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Abstract

We study the reduction of variability at a microsatellite locus

linked to a gene that undergoes a selective sweep. In the literature,

this reduction is commonly measured by a decrease in the variance of

the microsatellite lengths. However, the variance fluctuates strongly

even for a neutrally drifting microsatellite locus, and statistical tests

based on a reduction in variance are therefore weak. We propose to

measure the reduction of variability with an alternative quantity, the

Shannon entropy H. Extensive numerical simulations show that the

entropy can detect selective sweeps with high significance, as long as

selection is sufficiently strong. We compare the trajectories of vari-

ance and entropy in microsatellite data from evolving Escherichia coli

populations.

Introduction

Microsatellites are regions of non-coding DNA that consist of repeats of short
motifs. Microsatellite mutation rates range from 10−6 (Drosophila [1]) to
10−2 (Escherichia coli [2]) events per locus per generation. This high vari-
ability, combined with their selective neutrality, makes microsatellites an
excellent genetic marker [3], which can be used to infer relationships among
species [4], population structure [5], demographic parameters [6], or genetic
maps in genome projects [7, 8] (see also [9] and references therein).

Many authors have noted that a microsatellite locus (or a neutral locus
in general) linked to a gene under positive selection experiences reduced vari-
ability within the population [10, 11, 12, 13, 14, 15, 16, 17], studying typically
the variance in repeat number as a measure of microsatellite variability. How-
ever, even under neutral evolution, the variance fluctuates strongly. There-
fore, the confidence intervals around the expected variance at mutation-drift
equilibrium are large, which makes statistical tests for reduced microsatellite
variance weak [18].

In the context of long-term experimental evolution of bacteria [19, 20],
a simple method that could pinpoint the exact generation count at which a
selective sweep occurred, and that potentially could even yield the selective
advantage realized in that sweep, could be a powerful tool to analyze the
evolutionary trajectories of evolving bacteria. In a recent study, Imhof and
Schlötterer [21] used a microsatellite marker in the bacterium Escherichia coli

for exactly this purpose. Instead of studying the variance of repeat numbers,
they identified selective sweeps with sudden increases in the frequency of
individual repeat lengths. From the rate of increase in frequency, they also
determined the selective advantage realized in the selective sweeps.

We show here, through extensive numerical simulations of several differ-
ent models, that a reduction in the variance of the microsatellite lengths is

2



not a reliable indicator for selective sweeps. Moreover, we show that a quan-
tity based on information-theoretic considerations, the Shannon entropy H
[22], can detect selective sweeps with high significance, as long as the selective
advantage of the linked gene under selection is not too small. In compari-
son to the method employed by Imhof and Schlötterer, which detects even
mutations that are later lost to drift, a significant decrease of H occurs only
for mutations that reach fixation. Therefore, the entropy based detection of
selective sweeps complements their method. We re-analyze the E. coli data
of Imhof and Schlötterer in the light of these findings.

Materials and Methods

Numerical simulations. We consider genetic sequences that consist of
a single microsatellite locus tightly linked to a single gene under selection.
We use the fitness of the gene under selection as the fitness of the genetic
sequence, and simulate a constant population of N genetic sequences that re-
produce in discrete, non-overlapping generations. We employ Wright-Fisher
sampling for reproduction, that is, the probability that a sequence i is chosen
for a single reproduction event is given by pi = wi/

∑

j wj, where wi is the
fitness of sequence i, and the sum runs over all sequences in the population.
We use population sizes from N = 1000 up to N = 100, 000.

Simulations of long-term evolution. We use two different models of as-
signing fitness to the gene under selection. Both are based on an infinite-site
model [23, 24], that is, we neglect all back mutations. In the first one, which
we call the random energy model (REM) [25, 26], every mutation results in a
new gene with random fitness. The fitness is calculated as w = e−βX , where
X is a normally distributed random variable and β is a parameter that gov-
erns the average effect of mutations. Throughout this work, we use β = 1.
A detailed discussion of this type of fitness landscape is given in Ref. [27].

