
One-Shot Decoupling and Page Curves from a Dynamical Model
for Black Hole Evaporation

Kamil Brádler*

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada;
Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, Ottawa, Canada

and Department of Astronomy and Physics, Saint Mary’s University, Halifax, Canada

Christoph Adami†

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(Received 11 May 2015; published 8 March 2016)

One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to
play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear
Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation
of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit,
implying that quantum information is perfectly transferred from the black hole to radiation. A striking
consequence of decoupling is the emergence of an output radiation entropy profile that follows Page’s
prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any
multilinear interaction Hamiltonian with a bounded spectrum.
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The explicit mechanism of black hole unitary evaporation
is a major open problem in high-energy physics [1]. The
evaporationof amacroscopic black hole is believed to bewell
described by a semiclassical result of Hawking [2], but it
has also been argued that for a sufficiently old black hole
the in-falling Hawking quanta (hereafter called the “partner
modes,” as opposed to the radiated modes that constitute
the Hawking radiation) must somehow resurface in order to
preserve the manifest unitarity of the black hole evolution.
Page [3] argued for the latter using a description based
entirely on calculating the entropy of the Hawking radiation
as a subsystem of the joint pure state of a black hole and its
radiation field, without proposing an explicit interaction that
would enable this. In the modern language of quantum
information theory, Page’s calculation implies that when
the black hole entropy vanishes, it is decoupled from its
surroundings. Here we present a model in which black hole
modes interact with radiation modes both inside and outside
of the horizon in a fully unitary manner, and that allows
us to explicitly calculate the entropy of the black hole over
time as it gradually decouples from its surroundings.
The modern approach to the resolution of the problem

started with Ref. [4]. These authors proposed an abstract
mechanism for black hole evaporation based on the recently
developed “decoupling” framework (see a general version in
Ref. [5]). Decoupling theory is a fundamental technique to
prove a plethora of quantum communication protocols such
as statemerging [6], the fully quantumSlepian-Wolf (FQSW)
protocol [7], or the channel capacity coding theorem [8].
The central result of the one-shot decoupling theorem [9]

implies the existence of a completely positive map T̂ A→B
and a state ρRA, where the following condition is satisfied:

∥T̂ A→BðUρRAU†Þ − ϑB ⊗ ρR∥1 → 0; ð1Þ
for almost all unitaries U. Here, ∥A∥1¼dfTr½ðA†AÞ1=2� is the
trace norm, R is an auxiliary system, ρR ¼ TrA½ρRA�, and ϑB
is a state specified later. For our purposes it will turn out to
be sufficient to consider ρRA as a maximally entangled state
(denoted ΦRA). Then, decoupling Eq. (1) is equivalent to
the conditions of the entanglement of the A subsystem of
ΦRA being transferred to E via another completely positive
map T A→E called a complementary channel to T̂ A→B.
In what follows we examine decoupling induced by a

boson trilinear operator describing the interaction of a
quantized black hole’s modes with those of radiation inside
and outside of the event horizon, in the special case when
T A→E is an identity, something that, crucially, is not an
assumption of the model but rather an unexpected and
natural consequence of the interaction Hamiltonian we use.
In the semiclassical description, the outgoing Hawking

radiation shrinks the black hole, but the exact mechanism of
how the black hole loses its mass over time is beyond the
scope of Hawking’s original derivation, as in that approach
states from past infinity are mapped to future infinity via a
Bogoliubov transformation. In order to restore an explicit
time dependence to the evaporation process, we can use
the by now well-known insight [10,11] (see also Ref. [12])
that any solution to a time-dependent quantum harmonic
oscillator can be understood in terms of a Bogoliubov
transformation that connects the initial to the final fre-
quency, and, in particular, can be implemented via a time-
dependent Hamiltonian of the “squeezing” type in which
the coupling strength rðtÞ plays the role of the classical
time-dependent driving field (we set ℏ ¼ 1)
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H ¼ irðtÞðb†c† − bcÞ: ð2Þ
Here, the annihilation operators b and c annihilate radiation
modes within and outside of the event (or apparent)
horizon, respectively. Such a description can be used to
derive Hawking radiation from a collapsing shell of matter,
for example [13–15]. However, in such a time-dependent
semiclassical description, the black hole degrees of free-
dom are not explicitly quantized and the backreaction of the
radiation on the black hole cannot be followed.
The dynamic model for the evaporation of a black hole

