
Evolution of an artificial visual cortex for image recognition
Samuel D. Chapman1,3, David B. Knoester2,3, Arend Hintze2,3, and Christoph Adami2,3

1Dept. of Computer Science and Engineering
2Dept. of Microbiology and Molecular Genetics

3BEACON Center for the Study of Evolution in Action
Michigan State University, East Lansing, MI 48824
Email: {chapm236, dk, hintze, adami}@msu.edu

Abstract

Evolutionary robotics has been successful in creating agents
that successfully link perception with appropriate action.
However, the visual fields utilized by such agents is usually
extremely small compared to the retinas linked to the visual
cortex of animals. Evolving a cortex that processes larger
fields of view in a selective and robust manner is challenging
because fitness landscapes that are sensitive to this level of de-
tails are difficult to design. Here, we decouple the perception
from the action part of evolutionary robotics, and present a
new way to evolve logic circuits to perform image recognition
on the well-known MNIST data set, which comprises 60,000
training and 10,000 testing handwritten numerals. The logic
circuits are encoded in a genome that is evolved using a fit-
ness function based on the true positive and true negative clas-
sification rates of the numerals. Following evolution, individ-
ual circuits achieve in excess of 80% recognition accuracy on
the testing data. By pooling highly evolved individual circuits
from multiple evolutionary histories into a committee, testing
accuracy is increased to 93.5%.

This work demonstrates that evolving logic circuits to solve a
classification task is feasible. We also found the evolved cir-
cuits to be much smaller in scale compared to other machine
learning methods that are conventionally used on such prob-
lems. To our knowledge, this represents the first time that
relatively small logic circuits have been evolved to reach this
level of performance on the automated recognition of hand-
writing, and promises new approaches to the integration of
evolutionary algorithms and intelligent systems.

Introduction
The primary visual cortex of mammals is a marvel of com-
plexity and function, and has been studied for decades both
by those wishing to understand it, as well as those wish-
ing to duplicate it. Object recognition by the visual cortex is
fast (Thorpe et al., 1996), specific, and invariant: we can rec-
ognize faces, for example, in different orientations, under a
variety of lighting conditions, and bearing different expres-
sions. Significant efforts have been expended on modeling
the hierarchical organization of the visual cortex, with the
aim of both elucidating the algorithm behind fast and invari-
ant object recognition (Riesenhuber and Poggio, 1999), as
well as harnessing it for computer vision (Serre et al., 2007).

The usefulness of such a system for the organism bearing it
is almost too obvious to point out: it is clear that the selec-
tive advantage of a fast, accurate, and robust sensing system
must be enormous. Indeed, the visual cortex evolved to be
the largest system in the human brain.

While significant progress has been made on our under-
standing of the visual cortex, the development of a visual
cortex suitable for embodied robotics (Pfeifer and Bongard,
2006) remains a challenging problem. Typically, embodied
mobile robots need to carry lightweight, fast, and energy-
efficient components, and typically such systems have a very
limited bandwidth. Most (if not all) of the implementations
of automatic computer vision fall short in one or more of
these requirements. To be sure, advanced systems such as
Google’s self-driving car (Ibañez-Guzmán et al., 2012) have
achieved extremely robust object recognition and navigation
skills, however at the cost of processing almost a Gigabyte/s
of sensorial data (Chau et al., 2013). Less advanced sys-
tems (such as, say, an ant) navigate robustly with arguably
nine orders of magnitude less sensorial data, using a far more
compact circuitry, and minimal energy requirements. How
can we understand the structure and function of such visual
systems?

Evolutionary robotics

Within the field of evolutionary robotics (Nolfi and Flore-
ano, 2000; Floreano and Keller, 2010), it is becoming more
and more clear that algorithms for perception should not be
separated from those for action, that instead perception and
action should be considered as an integrated system com-
puting appropriate behavior from contextual information.
Evolving the neural control structures for navigation (Flo-
reano and Mondada, 1998; Edlund et al., 2011) has the ad-
vantage that it is free of any preconceived notions of what is
designable and the added bonus of robustness, because the
prime directive of an evolutionary fitness landscape is the
survival of the agent. Advances have been made specifically
in the area of active categorical perception, where an agent
actively moves to better categorize the object it sees (Beer,
1996, 2003; van Dartel et al., 2005; Marstaller et al., 2013).

