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Abstract
If black holes were able to clone quantum states, a number of paradoxes in
black hole physics would disappear. However, the linearity of quantum
mechanics forbids exact cloning of quantum states. Here we show that black
holes indeed clone incoming quantum states with a fidelity that depends on the
black hole’s absorption coefficient, without violating the no-cloning theorem
because the clones are only approximate. Perfectly reflecting black holes are
optimal universal ‘quantum cloning machines’ and operate on the principle of
stimulated emission, exactly as their quantum optical counterparts. In the limit
of perfect absorption, the fidelity of clones is only equal to what can be
obtained via quantum state estimation methods. But for any absorption
probability less than one, the cloning fidelity is nearly optimal as long as
ω ⩾T 10, a common parameter for modest-sized black holes.
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Black holes are quantum objects with intriguing characteristics. They are formed in the stellar
collapse of stars with sufficient mass because such objects become relativistically unstable.
While classically no signal can emerge from within the event horizon, Hawking showed that
in curved-space quantum field theory, black holes must emit thermal radiation with a tem-
perature T that is inversely proportional to the black hole’s mass: π=T M1 (8 ), in convenient
units [1].
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But Hawking’s calculation also created an apparent paradox. Because the eponymous
radiation takes its energy from the mass of the black hole, the latter might ultimately eva-
porate. And if the emitted radiation is strictly thermal as the calculation suggests, the initial
data about the formation of the black hole would have to be erased once the black hole
disappears, something the laws of physics simply should not permit [2]. The same appears to
hold true for information directed at the event horizon after the formation of the black hole
(this means ‘at late times’ in the parlance of gravity, because according to stationary observers
the black hole only forms for → ∞t ). If the black hole final state does not depend on whether
Shakespeare’s or Goethe’s works are absorbed by the black hole—assuming that both
œuvres have the same mass—then space–time dynamics would appear to be irreversible and
unpredictable even if black holes never evaporate at all.

Recently, we found that from the point of view of quantum communication theory, black
holes are not so special after all [3]. Rather, they appear to be relatively ordinary noisy
quantum communication channels, with a positive capacity to transmit classical information
given by the expression proposed by Holevo [4], because any matter or radiation absorbed by
the black hole must stimulate the emission of exact copies outside of the event horizon [5].
Because the absorbed particles are quantum states, we may wonder whether stimulated
emission at the black hole horizon violates the quantum no-cloning theorem [6, 7]. In the
following we show that it does not, because the spontaneously emitted Hawking radiation
prevents perfect cloning. We will ask how well quantum states are copied by black holes,
because this will shed light on how black holes treat quantum—rather than classical—signal
states. We find that a black hole’s cloning fidelity depends on the probability with which
quantum states are absorbed by the black hole, Γ0, with a cloning fidelity ranging from the
classical measurement limit to the universal optimal cloner [8, 9].

Figure 1. Penrose diagram of the spacetime of a black hole. Modes a, b, c and A are
concentrated in a region of null infinity indicated by the letter (note that a and b actually
overlap on ℐ−, and that our nomenclature of modes differs from that of Sorkin [10]).
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Quantum black holes can be described succinctly by a hermitian operator H that trans-
forms quantum states defined on a Fock space of particles before the formation of the black
hole and far away from the star that will form it (a slice of spacetime called ‘past null infinity’
and denoted by ℐ− in figure 1), to a Fock space long after formation of the black hole, also
far away from it (‘future null infinity’ ℐ+ in figure 1). As opposed to flat-space quantum field
theory where Poincaré invariance ensures that those two vacua are equivalent, curved-space
quantum field theory can have inequivalent vacua defined only by specifying a time-like
coordinate with respect to which field modes carry positive frequency (see, e.g., [11]).

We will define our ‘in-vacuum’ by separating space–time into two regions divided by an
event horizon: the ‘inside’ region (denoted by ‘II’ in figure 1) and an ‘outside’ (region I). For
each region, we can define a complete set of modes that in the future travel just outside and
just inside the event horizon, and creation and annihilation operators (ak annihilates modes in
the outside region whereas bk annihilates modes on II). Because the in-modes so defined
diverge on the horizon, a different set of coordinates is needed to describe the out-states.
These so-called ‘Kruskal’ modes are regular on the horizon, and related to the in-states via

ψ ψ= −e , (1)H
out

i
in

where H is a Hermitian operator defined below.
Associated with these out-states are creation and annihilation operators Ak (annihilating

outside states defined on ℐ+) and Bk (annihilating ‘inside’ states defined on the horizon). The
change of coordinate systems implied by equation (1) gives rise to a Bogoliubov transfor-
mation relating Ak to ak and bk:

α β= = −−
−A a a be e , (2)k

H
k

H
k k k k

i i †

which can be implemented by the Hermitian operator

= − + → −− −( )H g a b a b k ki (3)k k k k k
† †

describing the entanglement of particles and antiparticles outside and inside the horizon (for
mode k). For a theory of complex scalar fields in curved space–time, we find

α = =
− ω−gcosh

1

1 e
(4)k k T

2 2

β = =
−ωgsinh

1

e 1
, (5)k k T

2 2

where ω = ∣ ∣k is the frequency associated with mode k and T is the Hawking temperature.
The relationship between the coefficients αk , βk, the frequency of the modes and the Hawking
temperature T is enforced by requiring that the solution to the free-field equations in a black
hole background is analytic across the horizon, as usual [1]. Note that while the full
Hamiltonian is a sum over modes with all k, we focus here on a single mode because they do
not mix in this 1+1 dimensional theory. Note further that while we could have restricted
ourselves to real-valued scalar fields, the ability to distinguish particles from antiparticles will
be useful later when we encode quantum states.

Quantum cloning refers to the duplication or copying of quantum information, a process
that is known to be impossible to achieve perfectly [6, 7] but that can be performed
approximately. A quantum cloning machine attempts to maximize the probability that a
quantum state ψ∣ 〉 (or by extension N identically prepared states ψ∣ 〉⊗N) is cloned into a state
ψ ψ∣ 〉 = ∣ 〉∣ 〉∣ 〉U X0out in with a unitary transformation U acting on the input state ψ∣ 〉in , a blank
state ∣ 〉0 that is to hold multiples of the cloned state, and an ancillar state ∣ 〉X . The formalism
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of quantum cloning machines was introduced by Buzek and Hillery [8], and has received
considerable attention (see, e.g., the reviews [12, 13]). The fidelity of one of the M cloned
states ρ j

out is given by

ψ ρ ψ=F , (6)j
j

in out in

and the optimal →N M cloning fidelity of universal quantum cloning machines (devices that
copy any input state ψ∣ 〉 with the same fidelity) is [9, 14]

= + +
+F

M N N
M N
( 1)

( 2)
. (7)opt

Quantum cloning machines that reach the optimal cloning limit have been constructed using
simple quantum optical elements (parametric amplifiers and beam splitters) for discrete states
such as polarization [15] as well as continuous variables [16, 17].

In order to discuss quantum cloning by black holes, we study the effect of the unitary
transformation = −U e Hi applied to an arbitrary incoming quantum state ψ∣ 〉in (including the
blank and ancillar states), where ψ∣ 〉 encodes information in the ‘particle–antiparticle’ basis,
i.e., ψ σ τ∣ 〉 = ∣ 〉 + ∣ 〉1, 0 0, 1g gin and where ∣ 〉n m, g represents a state with n particles and m
antiparticles at past null infinity (the time slice ℐ− in figure 1).

Let us first discuss cloning with the operator equation (3), because it allows us to
establish important limits. The modes we use to encode our logical qubits are number states of
particles or antiparticles, timed in such a manner that they travel just outside (modes ak) or
just inside (modes bk) the event horizon. Naturally, this is not a practical means of cloning
quantum states because particles cannot be timed this accurately if the formation of a black
hole is not certain. Furthermore, particles traveling close to the horizon for long times
undergo a tremendous redshift (which we neglect here for simplicity). Consequently, we will
discuss cloning of late-time particles that are sent in long after the formation of the black hole
(and that do not undergo a redshift) following this discussion.

For the unitary mapping = −U e Hi implemented by (3), we find that the cloning trans-
formation is rotationally invariant just as in quantum optics [15], implying that the cloner is
universal (that is, that the cloning operation is independent of the state to which it is applied).
Thus, instead of considering the effect of the cloner on the general state
ψ σ τ∣ 〉 = ∣ 〉 + ∣ 〉1 0L L, we can choose σ = 1 and τ = 0 without loss of generality.

For ψ∣ 〉 = ∣ 〉 ∣ 〉 = ∣ 〉⊗N , 0 0,0 1a b L
N

in we obtain using (3)

∑ψ = + + ′ ′
′

′
∞

− + ω ⎜ ⎟⎛
⎝

⎞
⎠Z j N

N
j N j j je , , , (8)( )

jj

j j
a bout T2

where α= +Z (1 )k
n2 . Fixing the number of output copies to M (by restricting the number of

particles and antiparticles in region I to M) gives

∑ψ ∼ − − − − −
=

−
⎜ ⎟⎛
⎝

⎞
⎠

M j
N

M j j j M N j( 1) , , , (9)M
j

M N
j

a b
0

which (up to normalization) is identical to the wavefunction emanating from the optical
quantum cloner of Simon et al [15] that achieves the optimal fidelity (7). Thus, for quantum

J. Phys. A: Math. Theor. 48 (2015) 23FT01

4



states sent into a black hole at early times so that they remain just outside the horizon, the
black hole acts like a universal, optimal, quantum cloning machine 3.