that we analyze here can be seen as an extension of
Hawking’s semiclassical approach [16] where the black
hole internal degrees of freedom are explicitly quantized to
allow us to track the black hole quantum entropy over time.
This model is explicitly ad hoc: the quantum interaction
is not derived from a quantum field theory that couples
gravitational modes to radiation modes. Rather, it is an
extension of the semiclassical Hamiltonian [Eq. (2)], and
reduces to it when the quantum black hole modes are
replaced by their classical expectation values. In the
static infinite-time limit, the quantum Hamiltonian (shown
below) therefore implements the standard Bogoliubov
transformation between past and future infinity, and repro-
duces the celebrated Hawking results, as has been shown
previously [11,17,18].
The Hamiltonian we study is the so-called boson trilinear

Hamiltonian,

Htri ¼ irðab†c† − a†bcÞ; ð3Þ
often encountered in quantum optics and condensed matter
physics [19–21] or quantum optomechanics [22]. In quan-
tum optics, the operators b and c refer to the signal and idler
modes, respectively, while a refers to the pump mode. The
intriguing formal analogy between black hole radiance and
parametric amplification has been noted before [17,18,23].
As a model of black hole and radiation interactions, the
operator a in Eq. (3) annihilates black hole modes, whereas
c and b are defined as in Eq. (2).
The black hole mass is a function of the input state

na ¼ ha†ai as well as of the coupling strength r (called
the gain or squeezing parameter in quantum optics). In
the semiclassical limit, the relationship between rðtÞ in
Eq. (2) and black hole parameters is simply (in units where
ℏ ¼ c ¼ G ¼ k ¼ 1) [17]

TðtÞ ¼ ω

2 ln½tanh−1 (rðtÞt)� ; ð4Þ

where TðtÞ is the time-dependent Hawking temperature
TðtÞ ¼ ½8πMðtÞ�−1 and MðtÞ is the black hole mass.
The initial black hole state can be pure or mixed. For

simplicity, we restrict our analysis here to the pure state
scenario and a black hole in initial state jnia (n modes), but
our results naturally carry over to an arbitrary superposition
and any mixed initial black hole state with corresponding
nonzero initial entropy, as we discuss below. We now

define the time-evolution operator on a quantum state
jΨðt1Þi as jΨðt2Þi ¼ Uðt2; t1ÞjΨðt1Þi, where

Uðt2; t1Þ ¼ Te
−i
R

t2
t1

Hðt0Þdt0
: ð5Þ

The symbol T stands for Dyson’s time-ordering operator
and HðtÞ is the Hamiltonian describing the unitary
evolution of the quantum state. We can then write the
time evolution of the black hole initial state jΨð0Þi ¼
jniaj0ibj0ic ≡ jniaj0ibc as

jΨðtÞi ¼ Uðt; 0ÞjΨð0Þi ¼ Te−i
R

t

0
Htriðt0Þdt0 jniaj0ibc; ð6Þ

where Htri is the trilinear Hamiltonian (written as a sum
over modes)