In this type of work, the visual system of the agent is neces-
sarily primitive, as the emphasis lies squarely on the evolu-
tion of the perception-action loop. One approach to extend
this work could be to simply extend the size of an agent’s
retina, with the hope that the added detail within the visual
field will prove useful for robot behavior. The drawback of
this approach is familiar to most that have worked in this
field: designing a fitness landscape (Nelson et al., 2009)
that makes exquisitely accurate and robust image recogni-
tion necessary is extremely challenging, because in most ar-
tificial worlds an agent can achieve success with relatively
few cues. Floreano et al. (2005) were able to evolve robots
that navigate using an evolved retina with a resolution of
5 × 5 visual neurons, and showed that selection tried to ex-
ploit a subset of salient visual features, rather than to process
the whole available image.

In order to test whether image recognition algorithms can
be evolved in the absence of actions–and to circumvent the
problem of having to design a fitness landscape where fast,
robust and selective image recognition is necessary for ap-
propriate behavior–we decided to study whether evolution
can re-create an object-recognition system suitable for em-
bodied robotics, by evolving an artificial visual cortex that
recognizes hand-written numerals. This task (a sub-problem
of what is commonly referred to as “optical character recog-
nition”, or OCR) is a well-known staple of the machine
learning community, and as a consequence several bench-
marks are available to compare performance. In our work
(as opposed to the standard machine learning application),
we have more goals besides trying to achieve maximum ac-
curacy in image classification. We also require the resulting
network to be fast, small, and easily transferrable from one
computing platform to another. But most importantly, the
solution must be evolvable. We can imagine, for example,
that the evolved visual cortex would be connected to the neu-
ral controlling machinery of an embodied robot, so that both
can then evolve together.

In what follows, we use evolutionary algorithms to evolve
logic circuits that classify the numerals from the MNIST
data set (LeCun et al., 1998), a well-known benchmark in
OCR. Evolutionary algorithms employ the principles of evo-
lution by natural selection in a computational context to
solve complex problems (Bäck, 1996). Our approach makes
use of a framework to evolve Markov networks (MN), a de-
velopment from recent work (Edlund et al., 2011). MNs
comprise a series of state variables that interact with one an-
other through a collection of evolved “computational gates.”
These gates specify how state variables change in response
to one another. Gates can be either probabilistic, much like
fuzzy logic, or deterministic, as in traditional logic circuits.
The Markov networks themselves are represented by a cir-
cular list of integers (the “genome”) that describes each gate
and the state variables with which they interact. Mutations
within our evolutionary algorithm operate directly on these

genomes, and we employ a fitness function that is based
on true positive and true negative recognition rates. In this
work, we make use of deterministic gates only, and thus
evolve logic circuits that are essentially complex boolean
functions that classify numerals from the MNIST data set.

Previous techniques applied to OCR on handwritten char-
acters include K-nearest-neighbors (LeCun et al., 1998),
support vector machines (Decoste and Schölkopf, 2002),
and learning classifiers such as artificial neural nets and con-
volutional nets (LeCun et al., 1998; Ciresan et al., 2012;
Salakhutdinov and Hinton, 2007). In the case of neural
network-based approaches, edge weights are typically op-
timized based on an error-minimization algorithm such as
backpropagation. However, the number of network layers,
along with the number of computational units per layer, re-
mains fixed during training. Over time, these approaches
have improved in performance on the MNIST data set. For
example, in 1998 the best neural network error rate, the rate
of misclassification on the test images, was 1.6%, achieved
using a 2-layer neural network with 300 hidden states (Le-
Cun et al., 1998). In 2007, Salakhutdinov and Hinton
achieved an error rate of 1.0%, using a “deep learning” neu-
ral network architecture (Salakhutdinov and Hinton, 2007).
Deep learning involves the use of a higher-than-normal num-
ber of layers; in this case, five neural network layers were
used, with all but the last layer using hundreds of nodes.
In 2010, Ciresan et al. were able to decrease the error rate
to 0.35%, using six layers and an even greater number of
nodes per layer (Ciresan et al., 2010). The current world
record error rate for the MNIST data set is 0.23%, again set
by Ciresan et al. in 2012, where they used a 35-member
committee (7,700 total neurons) of convolutional networks
trained via back-propagation for 490 hours on GPU (Ciresan
et al., 2012).

