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Abstract Research investigating the origins of life usually either focuses on exploring
possible life-bearing chemistries in the pre-biotic Earth, or else on synthetic approaches.
Comparatively little work has explored fundamental issues concerning the spontaneous
emergence of life using only concepts (such as information and evolution) that are divorced
from any particular chemistry. Here, I advocate studying the probability of spontaneous
molecular self-replication as a function of the information contained in the replicator, and
the environmental conditions that might enable this emergence. I show (under certain sim-
plifying assumptions) that the probability to discover a self-replicator by chance depends
exponentially on the relative rate of formation of the monomers. If the rate at which
monomers are formed is somewhat similar to the rate at which they would occur in a self-
replicating polymer, the likelihood to discover such a replicator by chance is increased by
many orders of magnitude. I document such an increase in searches for a self-replicator
within the digital life system avida.
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Understanding and explaining the origin of life on Earth are perhaps the most difficult
problems that science faces (Morowitz 1992; Deamer 1994; deDuve 1995; Koonin 2011).
There are difficulties everywhere: most likely, there is no remnant of the original set of
molecules that began their fight against the second law of thermodynamics (but see the
discussion in Benner et al. (2004); Davies et al. (2009)), so that the molecules in use by
the most primitive life extant in the biosphere today is almost completely different from
those molecules that began it all (Joyce et al. 1987). In view of all the problems that an
RNA world scenario creates in terms of an “impossible” chemistry (Levy and Miller 1998;
Sutherland 2010), we cannot even assume that RNA (in its present form) was part of the
ancient equation.

Given the unfathomable number of variables (geological, chemical, and environmental),
is it even worth while pursuing an answer to a question we can barely formulate? Here
I propose–as others have before me (Joyce 2012; Walker and Davies 2013)–that in paral-
lel to the ongoing work exploring the conditions of the pre-biotic Earth and the possible
chemistries that could have given rise to a chemical system supporting self-replication,
we ought to pursue theoretical research that is disconnected from a particular chemistry;
that instead focuses entirely on information-theoretic aspects of the problem, as well as
simulations of (and with) artificial (abstract) chemistries.

Information-theoretic considerations are, after all, the only thing we can be certain about
in this wilderness of ideas and uncertainties concerning the emergence of a biosphere. In
order to be considered living, a system must be able to maintain information on a time scale
that exceeds (likely by many orders of magnitude) the abiotic scale (defined below) (Adami
1998). Indeed, if for a moment we define information as the difference between the maxi-
mum (thermodynamical) and the actual entropy of the system (see also Lineweaver 2013),
then certainly an abiotic system will have a vanishing amount of information unless it
begins in a non-equilibrium state and approaches thermodynamic equilibrium. Let’s agree
to call this timescale–the time it takes for a non-equilibrium system to approach max-
imum entropy–the abiotic scale. Living systems can stay away from maximum entropy
for much longer, indeed arbitrarily long (the biotic time scale is, for all we know, only
limited by the existence of the biosphere). It is then this ability: to persist in a state of
reduced entropy for biotic as opposed to abiotic time scales, that defines a set of molecules
as living, and this set of molecules must achieve that feat via the self-replication of
information.

From this point of view, the transition from non-life to life has occurred if a thermody-
namical system permanently moves from maximum entropy Hmax to Hmax − !H , where
!H is the entropy deficit, or information. I argue here that the likelihood that such a transi-
tion occurs spontaneously depends mostly on the size of !H . I will investigate here some
quantities that are bound to affect the size of !H without referring to any aspects of the
local chemistry that gives rise to that information. In this manner, I hope we can learn
something about the environmental characteristics we should look for in candidates for
origin-of-life scenarios, characteristics that hopefully go beyond those that we are already
investigating.

In the following, I will focus on potentially self-replicating molecular sequences of L
monomers. Obviously, this constrains potential origin-of-life scenarios, but not as much as
one might think. First, for the information-theoretic treatment that follows, it does not matter
whether the replicator is a single contiguous sequence or instead a set of sequences that are
replicating each other in an autocatalytic cycle (Eigen and Schuster 1979), in such a manner
that the end result is the self-replication of the information contained in the set. It is possible
in principle to calculate the amount of information contained within the autocatalytic set
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(this is potentially non-trivial because of likely redundancies within the set of molecules), in
which case the analysis that follows applies to this (non-redundant) information.1 After all,
when our own DNA is replicated, this also happens via an intermediary of a myriad of other
molecules, all of which are, however, encoded within the chromosomal or mitochondrial
DNA. In other words, our genetic information replicates itself through intermediaries also.

