the implementation of Helbing et al [26]), punish-
ment may remain for a long time in the population
even though it is not selected anymore. In that case,
players that cooperate with and without punishment
have exactly the same fitness, and one or the other
strategy should only dominate by drifting to fixation
neutrally, a process that can take a significant amount
of time in large populations such as those studied
in [26].

4.2. Critical dynamics and the role of punishment
Previously, a phase transition between cooperative
and defective behavior in the public goods game as a
function of the synergy r was observed for the spatial
version [25, 28, 29] of the game (but not the well-

Figure 4.Evolutionary trajectories for different synergies. Evolution of strategies p p( , )C P on the LOD for synergy factors r=3 (black),
r=4 (green), and r=5 (red). All trajectories originate at (0.5, 0.5).We show an average of the LODof 10 runs each.Here, 0.8β = ,

0.2γ = , and 2%μ = .
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mixed version). We can study the critical point and its
dependence on punishment in detail in thewell-mixed
version of the game, where analytical predictions (as

outlined above) are available. We show in figure 6 the
average probability to cooperate (solid line) and to
punish (dashed line) as a function of synergy for our

Figure 5.Mean probabilities for cooperation pC and punishment pP at the evolutionaryfixed point. These graphs show the fixed point
(averaged over 20 LODs) as a function of the cost of punishment γ and the effectiveness of punishment β, for different values of the
synergy r. Left panel: probability to cooperate pC, right panel: probability to punish pP. Note the inversion of the β and γ scales for
better visibility.Mutation rate is set to 2%μ = per probability throughout. (A) For r=3, cooperation does not evolve except when
punishment is free ( 0γ = ), and even then only if punishment is very effective (β close to 1). At 0γ = , the punishment gene drifts
neutrally. (B) For r=3.5 defection is still the predominant strategy except for very low γ and high β. (C) At r=4, cooperation is fully
established for low γ and high β, but not formedium values. (D) For r=4.5 cooperation is the dominant strategy for all values of the
cost γ, and for high effect ( 0.75β > ). Note that the average punishment probability pPnever exceeds 0.5 (the value achievedwhen the
gene drifts neutrally).

Figure 6.Mean probability of cooperation and punishment. Probability of cooperation pC (solid, left scale) and probability of
punishment pP (dashed, right scale) with adaptive punishment at the evolutionary fixed point of the trajectory, as a function of the
synergy r ( 0.8, 0.2, 2%β γ μ= = = , 100 replicates for each data point). The probability to cooperate when punishment is forced to
zero (pP=0) is shown in the inset, for twodifferentmutation rates: 2%μ = (dashed) and 1%μ = (solid).
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default values 0.2γ = and 0.8β = . Cooperation sets in
at r = 4 and becomes prevalent for synergies just
exceeding that. The simulations show that the phase
transition is broadened from the expected first-order
behavior, owing to two factors: finite population size
and finite mutation rate. The inset in figure 6 shows the
transition in the absence of punishment at two different
mutation rates, suggesting that mutations introduce
‘disorder-broadening’ [49], which can lead to complete
‘rounding’of the discontinuous transition.

Wewill now study howpunishment affects the cri-
tical point. The average probability of cooperation in
figure 6 shows the typical behavior of an order para-
meter as a function of the critical parameter r in a
broadened first-order transition. Thus, although pun-
ishment is sporadic when it is possible—and drifts
when cooperation is established—it is essential to
lower the critical barrier for cooperation. The prob-
ability distribution of the punishment gene through-
out the population (figure 7) shows that punishment is
never prevalent: it is absent below the critical point,
while the distribution is close to uniform (because of
drift) above it. In a sense, punishment catalyzes the
transition from defection to cooperation. Note also
that the levels of cooperation achieved (at a given r) are
significantly higher when punishment exists, even
though punishment is only weakly selected for. Appar-
ently, the possibility of punishment alone is sufficient
to enforce higher levels of cooperation, but the
mechanism for this enforcement is not immediately
clear as punishment is rare above the critical point.

In section 2 we calculated approximately the point
at which cooperation is favored in a mean-field
approach that does not take mutations into account,
by writing equations (4)–(5) in terms of the density of
cooperators Cρ encountered by players in a group, and
found that cooperationwas favored as long as

( )r k( 1) 1 . (18)Pβρ> + −

This equation (which also follows from a replicator
equation approach for the corresponding determinis-
tic game) implies that the emergence of cooperation

depends crucially on the density of punishers. In fact,
the mean-field theory predicts that cooperation in the
absence of punishment is favored only at r = 5. We see
cooperation emerge quite a bit earlier than in our
simulations (see inset in figure 6), but crosses pC = 0.5
very close to r = 5, as predicted by the mean field
theory. Of course, the departure from the mean-field
theory results is a consequence of the finite population
size andmutation rate of the simulations.We also note
that while the simulations suggest a stable fixed point
p 1C < above the critical point, this does not mean
that the corresponding fixed point for the determinis-
tic game admits a stable mixture of cooperating and
defecting strategies.While from general arguments the
fixed point of the stochastic gamemust be given by the
corresponding fixed point of the deterministic game
[50] (see also [51]), the ‘broadening’ of the phase
transition via mutations (the equivalent of random
quenched impurities [49]) leads to a stochastic fixed
point with p 1C < . But note that this fixed point is
statistical only: for each run the trajectory fluctuates
around this point.