Let us study the quantum states behind the horizon (modes b). Just as in the optical
realization of the optimal universal cloner, the quantum state behind the horizon contains

−M N anticlones of the initial state ∣ 〉N , 0 a, that is, inverted states obtained from the initial
states by the application of the optimal universal NOT gate [18, 19]. The fidelity of these
anticlones is

= +
+F

N
N

1
2

(10)anti

for each anticlone, which is the fidelity of the best possible state preparation via
state estimation from a finite quantum ensemble [20]. Note that the optimal cloning fidelity
(7) tends to the state estimation fidelity in the limit → ∞M , which we recognize as the
classical measurement limit of quantum cloning.

Consider the fidelity of cloning when N antiparticles in mode b are sent in, traveling just
inside the horizon (region II): ψ∣ 〉 = ∣ 〉 ∣ 〉N0,0 0,a bin . We are now interested in the fidelity of
the anticlones generated on the other side (region I). The wavefunction is

∑ψ ∼ + − − +
=

⎜ ⎟⎛
⎝

⎞
⎠

j N
N

j M j M j j N, , (11)M
j

M

a b
0

giving the probability to observe j particles and −M j antiparticles outside the horizon

− =
+

∑ +
=

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

p j M j N

j N
N
j N

N

( , ) . (12)

j
M

0

The fidelity of these anticlones in region I is also + +N N1 2, equal to the fidelity of the
anticlones in II when sending in ∣ 〉N , 0 a, but the anticlones of the antiparticle states are of
course clones of the particle states. In summary, sending N particles in mode a creates optimal
particle clones in region I, while sending in N antiparticles in mode b gives rise to classical
particle clones in region I instead.

We now discuss the more realistic cloning scenario where we send quantum states into
the already-formed black hole at late times, by introducing an additional mode c (see figure 1)
that is strongly blue-shifted with respect to the early-time modes a and b (which have suffered
a redshift from traveling through a dynamic collapsing space–time), and therefore commutes
with them. The c-modes are turned into a and b modes via absorption, reflection, and
emission at the horizon, and were used earlier as signal states to study the fate of classical
information sent into black holes [3]. The Bogoliubov transformation that connects these
operators (for each mode k) is [10] (we omit the index k from the Bogoliubov coefficients
from now on)

α β γ= = − +−
−A a a b ce e , (13)k

H
k

H
k k k

i i †

3 In quantum optics, post-selection to a fixed number of clones can be achieved by entangling the quantum state with
a trigger signal and then measuring the trigger, which reduces the wavefunction to equation (9) if M particles were
detected in the trigger. In the case of black holes, we can perform the same operation, but must send the trigger
towards future infinity (but away from the black hole horizon). Even though the quantum state reconstruction is
conditioned on the trigger, it only uses the quantum states coming from the black hole.
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which can be implemented with the Hamiltonian

= − + ′ − + → −− −( ) ( )H g a b a b ig a c a c k ki . (14)k k k k k k k k
† † † †

This Hamiltonian has an interesting quantum optical interpretation as the sum of an active
optical element—a parametric amplifier described by a squeezing Hamiltonian with gain g—
and a passive one: a beam-splitter with a phase ′g (see, e.g., [21]). It describes a black body at
temperature T surrounded by a semi-transparent mirror, which models the potential barrier
surrounding the black hole [22].

Obtaining the coefficients α β, , and γ from (14) is straightforward, and yields [3]

α Γ Γ= ′ − = =
− ω−( )g gcos

1 e
(15)

T
2 2 2 2

0

β Γ= ′

′ −
=

−ω
⎛
⎝⎜

⎞
⎠⎟

( )g
g

g g

w

sin

e 1
(16)

T
2

2 2 2 2

2

γ Γ= ′ − = −( )g g wsin 1 , (17)2 2 2 2 2

where = − ′w g g1 ( )2 2. Note that unitarity implies α β γ− + = 12 2 2 . The coefficients α and
β together again set the black hole temperature via β α = ω−e T2 2 . The quantum absorption
probability of the black hole, Γ0, is set by α2 alone, while the classical absorption probability
Γ is set by α β−2 2. Thus, Γ is always smaller than Γ0 by β2, which is the strength of the
quantum effects. In the above formulas, ′ ⩾g g so that w is real and Γ⩽ ⩽0 10 [5, 23] is a
probability [3].