Second, constraining our self-replicators to a limited number of possible monomers it
could use (the “repertoire”) is only a weak constraint, because in an information-theoretic
treatment of molecular chemistries we can ignore any monomers that are rarely used
because those contribute only marginally to entropies (and hence information) on account
of the pi logpi form of the Shannon entropy. Third, while it is easier to treat sequences
of fixed length, the formalism can easily be extended to treat molecules of varying length.
Focusing on linear polymers, however, is a restriction that ultimately might not turn out to
be warranted. Indeed, it is possible to encode information in molecular assemblies that are
not linear chains (Segre et al. 1998, 2000), and for those my treatment would have to be
modified.

I first calculate the fraction of molecules of length L (with monomers drawn from an
alphabet or repertoire of size D) that are functional–in the sense that they display the
ability to self-replicate. In the following, I do not bother about an error rate, because I sim-
ply assume that even if the self-replication is imprecise, there will be a finite fraction of
molecules that will be replicated accurately. I assume this because were the error rate too
high then information cannot be maintained, and indeed the sequence of symbols is strictly
speaking not information, precisely because it cannot persist. Note that the critical error rate
depends on the population size, because in very large populations a few error-free sequences
might be generated even if most copies are flawed, which is all that is required for the main-
tenance of information. All these statements can be made precise, but I won’t bother to
undertake this here.

Let us first define the fraction of molecules F(x > 0) with replication rate x > 0 as
F(x) = Nν/N , where Nν is the number of self-replicators (at any rate x or larger), and N

is the total number of possible molecules of that length. If we assume (I will shortly relax
this assumption) that all potential self-replicators appear with equal probability, then the
Shannon entropy (also called “uncertainty”) of the self-replicating ensemble isH = logNν .
This uncertainty is related to the probability of finding such a self-replicating sequence
by chance in a set of other sequences. The probability to find such a sequence among all
possible sequences is of course just F(x). The information self-replicators have (about what
it takes to self-replicate in their world) is the difference between the maximal and the actual
entropy (Adami and Cerf 2000; Adami 2004, 2012)

IS = Hmax − logNν = L − H , (1)

because the entropy of a random polymer of length L is Hmax = L mers (if we take loga-
rithms with respect to base D) (Adami 2004). Because we also have Hmax = logN , Eq. 1
implies a relationship between the fraction of functional molecules and their information
content as suggested by Szostak (2003) IS = − logF(x > 0), but here I will go beyond
this relationship and explore a more accurate estimate ofH that takes into account the com-

1Note that information is by its definition non-redundant (in the sense that the information contained in two
identical sequences is equal to the information contained in one of them), but we can imagine that a set of
molecules that all share some information is represented by one other sequence that encodes all of the set’s
information in a non-redundant manner.
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position of the polymer in terms of monomers, the relative frequency of the polymers, and
the rate at which each monomer is being produced abiotically.

Let us first relax the assumption that all possible replicators appear with equal frequency
in the population. Let us instead enumerate all replicators in terms of their genotype i. Then,
the entropy of self-replicators is

H = −
Nν∑

i=1

pi logD pi , (2)

where pi is the likelihood to find genotype i in an infinite population. Of course, we do
not know those probabilities as infinite populations do not exist, so we will have to esti-
mate them. We do this by writing the entropy of the molecules in terms of the entropy of
monomers. Indeed, if all monomers in the sequence were independent of each other, then
the entropy of the random variable that represents the ith polymer

Xi = X
(1)
i × X

(2)
i × ... × X

(N)
i (3)

could simply be written as the sum of the entropy of each monomer variable X(j) in that
sequence

H(Xi) =
L∑

j=1

H(X
(j)
i ) . (4)

But we know from general arguments that monomers in a biological polymer are not inde-
pendent, because if they were, self-replicators would be easy to find. Indeed, if monomers
were independent, then the time it takes to find a particular sequence of length L is of the
order L (while it is of the order DL in the worst-case scenario). However, information the-
ory allows us to write the entropy Eq. 2 in terms of monomer entropies as well as correlation
entropies. Correlation entropies between pairs of monomers are called “information”, but
higher order correlations can exist too. If we define the Shannon information between two
residues i and j as H(i : j), the correlation entropy between three residues i, j , and k as
H(i : j : k) and so on, we can write Eq. 2 as2

H =
L∑

i=1

H(i) −
L∑

i>j

H(i : j)+
L∑

i>j>k

H(i : j : k) − · · · (5)

In Eq. 5, the sum goes over alternating signs of correlation entropies, culminating with a
term (−1)L−1H(1 : 2 : 3 : · · · : L).