Here we use evolution to discover logic circuits that clas-
sify the numerals from the MNIST data set. The evolved cir-
cuits are of larger scale than other evolutionary approaches,
having 784 inputs and 20 outputs, and unlike ANNs and con-
volutional networks, evolve to a highly concise represen-
tation of about 100 computational gates. While individual
evolved logic circuits have remarkable accuracy given their
relatively small size, the diversity inherent to evolutionary
algorithms enables us to make effective use of committees.
Using committees of 30 circuits, we achieve an accuracy of
approximately 93.5% on the MNIST data set. This level
of scalability of logic circuit evolution has not been seen
in other studies (Stomeo et al., 2005; Vassilev and Miller,
2000; Torresen, 2001), and demonstrates that the evolution
of large logic circuits to perform a practical application is
feasible. Finally, because Markov networks represent logic
circuits, they are capable of being rendered on physical hard-
ware such as FPGAs.

Figure 1: A schematic showing how a Markov network op-
erates. Inputs (green) in a 4x4 image field connect to logic
gates (red), which produce the 10 outputs (blue).

Methods
Evolving logic circuits
Defined as a set of probabilistically interacting state vari-
ables (Koller and Friedman, 2009), Markov networks
(MNs)–which are frequently used to model stochastic
processes–can also encode a wide variety of behaviors. The
state variables (SVs) represent inputs to the MN, outputs
from the MN, and “hidden state variables,” that is, SVs that
are internal to the MN. A proof-of-principle that MNs can
successfully evolved to control behavior (including the us-
age of memory) was provided in a study of animat naviga-
tion in a maze (Edlund et al., 2011). There, some SVs act
as sensors of the external environment, and other SVs act
as motor outputs and memory. To evolve logic circuits, we
use that framework for the evolution of MNs, however, here
we use only deterministic gates, as we will discus in more
detail below. Figure 1 depicts an example Markov network.
Here, inputs to the MN are pixels from a small 4x4 image
(green). These inputs are provided to a series of logic gates
(red), which in turn produce outputs (blue).

State variables are connected to each other in a directed
fashion in a MN, and this connection is mediated through
logic gates. Each gate is connected to a number of SVs as in-
put and produces a specified number of SVs as output. Dur-
ing each network update, the inputs to each gate are used to
calculate the values that will be written into the gate’s out-
put SVs. The outputs produced by a gate thus depend on the
value of the input SVs and the specific logic of the gate. To
illustrate how these gates work, Table 1 shows a truth table
for a 2-input, 2-output logic gate. Here, this gate is con-
nected to input SVs a and b and output SVs c and d. If a and
b take the binary values 1 and 0 respectively during one tick
(a tick represents one execution of all logic gates in a MN),
then this gate will write a 1 into both output SVs c and d. If
more than one gate writes into the same SV, the values are
combined via a logical OR.

To evolve logic circuits, we encode the circuit within
a digital genome: a circular list of integers. Within this
genome, each gate is encoded by a gene. The beginning

Table 1: A sample logic table for a deterministic gate with 2
inputs and 2 outputs.

Inputs Outputs
a b c d
1 1 0 1
0 1 0 0
1 0 1 1
0 0 0 1

of each gene is identified by a specific marker (the “start
codon”), and the gene defines the entire functionality of its
associated gate. Specifically, genes specify the identity of
input and output state variables for each gate, as well as the
logic table defining the operation of the gate. In this study,
the genome is limited to 40,000 integers, which has an over-
all capacity of a few thousand genes.