Htri ¼
X∞

k¼−∞
irωk

ðtÞðakb†kc†k − a†kbkckÞ: ð7Þ

In the following, we will focus on a single mode k with
energy ωk, and omit the index k for convenience.
To calculate Eq. (6), we introduce small time slices Δt

and discretize the path integral so that with t ¼ NΔt

UðtÞ ¼ Te−i
R

t

0
Htriðt0Þdt0 ≈

YN

i¼1

e−iΔtHi ; ð8Þ

where the ith time-slice Hamiltonian Hi ¼ ir0ðab†i c†i −
a†biciÞ acts on the black hole state and the ith slice of the
bc Hilbert space j0ibici . The initial value r0 sets the energy
scale, and we simply set r0 ¼ 1 in the following.
We now apply Eq. (8), so that

jΨðtÞia0bc ¼ Wjniaj0ibc ¼
YN

i¼1

e−iΔtHi jniaj0ibc; ð9Þ

where j0ibc¼df j0ibNcN ⊗ � � � ⊗ j0ib1c1 , WðiÞ ¼ e−iΔtHi , and

W ¼ WðNÞ∘ � � � ∘Wð1Þ (cf. Fig. 1). The first time slice is

jΨð1Þi ¼ Wð1Þjniaj0ib1c1 ¼
Xn

j¼0

Uð1Þ
nj jjiajn − jib1c1 ; ð10Þ

while jΨðtÞi is given by

jΨðtÞia0bc ¼
X

j1…jN

Uð1Þ
nj � � �UðNÞ

jN−1jN

× jjNiajjN−1 − jNibNcN � � � jn − j1ib1c1 : ð11Þ
Note that approximating the path integral using a single
time slice—the static path approximation (SPA), see, e.g.,
Refs. [24,25]—can yield good results at very low temper-
atures, but disregards self-consistent temporal fluctuations.
Indeed, SPA calculations of the black hole entropy using
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the trilinear Hamiltonian lead to an oscillating behavior
of the black hole entropy [17,18]. The black hole von
Neumann entropy can be calculated using the marginal
density matrix ϑa0 ðtÞ ¼ Trbc½jΨðtÞihΨðtÞja0bc�, which can
be written entirely in terms of the coefficients jUijj2. The
latter describe the probability to observe j modes of the
black hole given that in the previous iteration we found i
modes, ϑa0 ðtÞ ¼

P
n
jN¼0 pjN jjNihjN j, where

pjN ¼
Xn

j1>j2>���>jN−1

jUð1Þ
nj1

j2 � � � jUðN−1Þ
jN−2jN−1

j2jUðNÞ
jN−1jN

j2: ð12Þ

To follow the time evolution of the black hole entropy
HnðtÞ ¼ −Tr½ϑa0 ðtÞ log ϑa0 ðtÞ� given the initial state of the
black hole is a pure state with n quanta, we need to evaluate
the n coefficients pjN above. This is a difficult calculation
because, unlike the Hawking isometry, the unitary operator
WðiÞ is not known to be factorizable in a simple way. The
usual formal factorization formulas [26–28] are infinite
operator products and often are not suitable for practical
calculations. A common route to obtain the time evolution
is to expand the exponential around r0t ≈ 0, but this allows
only a short-time analysis of the evolution operator. For
greater r0t, the Taylor expansion is prohibitively inefficient.
However, a method developed in Ref. [29] enables us to
find the action of the unitary operators even for large values
of r0t. The action of WðiÞ acquires an interesting combi-
natorial interpretation in terms of an integer lattice known
as a generalized Dyck path [30] if it acts on any state
generated by the repeated action of ab†c† on a ground
state jgri, defined by a†bcjgri ¼ 0. The basis elements
fjk00iabcgnk¼0 spanning our input Hilbert space of WðiÞ are
all ground states of Hi.
We evaluated the output entropy for black holes with

initial quanta n for 0 ≤ n ≤ 50 using the discretized path
integral [Eq. (11)]. The resulting entropy as a function of
the number of time slices (at constant small Δt) is shown in
Fig. 2 for n ¼ 5, 20, and 50. An entropy curve strikingly
similar to the one predicted by Page [3] emerges in the limit
of large t (several thousand time slices). This shape is a
consequence of the fact that the final black hole density