In the second model, which we call the staircase model (SM), fitness is
a function of the total number of mutations ki that gene i has accumulated
with respect to the wild type. The fitness is given by wi = [ki/K] + 1, where
the square brackets indicate the largest integer smaller than or equal to the
expression that they enclose, and K is a parameter that determines how
many mutations must have accumulated before fitness is increased by one
unit.

In the REM model, most mutations are deleterious, and thus we have
strong background selection between selective sweeps of advantageous mu-
tants. In the SM model, on the other hand, all mutations are neutral or
beneficial, and background selection is therefore absent.

For both models, we assume Poisson distributed mutations, that is, we
introduce k new mutations into each offspring gene, where k is a Poisson
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random variable with mean U .

Microsatellites dynamics. We carry out simulations with two standard
models of microsatellite evolution, the stepwise mutation model (SMM) [28]
and the two-phase model (TPM) [29]. In the SSM, each mutation results in
the insertion or deletion of a single repeat at the microsatellite locus. Inser-
tions and deletions are equally likely, and the total probability of mutation
is usat per microsatellite locus and generation.

The TPM is built on top of the SSM. In the TPM, the majority of mu-
tation events are single repeat changes as in the SSM, but occasionally large
changes in repeat length can occur. The overall probability of mutation is
again usat per microsatellite locus and generation. A fraction pSMM of all mu-
tations are single repeat changes. The remaining fraction 1 − pSMM results
in large length changes. The magnitudes of these changes are distributed
according to a geometric distribution with variance σ2

m. Throughout this
paper, we use pSMM = 0.95 and σ2

m between 30 and 50 (these values are
comparable to the ones used in Ref. [29]).

Measured quantities. In the simulations, we measure the average fitness,
〈w〉, the most abundant (dominant) microsatellite length, ndom, the variance
in microsatellite lengths, Var(n), and the Shannon entropy of the microsatel-
lite distribution, H. The Shannon entropy is defined as [22]

H = −
∑

n

pn ln pn , (1)

where pn is the fraction of microsatellites of length n in the population, and
the sum runs over all microsatellite lengths that are present. We measure
these quantities every 5 generations. For the variance and the entropy, we also
record the changes between successive measurements, that is, we calculate
∆Var(n, t) = Var(n, t)− Var(n, t−∆t), with ∆t = 5, and likewise ∆H(t) =
H(t)−H(t−∆t).

Sensitivity analysis for H statistic. In our analysis of the influence of
the selective advantage s on the magnitude of the entropy reduction, we use
a two allele model for the gene under selection, and the TPM model for
microsatellite evolution. The wild-type allele of the gene under selection has
fitness 1, and the mutant allele has fitness 1 + s. We seed a population with
N identical sequences that have the wild-type allele and microsatellite length
of n = 50, and let the population equilibrate. (The equilibration time is 1000
generations for N = 1000 and 10,000 generations for N = 100, 000.) Then,
we introduce a mutant genotype. This mutant will either go to fixation, with
probability 2s, or will die out. If it does not reach fixation, we re-introduce
another advantageous mutant and repeat until the mutant genotype achieves
fixation. We repeat this process five times, and measure the maximum drop
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in entropy for each selective sweep. If an advantageous mutant does not go
to fixation, then it typically does not leave a signature in the entropy, so that
we have to measure the entropy drop only for successful selective sweeps.

In order to establish the baseline for the distribution of entropy changes,
we measure the evolution of the entropy over 10,000 generations (for N =
1000) or 20,000 generations (for N = 100, 000) for a neutrally drifting mi-
crosatellite locus at various mutation rates.