In the evolutionary process, the genome is subject to point
mutation, duplication, or deletion. A point mutation in the
genome randomly changes the value of an integer to another
value, whereas a duplication or deletion inserts random in-
tegers into or removes a small section from the genome, re-
spectively. Aside from selecting the range from which ran-
dom integers are drawn, there are no constraints placed on
the values of the integers within the genome. For this reason,
not all genes will necessarily be useful toward the problem
at hand. Of course, as with natural genomes, nonfunctional
genes can serve as a “bank” of genetic diversity that evo-
lution can make use of. Finally, while the MN framework
allows the input and output dimension of gates to change
via mutation, for simplicity here we fix gates to 4 inputs and
4 outputs. A detailed exposition of the encoding of gates
within the circular list of integers is provided in the supple-
mentary information of Edlund et al. (2011).

Recognizing characters
Each image in the MNIST data set is rendered as a 28 × 28
pixel grayscale image, where each pixel has a grayscale
value from 0 to 255. A sample of these images is shown
in Fig. 2, along with a sample of diccicult to classify im-
ages on the right. In the literature, numerous pre-processing
steps are often taken in order to render the images more con-
ducive to particular machine-learning methods, but here we
use a simple binary transform on the raw images as deliv-
ered in a previous study (LeCun et al., 1998). Specifically,
we transform each image such that all pixels with a gray
level of 0 are treated as a binary “0,” and all nonzero pixels
are treated as a binary “1.” Each of the 784 binary pixel val-
ues are then provided to MNs as inputs. Each MN produces
20 outputs, which represent the classification produced by
the MN. Each pair of output bits represents a yes/no answer
for one class. Specifically, ci = b0,i ∧ ¬b1,i, where b0,i is
the first bit for class i, b1,i is the second bit for class i, and

1Figure 2: A sample of grey-scale images of hand-written
numerals from the MNIST database (left), along with a set
of difficult to classify images from the same set.

ci is the MNs boolean decision for whether the image un-
der consideration is thought to belong to class i. b0,i can be
thought of as the activating bit for a class decision, whereas
b1,i serves an inhibitory function such that it negates a pos-
itive class decision by b0,i. We allow the MNs to produce
multiple answers for each image. This may seem counter-
intuitive, but with the appropriate choice of fitness function,
the MNs can evolve to only guess the correct answer, while
producing negative answers for the other classes.

The fitness function used to evolve MNs is based on the
true positive and true negative rates (TPR and TNR, respec-
tively) of a network’s decisions for each class. In essence,
a network is rewarded for identifying which class an image
belonged to, and also for identifying which classes it did not
belong to. If even one of these details was correct, the net-
work receives some fitness for that guess. By allowing such
“partial credit,” we provide a more smooth fitness landscape
than if the exact answers for an image were to be required.
The specific fitness function we use is:

f =

√√√√ 9∑
i=0

(tpri + tnri + outi)2, (1)

where tpri is the measured true positive rate on class i, tnri
is the true negative rate on class i, and f is the resulting
fitness. If the network outputs a positive decision for any
image of class i, outi is set to 1.0, thus encouraging the net-
works to evolve to classify all numerals (as opposed to sim-
ply focusing on the more easily classified numerals). Ties
(outputting multiple classifications for a single image), are
broken randomly to produce an accuracy score. We did not
use the accuracy score of the network as fitness, as the re-
sulting landscape proved too difficult to adapt to (data not
shown). Note that when reporting fitness, we show the per-
centage of the maximum fitness achievable via Eq. (1).

The MNIST data set is divided into two parts: A set of
60,000 training images, and a set of 10,000 testing images.
The Markov networks were only evolved on the training im-
ages. After evolution on the training set, the most fit individ-
ual network was then tested on the testing set. The accuracy

0 50 100 150 200 250
65

70

75

80

85

90

95

100

Updates (in thousands)

Pe
rc

en
ta

ge
 o

f m
ax

im
um

Training fitness
Testing accuracy

Figure 3: Mean training fitness and test accuracy of domi-
nant individuals over time, over 30 independent runs. Using
200-fold bootstrapping, (small) error bars are constructed
depicting 95% confidence intervals around the mean.

score of this individual was calculated as the fraction of test
images correctly identified by the circuit. The parameters
of our evolutionary algorithm are summarized in Table 2.
In all, 30 replicate populations were evolved on the training
set. After every 25,000 updates (up to 250,000 updates), we
tested the highest-fitness individual from each replicate and
recorded its accuracy.