Consider first → M1 cloning. Because the extended Hamiltonian (14) is still rotationally
invariant, we can again restrict ourselves to study the effect of the black hole on one particular
state. To clone the state ∣ 〉 = ∣ 〉 ∣ 〉 ∣ 〉1 0,0 0,0 1, 0L a b c, for example, we obtain:

ρ ρ ρ= = ⊗ −( )U UTr 1 1 , (18)a bc L k k
†

1 0

where (with ξ = γ
α β

2

2 2 )

∑

∑

ρ

α
β

β
β

ξ

=

=
+ +

+
=

∞ ⎛
⎝⎜

⎞
⎠⎟( )

p m m m

m m m

( 1)

1 1
(1 ) , (19)

k
m

m

m

1

2

2 2
0

2

2

∑ρ
β

β
β

=
+ +=

∞ ⎛
⎝⎜

⎞
⎠⎟ m m

1

1 1
. (20)k

m

m

0 2
0

2

2

From (19), (20) the → M1 cloning fidelity can be calculated as before

ξ ξ
ξ=

∑ −
∑ −

= + +
+→

=
−

=
F

p M j p j

p M j p j

M
M

( 1) ( 0)

( 1) ( 0)

3 2
3(2 )

. (21)M
j
M M j

M

j
M1
0

0

Let us investigate this result in a number of physical limits. As the black hole becomes more
and more reflective, Γ α= → 00

2 , which implies ξ → ∞. In this case, the fidelity (21)
approaches the optimal value
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= +
Γ →

→F
M

lim
2
3

1
3

, (22)M
0

1
0

as is seen in figure 2. For arbitrary N, the limit is exactly equal to the Gisin–Massar optimal
fidelity (7) of an →N M cloning machine. We can recognize this result as the special case we
treated earlier: if the black hole perfectly reflects incoming states, the black hole behaves just
as if early-time modes (a-modes) were traveling just outside the horizon (except for the
redshift).

Another limit of note is that of full absorption: Γ → 10 . In that case ξ → 1 and
→→F 2 3M1 , the fidelity of a classical cloning machine. It can be shown in general that for

full absorption, the →N M cloning fidelity is equal to + +N N1 2 independently of ω T ,
which is the result we obtained earlier when sending N antiparticles in mode b directly behind
the horizon. This is again not surprising, as the absorption of c-modes stimulates the emission
of b anti-modes behind the horizon, who in turn give rise to anticlones of the antiparticles,
that is, clones.

Figure 2. Cloning fidelity →F M1 of the quantum black hole as a function of the number
of copies M, for different values of the quantum absorption probability Γ0 and a fixed
ω =T 4.

Figure 3. Cloning fidelity →F M1 as a function of the number of copies M, for different
values of ω T and a fixed quantum absorption probability Γ = 0.950 .
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While in the limit Γ → 10 the best we can do to reconstruct the quantum state is to make
classical measurements that allow us to optimally estimate the quantum state, note that in the
limit → ∞N the probability to do this correctly tends to one, implying that the quantum state
information can be reconstructed with arbitrary accuracy. Another interesting limit is that of
large black holes, where the Hawking temperature approaches zero. In that case, as ω → ∞T
implies ξ → ∞ (as long as Γ < 10 ), we again recover the optimal universal quantum cloning
fidelity (22). This behavior can be seen in figure 3. Note that as even modest-sized black holes
have ω ⩾T 10, most black holes are nearly-optimal universal quantum cloners unless the
absorption probability is exactly equal to 1. These results extend to →N M cloning
machines. Just as for the N = 1 case, the black hole cloner approaches the optimal cloner in
the limit →T 0 or Γ → 00 , and turns into a classical cloning machine in the limit Γ → 10 and
for → ∞M .

Our results have important implications for quantum communication theory, as the
quantum channel defined by the mapping (1) turns out to be an example of so-called ‘cloning
channels’ [24], whose classical capacity can be calculated exactly. More precisely, the black
hole acts a weighted ensemble of cloning machines. The quantum capacity of this channel has
been calculated exactly in the limiting cases Γ = 00 and Γ = 10 [25].

Our findings should have significant consequences for contemporary controversies sur-
rounding black hole dynamics, such as black hole complementarity [26–28] and firewalls
[29, 30]. Firewalls, that is, a ‘curtain’ of high-energy quanta surrounding a black hole, were
proposed as a solution to an apparent inconsistency in back hole complementarity, which
attempts to resolve the information paradox via quantum cloning (so that quantum states are
both absorbed and reflected at the horizon). We have shown here that quantum states are
indeed both reflected and absorbed, but that the dynamics occur in a unitary manner without
violating the no-cloning theorem. Because the quantum state across the horizon is fully
entangled in our description, an explicit calculation of the energy–momentum tensor must be
finite across the horizon (while the energy–momentum tensor diverges if a product state
across the horizon is used, as is assumed in the AMPS construction). An explicit calculation
of the renormalized energy–momentum tensor [31], in the presence of stimulated emission
accompanying Alice’s descent into the black hole, should resolve the paradox once and
for all.
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