Results

Simulations of long-term evolution. We simulated the long-term evo-
lution of a microsatellite locus linked to a gene under selection as described
in the Methods section. Fig. 1 shows a typical example of a simulation run
over 10,000 generations, for N = 1000. From the evolution of the mean
fitness of the population (Fig. 1a), we can see that three selective sweeps
occurred, approximately at t = 2000, t = 3000, and t = 7500 generations. In
Fig. 1b, we display the dominant microsatellite length, ndom. The dominant
microsatellite length fluctuates strongly, with sudden drastic changes that
are not temporally correlated to the selective sweeps. From the temporal
pattern displayed by ndom, we are not able to identify the selective sweeps.

By contrast, the entropy H (Fig. 1c) shows significant drops at the exact
points in time at which selective sweeps occur. This correspondence is even
more apparent in the entropy difference between successive measurements,
∆H(t). The entropy difference (Fig. 1d) lies consistently between −0.2 and
0.2, except for the three time points of the selective sweeps. There, ∆H
exceeds −0.5.

Finally, the variance in microsatellite length, Var(n), and the change in
variance between successive measurements, ∆Var(n), are again poor indi-
cators of selective sweeps (Fig. 1e and f). Drastic changes in the variance
seem to be more closely related to variations in ndom than to selective sweeps.
This does not mean that the variance does not decrease substantially when
a selective sweep takes place. During the first two selective sweeps in Fig. 1,
the variance does undergo a clear reduction. However, drops in variance of
similar magnitude occur in the absence of selective sweeps as well. Therefore,
a sudden drop in variance does not imply that a selective sweep has taken
place.

We carried out a number of simulations of long-term evolution, with dif-
ferent fitness landscapes and microsatellite dynamics. Qualitatively, the pat-
tern we observed was always similar to the one displayed in Fig. 1. We show
two examples of this behavior in Figs. 6, 7 in the web supplement. Note that
our results seem to be only weakly dependent on the amount of background
selection: The trajectories from the REM model, with strong background se-
lection, and from the SM model, with no background selection, are extremely
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similar.
While Figs. 1 and 6 show results from simulations with a comparatively

small population size of N = 1000, Fig. 7 in the web supplement shows a
simulation run with N = 100, 000. The variance behaves more deterministi-
cally and fluctuates less for the larger population size. However, substantial
fluctuations do build up towards the end of the simulation, and their magni-
tude exceeds the reductions in variance during the first two selective sweeps.
The fluctuations in the entropy, on the other hand, do not increase, and even
seem to decrease slightly over time.

Figure 2 shows how H and Var(n) vary over time in a neutrally drifting
microsatellite locus. The variability in the variance is substantial, although
the population size in this example is N = 100, 000. This observation is
in agreement with the results of Goldstein et al. [18], who showed that the
expected variability in the variance is proportional toN , and that the interval
in which the variance lies in 95% of the cases increases rapidly with time.
By contrast, the entropy trajectories are much more coherent among the ten
runs.

Entropy reduction as a function of the selective advantage. If the
selective advantage of a mutant gene is very low, so that the selective sweep
takes a long time in comparison to the time scale on which microsatellite
variation is generated, then there will be no significant entropy reduction
during this selective sweep. Therefore, the entropy-based detection of selec-
tive sweeps is only feasible if the selective advantage exceeds a certain magni-
tude. In order to determine this minimum selective advantage, we studied a
model in which the gene under selection can assume only two possible allelic
states, wild type with fitness 1, and mutant with fitness 1 + s.

Figure 3 shows a typical selective sweep in this model. Fig. 3a shows
the evolution of the mean fitness, Fig. 3b the change in entropy between
successive measurements, ∆H, and Fig. 3c the distribution of ∆H. The
distribution of ∆H shows a main Gaussian mode, which stems from the
neutral fluctuations in microsatellite lengths, and three outliers. The outliers
correspond to the three entropy reductions during the selective sweep. The
biggest reduction in entropy lies more than fifteen standard deviations away
from the center of the Gaussian mode, and is therefore highly significant.