Table 2: Parameters for the evolutionary runs.

Parameter Value
Updates 250,000
Population size 500
Starting gates 100
Max inputs 784
Max outputs 20
Inputs per gate 4
Outputs per gate 4
Gene duplication rate per update 0.05
Gene deletion rate per update 0.05
Site mutation rate per update 0.001

Results
Figure 3 shows the mean training fitness and testing accu-
racy of the dominant (most fit) individuals from 30 different
replicates over time. Fitness and accuracy rise to approx-
imately 96% and 79% over 250,000 updates, respectively.
The single best individual accuracy (across the 30 replicate
runs) is 81%. High fitness is indicative of high accuracy,
although the fitnesses of the individuals are much closer to
maximum than their accuracies. The two measures are also
strongly correlated. Figure 4(a) demonstrates this in a scatter
plot of the relationship between training fitness and training
accuracy over time (ρ = 0.9255). The correlation is not per-
fect, however, because our fitness function did not reward

94 94.5 95 95.5 96 96.5 97
66

68

70

72

74

76

78

80

82

Percentage of max training fitness

Tr
ai

ni
ng

 a
cc

ur
ac

y

50,000 updates
100,000 updates
150,000 updates
200,000 updates
250,000 updates

(a)

66 68 70 72 74 76 78 80 82 84
66

68

70

72

74

76

78

80

82

84

Training accuracy

Te
st

in
g

ac
cu

ra
cy

50,000 updates
100,000 updates
150,000 updates
200,000 updates
250,000 updates

(b)

Figure 4: (a): Relationship between training fitness and
training accuracy of the 30 replicates over time (ρ = 0.9255).
Note that training fitness reaches much closer to its max-
imum than training accuracy. (b): Relationship between
training accuracy and testing accuracy of the 30 replicates
over time (ρ = 0.9757). The y=x line is shown for clarity,
and shows how most of the time training accuracy is higher
than testing accuracy, although there are many cases where
the reverse is true.

accuracy per se, but rather the true positive and true nega-
tive rates of the Markov network class decisions. Similarly,
as the data in Figure 4(b) shows, accuracy on the training set
correlates well with accuracy on the testing set (ρ = 0.9757).
While training accuracy is often higher than testing accu-
racy, it can also be lower, and the two accuracies are never
different by more than a slight amount. Using the same rea-
soning as with Figure 4(a), one can say that the discrepancy
between training and testing accuracies is due to the fact that
the networks were not specifically evolved using accuracy as
a fitness function. The results also demonstrate that the net-
works were capable of generalizing features learned from
the training set to the images of the testing set.

Thursday, May 9, 13

Figure 5: The structure of the Markov network from 250,000
updates with the highest individual testing accuracy. The
green squares are the inputs corresponding to the pix-
els of the 28x28 image field. The red squares are the
gates. The blue squares are the output nodes, ordered from
{b0,0,b1,0...b0,9,b1,9}.

An example evolved Markov network is depicted in Fig-
ure 5, with the inputs shown according to their location on
the 28x28 image field. The network shown is the individ-
ual at 250,000 updates that has the highest testing accuracy,
(81.16%). Notably, the network is able to achieve a high rel-
ative testing accuracy with a sparse number of inputs. Be-
cause of the diversity of the evolutionary process, the struc-
tures of the Markov networks that evolved were not all the
same as in Figure 5. However, common features of the net-
works tended to appear. Figure 6(b-d) shows the probabili-
ties of pixels from the 28x28 image field being used as inputs
by the 30 dominant individual networks from the replicates
at 25,000, 100,000, and 250,000 updates, respectively. The
colors range from dark blue to dark red, with a dark blue
pixel meaning that no networks had an input at that location,
and a dark red pixel meaning that all 30 networks had an in-
put there. It is clear from this progression that certain areas
of the image field are favored by the networks more than oth-
ers. This demonstrates how the Markov networks improve
their fitness over time by focusing on certain areas of the im-
age field, and clearly shows the sparsity of the inputs to the
networks.