We can test equation (18) explicitly by finding the
critical r at which pC crosses 0.5 for simulations in
which the punishment probability is held fixed, so that

pP Pρ ≈ . To find the critical point, we performed 100
simulations each at fixed r with small increments rΔ
and interpolated the data within the steep portion of
the transition to find the crossover point. The curves
in figure 8 show that the steepness of the transition
between cooperation and defection depends on the
level of punishment, changing from a dependence
reminiscent of second-order transitions (at vanishing
punishment) toward a first-order-like transition at
high punishment. We plot the critical line
r k( 1)(1 )c Pβρ= + − in figure 8 for k = 4 and

r p0.8( 5 4 ).c Pβ = = − The mean field theory repro-
duces the simulated rcwithin errors. The prediction in
fact works just as well for other parameter values: we
tested k = 8 (each agent plays with eight random other
agents) and readily observe that the critical value is
given by r p10 8c P= − (data not shown).

Figure 7.Histogramof the punishment probability distribution. Punishment probability distribution in a typical equilibrated
population, just before the critical point (r = 4, black), at the critical point (r=4.15, gray), and above rcrit (r=4.5, white).
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Because of the crucial importance of punishers in
determining the synergy level at which cooperation
emerges, the public goods game with a genetic basis
(that is, with genes coding for probabilities of moves)
implies curious dynamics close to the critical point.
Below the critical point, defection is a stable strategy,
and punishment is absent.When cooperation emerges
as a possibility, punishment becomes more and more
important, leading to a lowering of the critical synergy
for cooperation via equation (18). At that point, coop-
eration emerges rapidly and decisively once a critical
level of punishment has been achieved. Once coopera-
tion is dominant and defectors are all but driven to
extinction, punishment becomes irrelevant and the
gene for punishment begins to drift. As this happens,
the fraction of punishers drops, thus raising the critical
synergy according to equation (18). As a consequence,
a drifting punishment gene can lead to the sudden re-
emergence of defectors as stable states. Once those
have taken over, the reverse dynamics begins to
unfold. Given this dynamic, we should observe peri-
ods of cooperation and defection that follow each
other closely when the synergy is near the critical
point.

These dynamics are reminiscent of the phenom-
enon of supercooling and superheating in certain
phase transitions observed in condensed matter phy-
sics, as predicted in section 2. If we imagine the
synergy parameter r as the critical parameter and the
mean probability to cooperate as the order parameter,
it is possible that when r is slowly increased, the popu-
lation remains in the defecting phase because a switch
to cooperation requires a critical number of coopera-
tors as a ‘seed’. In such a situation, the defecting phase
is unstable to fluctuations. If a critical number of
cooperators emerges by chance, punishment

immediately becomes effective against defectors, low-
ers the critical point as implied by equation (18), and
the population could transition to cooperation very
quickly. A hallmark of such bi-stable systems that
require nucleation events in order to transition is hys-
teresis, a phenomenon where the state of the system
depends on its history. We can test whether hysteresis
exists in the public goods game (and whether the
strength of this effect depends on the probability to
punish), by adiabatically changing the synergy para-
meter first from low to high (transitioning from defec-
tion to cooperation), and then adiabatically back from
high to low. While we see evidence of hysteresis even
when punishment is absent (figure 9(A)), the effect is
muchmore pronounced when punishment is possible
(figure 9(B)). The population moves from coopera-
tion to defection at about the expected critical synergy
r 4.15crit ≈ as r is decreased, but stays in the defecting
phasemuch beyond the critical point as r is increased.

The observed hysteresis effect implies that once
cooperation is established, it can be maintained even
when the expected synergy fluctuates below the critical
point, but that cooperation is difficult to establish even
when the synergy would be conducive for that estab-
lishment. It also explains why levels of cooperation are
higher when punishment is possible, even if punish-
ment is used sparingly. In meta-stable phase transi-
tions, bubbles of the new phase increase in size
exponentially if larger than a critical size, but shrink
exponentially when smaller than the critical size [52].
Thus, if a group invades with C

in
critρ ρ> , 1Cρ → .