matrix ϑa0 (for N ≫ 0) is extremely close to a pure vacuum
state j0ia0 for all examined input basis states jni. Note that
the case n ¼ 50 gives rise to an extremely large Hilbert
space, and to obtain a reliable Taylor expansion for
Δt ¼ 1=15 would require expansion to order up to 500.
A straightforward numerical evaluation of the 2500 terms is
of course impossible, but the method developed in Ref. [29]
makes the calculation tractable on a high-performance
computing cluster. We have also performed a calculation
of the integral where partner modes are allowed to interact
with the black hole a second time, breaking the symmetry
between partner and Hawking modes. Such a calculation
is far more complex, but does not change the shape of
the Page curves appreciably.
It is important to stress that even though we studied

the effect of W only on basis states jni, we can
extend this conclusion to an arbitrary input pure state
ψa ¼

P
n
k¼0 βkjkia. It is sufficient to show decoupling of

the spanning basis set. Thus, ultimately the action of W
can be reformulated as inducing

jkiaj0ibc !W jΨðtÞia0bc ≈ j0ia0 ⊗ ϑbcðjkiÞ; ð13Þ

where 0 ≤ k ≤ n and ϑbcðjkiÞ ¼df Tra0 ½jΨðtÞihΨðtÞja0bc�.
Hence, ϑbcðjkiÞ is necessarily pure and mutually orthogo-
nal for all k. Since j0ia is a “constant” state (independent
of k), it immediately follows that an arbitrary superposition
ψa will be transferred to the Hawking modes and their
partners (bc). These are precisely the circumstances cap-
tured by the decoupling theorem in Eq. (1) upon identifying
A ⇋ a, E ⇋ bc, and B ⇋ a0. The presence of an input
bipartite state ΦRA instead of ψA is just a convenient
reformulation, so that if the decoupling (transfer) of ΦRA
is successful, it can be used to perfectly teleport any ψA.

FIG. 1. The action of the discretized path integral WðiÞ is
sketched. The braces indicate the entropy calculation of the
radiated modes at each time slice.

FIG. 2. Black hole entropy HnðtÞ ¼ H½ϑa0 � ¼ H½ϑbcðtÞ� as a
function of the iteration number N for initial states jniaj0ibc, with
n ¼ 5 (orange curve), n ¼ 20 (red curve), and n ¼ 50 (pink
curve), with t ¼ ΔtN. Logarithms are base nþ 1 so that each
black hole entropy HnðtÞ ≤ 1. We use r0 ¼ 1 and Δt ¼ 1=15.
The curves are qualitatively unchanged if Δt ¼ 1=25 and using a
commensurately larger number of time slices (data not shown).
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As is implied by Eq. (13), the black hole evolution
ultimately turns out to be an erasure map T̂ a→a0∶
ψa → Tr½ψa�j0ih0ja0 , which we interpret as complete evapo-
ration. This immediately implies that themapT a→bc must be
the identity as announced earlier. The decoupling theorem
then implies [5] that the input state (and so the quantum
information it carries) has been nearly perfectly transferred
to the bc Hilbert space. What we found, therefore, is an
explicit (and simple) realization of the one-shot statemerging
protocol [5,31] (generalizing Ref. [6] studied in the asymp-
totic limit), and thus the action of T̂ a→a0 in Eq. (1) turns out
to be a simple case of the FQSW protocol [7] (the erasure
map is essentially the trace map, which is a special case
of the partial trace appearing in FQSW).
The question of how exactly the information is

encoded in the outgoing radiation described by the density
matrix ϑbc is nontrivial. The mapping T a→bc is a highly
convoluted identity, something that is expected from the
decoupling mechanism. Hence, the information is not
readily available for a readout—the state occupying the
bc Hilbert space is scrambled, or, in quantum information
theory jargon, it is a highly entangled quantum code.
The output state is highly entangled and so an observer