In addition, the entropy of the pixels of the 60,000 training
images is shown in Figure 6(a), with dark blue representing
zero bits of entropy and dark red representing the max of

(a) (b)

(c) (d)

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Figure 6: (a): Training image entropy per pixel Eq. (2). Dark
blue represents zero bits of entropy and dark red represents
the maximum entropy of 1 bit (see colorbar) (b-c): Network
input probabilities at 25,000, 100,000, and 250,000 updates,
respectively. Colors follow the colorbar.

1 bit. Entropy was calculated in order to compare it to the
input probabilities of the networks. Entropy of each of the
pixels was calculated using the probability pi that a pixel i
was a binary 1 (“turned on”) over all images:

H(x) = −
784∑
i=1

pi ∗ log2(pi), (2)

where pixeli is the probability that a pixel in the set of train-
ing images is represented. As shown in Equation 2, entropy
of a pixel is higher the closer its probability of being turned
on is to 50%. If a pixel was turned on either none or all
of the time, its entropy was zero. It was hypothesized that
pixels with higher entropy would be more informative about
the data set in general, and thus the networks would pref-
erentially connect to these high-entropy pixels. When com-
paring Figure 6(a) to Figure 6(b-d), this indeed appears to
be the case, especially on the border areas.

While the Markov networks focus on certain areas of the
image field for input, Figure 6(b-d) also shows how the mean
number of inputs of the networks increases over time. Figure
7 depicts a curve showing the mean number of inputs of the
networks over time, along with the mean number of gates.
Both the mean number of inputs and number of gates in-
creases over time, although after approximately 75,000 up-
dates the increase of both values occurs at a lower rate. Note
that because gates can share inputs, there is not a simple lin-
ear relationship between the number of gates and the number
of inputs. The mean number of outputs per gate also tends
to increase, as depicted in Figure 8 (the number of inputs per
gate is almost always 4 and is not shown here). It is not a re-
quirement of Markov networks for there to be this concomi-
tant increase in the number of outputs per gate alongside an

0 50 100 150 200 250
50

100

150

200

250

300

350

Updates (in thousands)

total inputs
total gates

Figure 7: Mean number of inputs (neurons that connect to
image pixels) averaged over 30 independent runs (blue, tri-
angles) and mean number of logic gates (red, circles), as a
function of evolutionary time. Error bars are constructed us-
ing 200-fold bootstrapping with 95% confidence intervals.

increase in the number of inputs and gates. Therefore, this
phenomenon in the evolution of the networks suggests that
one of the ways that the networks get better at recognizing
the images is by having the gates increase the number of
outputs that they cover as opposed to focusing on only one
output.

Following the evolution of individual Markov networks,
we next constructed committees from the dominant individ-
uals from all 30 replicates. A committee is a method for
combining the answers of multiple individuals to improve
performance, a technique that has been shown to be effective
on the MNIST data set (Ciresan et al., 2012). The committee
decisions were formed by summing the decisions from each
individual. Interestingly, committee results were strongest
when individual decisions were allowed to contain votes for
multiple classes, i.e., individual votes were allowed to con-
tain ties. At the committee level, the single classification

0 50 100 150 200 250
1.15

1.2

1.25

1.3

1.35

Updates (in thousands)

O
ut

pu
ts

 p
er

 g
at

e

Figure 8: Mean number of outgoing edges per logic gate as
a function of evolutionary time. Error bars are constructed
using 200-fold bootstrapping with 95% confidence intervals.