In Fig. 4, we show the maximum drop in entropy during a selective sweep,
∆Hmax, averaged over five independent simulation runs, as a function of the
selection strength s. We have plotted ∆Hmax in units of the standard devia-
tion of the Gaussian mode, so that the significance of the entropy reduction is
immediately apparent from the graph. For N = 1000, ∆Hmax is in the range
of two to three standard deviations for s < 0.1, which means that approx-
imately 4.3% of the events in the Gaussian mode are of similar magnitude
as the maximum entropy reduction during a selective sweep. Therefore, for
small populations, we cannot identify selective sweeps from their associated
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drops in entropy if s is below 0.1. The entropy becomes much more sensi-
tive for a larger population size. For N = 100, 000, we can identify selective
sweeps down to approximately s = 0.01.

The inset of Fig. 4 shows the influence of the microsatellite mutation
rate on the entropy reduction during the selective sweep. For N = 1000,
the largest drops in entropy occur for microsatellite mutation rates of ap-
proximately usat = 10−2. The sensitivity of the entropy to selective sweeps
decreases both if the mutation rates are higher and lower. If the microsatellite
mutation rate is too high with respect to the duration of the selective sweep,
then microsatellite variation is regenerated while the sweep takes place, and
a reduction in variability cannot be noticed. On the other hand, when the
inverse of the microsatellite mutation rate is on the order of the population
size, then the time from the most recent common ancestor of the population
to the present is too short to generate sufficient variability in repeat numbers,
and therefore the entropy cannot report a reduction in variability. From the
data for N = 100, 000, we see that the sensitivity of H does not decrease
with microsatellite mutation rate as long as the population size is sufficiently
large.

We also measured the entropy reduction associated with beneficial mu-
tants that got lost to drift, and found that these entropy reductions did
not stand out significantly from the main Gaussian mode (data not shown).
Thus, only mutants that go to fixation (or at least near fixation) will leave a
detectable signature in the entropy.

Application to microsatellite data from E. coli. Imhof and Schlötterer
propagated ten replicate populations of E. coli for 1000 generations, and
determined the distribution of microsatellite lengths every 90 generations
[21]. We calculated both the entropy H and the variance Var(n) for all 110
data points (eleven successive samples in ten replicates). Because of the long
time span of 90 generations between successive data points, the differences
in entropy ∆H, or variance ∆Var(n), are not particularly meaningful, and
therefore we consider only the absolute quantities H and Var(n).

In Figs. 8 and 9 in the web supplement, we display H and Var(n) as
functions of time for all ten replicate populations. In some replicates, such
as population 1, entropy and variance run in parallel. In others, such as pop-
ulation 3, the two trajectories are very different. We present all data points
in a single scatter plot of Var(n) versus H in Fig. 5. We see that at medium
to high entropy, that is, for high diversity in the microsatellite distribution,
both small and large values of the variance occur, whereas for small values
of the entropy, the variance is typically small. This is in agreement with our
assessment from the numerical simulations: The variance will be reduced
during a selective sweep, but reductions of a similar magnitude can also be
caused by neutral fluctuations in the microsatellite length distribution.
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Discussion

We have shown that the entropy H is a reliable indicator for reduced mi-
crosatellite variability caused by a selective sweep. Even in the presence of
strong background selection, which by itself leads already to a reduction of
variability [14, 30], selective sweeps cause a reduction in entropy that clearly
exceeds the level of neutral fluctuations. A reduction in the variance in mi-
crosatellite length, on the other hand, is a less reliable indicator, because the
variance fluctuates substantially for a neutrally drifting microsatellite locus
as well. Even for large populations, the variance experiences large fluctua-
tions, and the expected variability of the variance grows over time [18].

Throughout this paper, we have only considered the comparatively sim-
ple microsatellite mutation schemes SSM and TPM. More elaborate mutation
mechanisms have been proposed, in particular ones in which the mutation
probability is proportional to the repeat number [31, 32]. Such mutation
mechanisms may change the exact quantitative results that we have reported
here, but we are confident that they do not affect our qualitative results. The
advantage of the entropy over the variance is that it does not change if the
arrangement of frequencies is changed, that is, if the frequency values are
reassigned to different repeat numbers, while the variance is extremely sen-
sitive to this transformation. This advantage is unaffected by the mutation
scheme of the microsatellites.