having access only to the b or cmode cannot learn anything.
This is a direct consequence of the symmetry between the
modes b and c in the boson trilinear Hamiltonian given by
Eq. (3), also seen in the action of the unitaryWð1Þ andW in
Eqs. (10) and (11), respectively. This is a textbook example
of how the impossibility of perfect cloning prevents an
observer from obtaining any information from ϑb or ϑc
alone. If there existed a completely positive map that
recovers ψa from ϑb only, the same operation could recover
it from ϑc. But that would result in two nearly perfect copies
of ψa, which is prohibited by quantum mechanics. Using
the language of quantum Shannon theory, the quantum
capacity of the channel Ma→bðcÞ must vanish [32].
The trilinear Hamiltonian Eq. (3) that allowed us to carry

through this analysis is, to put it bluntly, a guess. It does not
follow from an interacting quantum field theory of gravity
(such as a locally flat conformal field theory coupled to
a dilaton [33] (see Ref. [34] for additional references).
However, it is manifestly an elegant extension of the
semiclassical approach, and it is difficult to imagine that
a consistent renormalizable quantum field theory of gravity
would not, in an effective limit, reduce to precisely an
interaction as we describe. Indeed, such an interaction is
analogous to the low-energy approximation of an inter-
action that describes the decay of a flux tube into a
monopole–anti-monopole pair, and was previously sug-
gested as a way to restore energy conservation and unitarity
to black hole evaporation [35,36]. In fact, the mechanism
of information conservation implied by our model is an
example of a much larger class of more complicated
Hamiltonians with the proper semiclassical limit
Vωi

jvaci ¼ 1= cosh rωi

P∞
m¼0 tanh

m rωi
jmibi jmici . Indeed,

it may be possible to use decoupling as a constraint to
impose conditions on the form of the Bogoliubov trans-
formation that connects the in vacuumwith the out vacuum.
It is clear from general arguments [37] that at a minimum
extra degrees of freedom are needed that are coupled to
the Hawking modes, and in our model these degrees of
freedom are the quantized black hole modes a.
To illustrate the mechanism concretely, we set ψa ¼ j3ia

and observe the behavior of the probabilities given by
Eq. (12) in Fig. 3. The black hole state slowly “drifts”
towards the vacuum state (the top line) even if the transition
amplitudes for the highest Fock state are close to one, that
is, the least favorable conditions for the transition to the
vacuum state. This is a direct consequence of the spectrum
boundedness of the trilinear Hamiltonian Eq. (3)—the
number of bosons n in the a mode that W ¼ exp ½−iHtri�
can “distribute” to the bc modes is naturally equal to or
lower than n. Crucially, any spectrum-bounded and possibly
multilinear Hamiltonian displays exactly the same behavior,
and only the information rate differs. As a consequence, the
information transfer mechanism—and therefore the Page
curve—are expected to remain virtually unchanged even for
much more complicated internal dynamics. In other words,
the Page curve is robust and universal.
The general features of information transfer between

quantum subsystems as described by Page [3] (see also more
recently Refs. [4,38,39]) have been discussed intently in the
past. We believe our calculation is the first explicit realization
of these previous abstract arguments, pointing towards
decoupling as a mechanism for the resolution of the black
hole information loss problem. Finally, wewould like to point
out that the explicitly time-dependent black hole evaporation
process we described sheds new light on the discussion of
putative firewalls [40,41] for old black holes. The usual line
of reasoning for firewalls based on the monogamy property
of entanglement does not apply here since the black hole state
jΨðtÞia0bc from Eq. (11) is tripartite entangled. In summary,
we calculated the S-matrix of a black hole and found that
probabilities are conserved from formation through evapo-
ration, showing that the entropy that accumulated in the
black hole is returned back to the Universe.

FIG. 3. The schematic evolution of the probability Eq. (12) of
the black hole density matrix ϑa0 ðtÞ for the input state j3ia. Time
goes from left, the boxes are Fock bases (j0i;…; j3i, top to
bottom) and the lines represent the contributions from the
previous iterations. The vacuum gets the majority of contributions
in every iteration (three steps shown here) capturing the black
hole evaporation.
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