This is different from the dynamics in the absence of
punishment, where at the critical point all C

inρ have the
same fitness, and the mean level of cooperation is 0.5,
as is evident in figures 4 (inset), and 8(A). Indeed, the
critical point for 0Pρ = (no punishment) is neutral,

Figure 8.Critical point atfixed punishment for k=4 (A)Mean probability to cooperate averaged over 100 independent lines of
descent (average over 200 Kupdates, discarding thefirst 250 K and the last 50 K as described in section 3.2, as a function of synergy r
for fixed (unevolvable) probability of punishment pP=0.0, 0.25, 0.5, 0.75, and 1.0. The dashed line indicates amean probability to
cooperate pC=0.5, whichwe use to extrapolate the critical value rc. This critical value depends on the punishment levels as predicted
by equation (18). (B) Critical synergy rc as a function of punishment probability pP as deduced frompanel (A) (points) by identifying
the rcrit at which the cooperation probability pC=0.5. The dashed line indicates the prediction r 5(1 )c Pβρ= − , assuming that the
density of cooperators pP Pρ ≈ (meanfield), with 0.8β = and 0.2γ = .
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while it is a repulsive fixed point when punishment is
present. As a consequence, the phase transition as a
function of r becomes steeper and steeper as punish-
ment increases, and higher levels of cooperation are
achieved. This behavior is strongly reminiscent of
phase transitions in ferromagnetic systems where the
‘rounding’ of the transition due to impurities is
reduced via the magnetic field. This suggests that a
treatment of public goods games in terms of Ising-like
models where punishment plays the role of amagnetic
field forcing the alignment of spins should be possible,
andwe are currently pursuing such an approach [53].

5.Discussion

We studied the public goods game for well-mixed
populations both theoretically and in agent-based
simulations of Darwinian evolution of stochastic
strategies, using genes that encode the probabilities for
cooperation and punishment. It is known that punish-
ment can drive the evolution of cooperation above a
critical synergy level as long as there is a spatial
structure in the environment [25, 26]. It was also
previously believed that in well-mixed populations
cooperation via punishment can only become success-
ful if additional factors like reputation [22] or the
potential for abstaining from the public good [29, 34]
are influencing the evolution. Here we show that
cooperation readily emerges in a well-mixed environ-
ment above a critical level of synergy. This critical level
is influenced by a number of factors: the rate of
punishment because punishment favors cooperating
groups, but also spatial structure [25, 28, 29], because
a single cooperator can nucleate a transition simply
because offspring cooperators are placed next to it,
giving rise to a ‘bubble’ of cooperators of sufficient
size. This finding is similar to the observation of
frequency-dependent cooperation when punishment
(but not cooperation) is probabilistic [40], even

though the game studied byChen et al is different from
the game we consider here in that punishment is
shared among the punisher, whereas in our game
(which is the one studied by Helbing et al [26]), each
punisher acts on his own.

We have not studied here the possibility of ‘anti-
social’ punishment [19, 54, 55], where non-cooperat-
ing defectors can punish cooperators, but we do not
expect this possibility to change the overall picture.
Indeed, in simulations in which defection was not
punished but instead rewarded (a negative punish-
ment), this only served to reinforce the defecting
phase, as was also found in [56]. A transition to the
cooperative phase still takes place at sufficiently high
synergy. Phase transitions between cooperative and
defection phases have also been observed in a spatial
version of the public goods game where costly rewards
are given for cooperation, rather than the costly pun-
ishment for defectors [57]. It would be interesting to
study that game within the context of the evolving
probabilistic strategies studied here.

We conclude that in well-mixed populations
cooperation can emerge if the synergy outweighs the
defectors’ reward, which is reduced by punishment. A
punishment-dependent barrier to cooperation intro-
duces an interesting dynamic near the critical synergy.
Starting in the cooperative phase, as long as the muta-
tion rate is low enough, the dearth of defectors in the
cooperating phasemakes punishment obsolete, that is,
the selective pressure to punish disappears. As a con-
sequence, the density of punishers decreases, thus
increasing the critical point in turn. If the critical
synergy has increased sufficiently, defectors can again
gain a foothold. Such a shift, however, reinstates the
selective pressure to punish, leading to a re-emergence
of moralists that can drive defectors out once more.
Thus, for synergy factors near the critical point, we can
expect oscillations between cooperators and defectors,
and no strategy is ever stable.

Figure 9.Hysteresis effect frompunishment. Population fraction of cooperators (measured as the density of non-punishing
cooperators plus the density ofmoralists) as a function of synergy rwhen r is adiabatically changed from low to high values (solid), and
back fromhigh values to low values (dashed). (A)Nopunishment. (B) Adaptive punishment with 0.8β = and 0.2γ = . All
population fractions are started at 0.5 (either at the high or low end of r). The lines show the average over 100 runs. Standard error is of
the size of thefluctuations.
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Finally, the observation of hysteresis implies the
existence of metastable states, and gives rise to a self-
enforcing (or ‘self-aligning’) dynamic where coopera-
tion is stable even when punishment is never actually
used. It is clear that meta-stable dynamics can only
occur in the shaded region in figure 3, which is set by
the probability π with which cooperators punish, and
provides a mechanism to protect cooperating groups
from defectors, as the defectors need to achieve a cri-
tical density in order to thrive. In a very real way,meta-
stability raises the scepter of punishment to maintain
cooperation, evenwhen it is not used.
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