From their method of detecting selective sweeps, Imhof and Schlötterer
deduced that the selective advantage in their evolving E. coli populations
was always below 0.06, and had its peak at 0.01 or smaller. At an effective
populations size of approx. 5×106, the entropy should be sensitive enough to
detect these selective sweeps. However, as we have mentioned in the results
section, only mutations that go to fixation leave a detectable signature in the
entropy trajectory of the population. Therefore, it is not surprising that we
find only between 1 and 2 selective sweeps per population, whereas Imhof
and Schlötterer detected a total of 65 advantageous mutations.

Our simulation results are valid only for selective sweeps that are well
separated in time, that is, we have not considered series of successive selective
sweeps or effects of clonal interference [33]. When several selective sweeps
happen within a short period of time, then the microsatellite variability is
not regenerated inbetween them, and we will not observe additional drops
in entropy for the later sweeps. However, the entropy will also not return
to its equilibrium value, and therefore successive selective sweeps will result
in a reduced entropy for a prolonged period of time. Several of the E. coli

populations seem to exhibit this behavior, in particular populations 2 and 8
(Fig. 8 in the web supplement).

We conclude that the Shannon entropy H is a useful tool to detect se-
lective sweeps from a reduction in variability at a linked microsatellite lo-
cus. With accurate knowledge of the effective population size, the mutation
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mechanism of the microsatellites, and their rate of mutation, it may even be
possible to determine the selective advantage s from the magnitude of the
entropy reduction associated with a particular selective sweep. In a future
experiment similar to the one carried out by Imhof and Schlötterer, it might
be desirable to determine the distribution of microsatellites more often than
every 90 generations, so that the magnitude of the neutral entropy fluctua-
tions can be established accurately. Also, selective sweeps of very large s can
conceivably be missed if the spacing between data points is too large, and a
higher time resolution will protect against this problem.
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Figure 1: Long-term evolution of a microsatellite locus linked to a gene under
selection. The fitness landscape is REM, and the microsatellite dynamics is
TPM, with U = 0.01, usat = 0.01, pSMM = 0.95, σ2

m = 30, β = 1.0, and
N = 1000. a. Mean fitness in the population. b. Length of the dominant
microsatellite allele, ndom. c. Entropy H. d. Change in entropy between
successive measurements ∆H. e. Variance of microsatellite lengths Var(n).
f. Change in variance between successive measurements ∆Var(n).

Figure 2: Entropy and variance of a neutrally drifting microsatellite locus
as a function of time, in ten independent simulations. The microsatellite
dynamics is TPM, with usat = 0.01, pSSM = 0.95, σ2

m = 50. The population
size is N = 100, 000, and the population is seeded with N identical copies of
a microsatellite locus with repeat number n = 50.

Figure 3: Selective sweep in the two-allele model. The selective advantage
of the mutant allele is s = 0.5, and N = 1000. a. Mean fitness in the
population. b. Change in entropy between successive measurements ∆H. c.
Frequency distribution of ∆H. Here, ∆H is plotted in units of the standard
deviation σ of the frequency distribution of ∆H in the absence of selection,
and the solid line is a Gaussian fit to this distribution.

Figure 4: Maximal entropy reduction during a selective sweep ∆Hmax as
a function of the selective advantage s at usat = 0.01. Circles represent
N = 1000, and diamonds represent N = 100, 000. ∆Hmax is plotted in units
of the standard deviation σ of the distribution of ∆Hmax at the respective
microsatellite mutation rate and population size in the absence of selection.
The inset shows ∆Hmax as a function of usat for s = 0.2.

Figure 5: Variance Var(n) versus entropy H in the ten replicate E. coli

populations of Imhof and Schlötterer [21]. Each set of symbols represents
the data points from one replicate.
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