0 50 100 150 200 250
86

88

90

92

94

96

98

100

Updates (in thousands)

C
om

m
itt

ee
 a

cc
ur

ac
y

(p
er

ce
nt

ag
e)

(a)

0 5 10 15 20 25 30
65

70

75

80

85

90

95

100

Committee size

C
om

m
itt

ee
 a

cc
ur

ac
y

(p
er

ce
nt

ag
e)

93.68%
26 members

(b)

Figure 9: (a): Accuracy of a 30-member committee over
evolutionary time. (b): Committee accuracy as a function
of committee size, showing diminishing returns.The arrow
indicates the most accurate committee.

with the most votes was selected, and ties were again bro-
ken randomly. Figure 9(a) shows the 30-member committee
accuracy over time on the testing set. The accuracy gradu-
ally increases, reaching 93.63% after 250,000 updates.

To examine the effects of committee size on accuracy on
the test set, the most-fit individuals from each of the 30
replicates at 250,000 updates were ranked according to how
well they did on the training set in terms of fitness, and the
highest-ranked n members assigned to a committee of size
n. We can then determine the dependence of committee ac-
curacy as a function of committee size. Figure 9(b) shows
that committee accuracy dramatically increases as commit-
tee members are added. We note that a committee of 30
members does not provide the absolute best accuracy for
this update (93.63%), although it is very close to the maxi-
mum committee accuracy achieved (93.68% with 26 mem-
bers). These results clearly show the utility of increasing
the size of a committee. Although the benefit from adding

new committee members faces diminishing returns, it is re-
markable how only a few committee members can dramat-
ically improve accuracy. This suggests that the diversity of
the evolutionary process can produce Markov networks that
are able to recognize different aspects of the OCR problem,
such that pooling their answers in a committee plays on their
strengths.

Conclusion
We have demonstrated an evolutionary approach to image
classification that is capable of high accuracy on the MNIST
benchmark, while having a small computational footprint.
Because the network is essentially a digital circuit, it is eas-
ily transferred from one computational environment to an-
other, for example, we have used it on a standard tablet com-
puter to recognize digits drawn by the user on the screen.
While the accuracy is probably sufficient for usage in mobile
agent navigation, we believe that the image recognitiomn ac-
curacy can be improved significantly. For example, we have
only explored a limited set of parameters and fitness func-
tions, and a number of unexplored avenues to improve accu-
racy remain. For example, there undoubtedly exists a fitness
function that shows a better correlation with accuracy than
the one used here. Also, pre-processing images to extract
salient features (such as lines and corners) could reduce the
dependence of class assignments on the locations of specific
pixels. Increasing the number of images in the training set
by modification of the current set could also help. Indeed,
the work by Ciresan et al. (2012) utilized both of these meth-
ods.

Perhpas the most promising path to more accurate and in-
variant image recognition, however, is to create an evolu-
tionary landscape and framework where a more hierarchical
image processing algorithm can evolve. In this work, we
have limitied the processing time (from reading the input
image to writing the image classification into the outputs)
to exactly one time step. As a consequence, the resulting
algorithm cannot possibly use any interediate Markov vari-
ables to build up representations Marstaller et al. (2013) of
the concepts. In contrast, a complex visual cortex is hierar-
chical and processes the simple elements of the image into
more and more complex “concepts”, which are then finally
used to categorize. We have seen in preliminary work that
such a hierarchical organization can emerge, but at the price
of a significant slowdown in evolution.

Acknowledgements
We thank Randal Olson, Fred Dyer, and Rob Pennock for
discussions. This work was supported in part by the Paul G.
Allen Family Foundation and the National Science Founda-
tion BEACON Center for the Study of Evolution in Action
under Cooperative Agreement DBI-0939454. We wish to
acknowledge the support of the Michigan State University

High Performance Computing Center and the Institute for
Cyber Enabled Research (iCER).

References
Bäck, T. (1996). Evolutionary algorithms in theory and

practice: evolution strategies, evolutionary program-
ming, genetic algorithms. Oxford University Press, Ox-
ford, UK.

Beer, R. (1996). Toward the evolution of dynamical neu-
ral networks for minimally cognitive behavior. In P.
Maes et al., editor, Proc. 4th International Conference
on Simulation of Adaptive Behavior, pages 421–429,
Cambridge, MA. MIT Press.

