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Introduction 
Consider any biological or engineering network (a protein-protein interaction 
network, the neuronal connectivity network of the nematode C. elegans, or a social 
network of friends). In the standard approach to network theory, we can analyze the 
network’s structure and topology: observe a small-world property, study the degree 
distribution, or simply note that the network appears to be quite complex. But the 
human notion of complexity cannot distinguish a functional network, a random graph, 
or a randomized version of the functional network, where edges have been 
reconnected such that the degree distribution of the network is conserved. In what 
way then is a random graph different from a functional graph? Here we present a new 
method to quantify the complexity of a network by using motif frequencies in 
conjunction with information theory. We apply this measure to modular and bipartite 
artificially grown networks to demonstrate the potential of the measure, and then 
apply it to a number of well-known biological networks. 
 
Results 
Let us consider motifs of size n with a measured abundance distribution that translates 
into a probability distribution of motifs pi

(n)  which is the probability to observe motif i 
among the M n possible motifs of size n. We can then define an n-gram motif entropy 

H (n)
= − pi

(n ) log2

i=1

Mn

∑ pi

(n) .         (1) 

The amount of information per n-motif is then given by the difference between the 

maximal entropy Hmax
(n)

= log2 M n and Eq. (1): 

I (n )
= log2 M n − H (n)    (2) 

However, the maximal entropy log2 M n is dependent on the degree distribution, it is 

also clear that a good part of the information content is determined by the degree 
distribution itself.  To correct for this, we can calculate the entropy of motifs under a 
randomization procedure that keeps the degree distribution intact. Counting the motif 

abundances for such a random network gives us an entropy H R

(n) and respectively the 

information content IR

(n )
= log2M n − H R

(n) . However, because some of the structural 

information content is likely used for function, the purely functional information 
content remains ambiguous. As an alternative we can calculate the relative entropy (or 
Kullback-Leibler distance): 

D(n) (p || q) = pi

(n ) log
pi

(n)

qi

(n)
i

∑ ,  (3) 

using the abundances of motifs qi

(n )  obtained by randomizing the network while 

conserving the degree distribution. This measure of functional network complexity is 
positive, and vanishes if the motif distribution of the network studied is unchanged 
under the randomization procedure. To test this measure, we simulate a process that 



 

 

creates complexity in a random graph, by growing scale-free modular networks using 
two types of nodes [1]. During growth, we allow edges to connect nodes of the same 
type with probability 1-p and nodes of different types with p (so that a value p=0.5 
creates completely random scale-free networks). At the extreme points we find 
networks very different from random, that is, structurally complex. For p=1 nodes of 
the same type are always connected while for p=0 we have no connection between 
nodes of the same type. If nodes of the same type form a module, then networks with 
p=1 are perfectly modular while graphs with p=0 are bipartite, or anti-modular. For 
the simplest case of motifs with depth n=3 and undirected edges (and no node can 
connect to itself) we have two possible motifs (triangle and line). In highly modular 
(p=1) networks we find more triangles than lines, in contrast to bi-partite graphs 
where triangles are absent. Figure 1 shows a calculation of the network complexity in 
terms of the relative entropy as a function of p, demonstrating that only the modular 
and anti-modular networks are deemed complex using this measure. We also see that 
larger motifs (n>3) have a higher resolution of complexity. 

 
Figure 1: Relative complexity for various motif sizes. Networks with two different 
types of nodes were grown with different values of p. 
 
Discussion 
We introduce a new measure of complexity that utilizes motifs as symbols in an 
information-theoretic way to assess how much information is stored in a network. The 
information content is used as a proxy for complexity in analogy to information-
theoretic measures of sequence complexity [2]. The general idea behind this approach 
is that any process (such as evolution) that influences a random distribution generates 
information. If this information reflects function, the information content is predictive 
of function, and hence complexity. The measure works well in computational test 
cases, but also in biological networks and their randomized versions. 
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