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Abstract

Functional networks–be they biological, social, or
technological–have characteristics that distinguish them
from random or non-functional networks (Barabasi and
Albert, 1999; Albert and Barabasi, 2002; Alon, 2007). Most
well-known among these characteristics is the (approxi-
mately) scale-free degree distribution (probability that a
node has k edges) of functional networks, as opposed to
the binomial distribution of Erdös-Renyi random graphs.
Another feature is a short mean path length through the
network (also known as the ‘small-world’ property) that
implies that signals can travel to any part of the network
quickly (Girvan and Newman, 2002). While these properties
are shared by protein-protein networks (Albert, 2005),
metatbolic (Jeong et al., 2000; Wagner and Fell, 2001)
and signaling (Barrios-Rodiles et al., 2005) networks,
the topological and graph-properties of biological neural
networks, in particular animal brains, are much less studied.
Reigl et al. (2004) studied the connectivity patterns and
computational modules in the nematode C. elegans brain,
and found that it was structured into small computational
modules that are over-represented with respect to an equiv-
alent random network, yet with a degree distribution that is
neither scale-free nor Poissonian.

The topological structure of animal brains is likely to be even
more interesting than protein-protein interaction networks be-
cause the computational power of brains is thought to be al-
most entirely due to its wiring pattern and hierarchical organi-
zation (see, e.g., Hawkins, 2004). At the same time, this pat-
tern is not at all well understood, and the information about
the wiring pattern of C. elegans mentioned earlier is unique
in the literature. A promising direction for the study of net-
work topology in the absence of detailed biological data is
the Artificial Life approach, where functional networks are
evolved that determine the survival of artificial organisms
in an artificial chemistry and genetics. Recently, we used
this approach to understand modularity in evolved artificial
metabolic networks (Hintze and Adami, 2008) and developed
new tools to dissect their topological and functional charac-
teristics. Here, we apply some of these tools to the study of
the brains of robots that have evolved to behave in a simu-
lated world. These brains are based on an artificial chem-
istry and genetics, and are grown from a single cell that har-
bors the genome that specifies the development and function
of the brain. Because neither the structure nor the computa-
tional algorithms for function are predetermined. the result-
ing networks of neurons are unlike anything human engineers

would design, and instead resemble the connectivity patterns
of the C. elegans brain. The robots that are controlled by these
brains are simulated versions of real robots (the ATRV Jr. of
the iRobot R© Corporation) whose properties we tested in our
laboratory. Both the robot and its environment are simulated
in a three-dimensional world that implements realistic rigid
body dynamics via the Open Dynamics Engine (ODE). As a
consequence, evolved controllers could in principle be trans-
planted onto the simulated robots’ real-world counterparts.

Neural computational tissues (“brains”) are grown from
genomes that implement neural network development and
function based on a set of rules (“genes”) that are condition-
ally executed, that is, regulated, by a set of simulated proteins
produced by the cells in the tissue. This system (“SIMNOE-
SIS”) is based on the NORGEV platform (Astor and Adami,
2000; Hampton and Adami, 2004) but was completely rewrit-
ten in order to be able to evolve complex tissues that process
many temporally varying input signals. We evolve neural tis-
sues on two-dimensional grids (of up to 15x15 neurons) that
control a simulated ATRV Jr. with 19 sensors (17 sonars, a
compass, and a sensor relaying distance to goal), controlling
two motors driven by two actuators for differential steering.
The evolved tissues control complex robot behavior, such as
wall-following, obstacle avoidance, and goal-finding, using a
complex network structure reminiscent of the C. elegans con-
nection graph. The fitness evaluation of a genome consists of
growing the network, and evaluating the behavior of the robot
in a 3D environment (Chaumont et al., 2007), akin to the fit-
ness evaluation in the work of Sims (1994). Fitness evalua-
tion and evolution via a Genetic Algorithm is implemented
within the EVO sofware (Chaumont, 2007).

We analyze the properties of evolved neural networks us-
ing standard tools (such as edge-distribution, shortest-path
length, and betweenness centrality), as well as new tools that
reveal robustness and modularity via clustering methods and
information theory. We find that the topological properties of
evolved functional networks are very different from their ran-
domized counterparts, and characterize the “rarity” of these
networks with standard statistical tests. Finally, we compare
the topological properties of our evolved networks to the con-
nection graph of C. elegans.
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