Beer, R. (2003). The dynamics of active categorical per-
ception in an evolved model agent. Adaptive Behavior,
11:209–243.

Chau, S., Lafon, S., Shao, J., Szybalski, A. T., and Vincent,
L. (2013). Panoramic images within driving directions.
U.S. Patent 8,428,873.

Ciresan, D., Meier, U., Gambardella, L., and Schmidhuber,
J. (2010). Deep, big, simple neural nets for handwritten
digit recognition. Neural Computation, 22:3207–3220.

Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-
column deep neural networks for image classification.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3642–3649. IEEE Press.

Decoste, D. and Schölkopf, B. (2002). Training invariant
support vector machines. Machine Learning, 46:161–
190.

Edlund, J., Chaumont, N., Hintze, A., Koch, C., Tononi, G.,
and Adami, C. (2011). Integrated information increases
with fitness in the evolution of animats. PLoS Compu-
tational Biology, 7(10):e1002236.

Floreano, D. and Keller, L. (2010). Evolution of adaptive
behaviour in robots by means of Darwinian selection.
PLoS Biol, 8(1):e1000292.

Floreano, D. and Mondada, F. (1998). Evolutionary neuro-
controllers for autonomous mobile robots. Neural Net-
works, 11:1461–1478.

Floreano, D., Suzuki, M., and Mattiussi, D. (2005). Active
vision and receptive field development in evolutionary
robots. Evol Comput, 13(4):527–44.

Ibañez-Guzmán, J., Laugier, C., Yoder, J.-D., and Thrun, S.
(2012). Autonomous driving: Context and state-of-the-
art. In Eskandarian, A., editor, Handbook of Intelli-
gent Systems, chapter 50, pages 1273–1310. Speinger-
Verlag London Ltd.

Koller, D. and Friedman, N. (2009). Probabilistic graphical
models: principles and techniques. MIT Press, Cam-
bridge. MA.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86:2278–2324.

Marstaller, L., Hintze, A., and Adami, C. (2013). The evo-
lution of representation in simple cognitive networks.
Neural Computation, 25:to appear.

Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fit-
ness functions in evolutionary robotics: A survey and
analysis. Robotics and Autonomous Systems, 57:345–
370.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics:
The Biology, Intelligence and Technology of Self-
Organizing Machines. MIT Press, Cambridge, MA.

Pfeifer, R. and Bongard, J. (2006). How The Body Shapes
The Way We Think. MIT Press, Cambridge, MA.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical mod-
els of object recognition in cortex. Nat Neurosci,
2(11):1019–25.

Salakhutdinov, R. and Hinton, G. (2007). Learning a non-
linear embedding by preserving class neighbourhood
structure. In AI and Statistics, volume 3, page 5.

Serre, T., Oliva, A., and Poggio, T. (2007). A feedforward
architecture accounts for rapid categorization. Proc
Natl Acad Sci U S A, 104(15):6424–9.

Stomeo, E., Kalganova, T., Lambert, C., Lipnitsakya, N.,
and Yatskevich, Y. (2005). On evolution of relatively
large combinational logic circuits. In Proc. NASA/DoD
Conference on Evolvable Hardware, pages 59 – 66.

Thorpe, S., Fize, D., and Marlot, C. (1996). Speed
of processing in the human visual system. Nature,
381(6582):520–2.

Torresen, J. (2001). Two-step incremental evolution of a
prosthetic hand controller based on digital logic gates.
Lecture Notes in Computer Science, 2210:1–13.

van Dartel, M., Sprinkhuizen-Kuyper, I., Postma, E., and
van den Herik, J. (2005). Reactive agents and percep-
tual ambiguity. Adaptive Behavior, 13:227–42.

Vassilev, V. and Miller, J. (2000). Scalability problems of
digital circuit evolution evolvability and efficient de-
signs. In Proceedings of the Second NASA/DoD Work-
shop on Evolvable Hardware, pages 55–64. IEEE.