So now, the information contained in a molecule is

IS = L − H = L −
L∑

i=1

H(i)+
L∑

i>j

H(i : j) − · · · . (6)

Let me assume for a moment that we do not have to worry about the higher order infor-
mations H(i : j), H(i : j : k) and so on, in the sense that these terms will be
smaller than all the first order terms L − ∑

i H (i). This is not at all an obvious assump-
tion, because each of the higher-order terms might be small, but there is an exponentially
increasing number of them as the order increases. We can start worrying about these
terms when everything else is said and done: at the moment let me just mention that

2This expression goes back to Fano’s book, where he calculates the mutual information between an arbitrary
number of events, see Fano (1961, p. 58).
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I have seen very few cases where terms of the order H(i : j : k) or higher play a
role, while pairwise correlations such as H(i : j) can play very important roles indeed
(Adami and Cerf 2000; Gupta and Adami 2014).

For the sake of the argument, let me just consider the size of IS = L− ∑L
i H(i). Such a

term might be large, in particular if the positions are fairly well conserved (H(i) ≈ 0). By
the preceding arguments, such a sequence will be very unlikely to emerge by chance, as this
probability is

P0 = F(x) = D−IS . (7)

Now let me make one other simplifying assumption, namely that the entropy at each site is
roughly the same, namely Hb: (‘b’ for “biotic”)

H(i) ≈ Hb ∀i . (8)

Such an assumption is of course ludicrous when we think about the per-site entropy of
known biomolecules, which varies tremendously from site to site (see, e.g., Adami 2004,
2012; Gupta and Adami 2014). Let us thus say thatHb is really the average per-site entropy

Hb = 1
L

L∑

i

H (i) (9)

so that
IS = L − LHb = L(1− Hb) . (10)

What sets the value of Hb? At each site, the entropy is determined by how often any partic-
ular monomer is found there on average in a typical functional protein. Suppose that each
monomer appears on average with probability qj in such an informational molecule. The
entropy of an average site is then

Hb = −
D∑

j=1

qj logD qj . (11)

If each monomer occurs roughlywith the same frequency qj ≈ 1/D, thenHb ≈ 1, and IS =
0. Indeed, it is not possible to encode information in such a way, unless information is stored
in higher order correlations. In Eq. 10 we assumed that the set of all possible molecules
had entropy L, which came from the assumption that in random (abiotic) molecules, each
monomer did indeed appear with probability 1/D. What if that was not the case?

What if, by chance, monomers in random molecules have different frequencies?
Indeed, amino acids in abiotic proteins do not occur at equal frequencies at all. Rather,
their abundance is dictated by the rate at which they form abiotically (see, e.g., Dorn
et al. 2011 and references therein). Let’s say this abundance distribution is πj , with
entropy

Ha = −
D∑

j=1

πj logD πj , (12)

and the information is then
IS = L(Ha − Hb) , (13)

We now see that if by sheer luck the abiotic entropy Ha is close to the biotic one Hb, then
the entropy gap can be made arbitrarily small. And because the likelihood to find a sequence
with information IS by chance isD−IS , such a reduction in the entropy gap could affect the
likelihood of spontaneous emergence of IS tremendously.
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Imagine for example that by chance the biotic distribution qj is fairly close to the abiotic
one, that is qj = πj (1+ εj ), where εj ≪ 1 is symmetrically distributed around 0, so that∑

j εj = 0. Then

Ha − Hb = −
∑

j

(πj logD πj − qj logD qj ) ≈
∑

j

πj ε
2
j +O(ε4) . (14)

Note that because I assumed that the biotic distribution qj is derived from the abiotic one,
the expression for the entropy gap Eq. 14 is guaranteed to be positive.

How big of a difference does a reduced entropy gap make? It can be dramatic, as I
will now show. Consider for example the entropy gap for self-replicators in the digital-life
system avida (Adami and Brown 1994; Adami 1998; Wilke and Adami 2002; Ofria and
Wilke 2004; Adami 2006), which is a system in which self-replicating computer programs
mutate and evolve to adapt to a fitness landscape that can be specified by the user. A simple
self-replicator can be written in avida that takes only 15 instructions taken from an alpha-
bet of D = 26 (these 15 mers are the equivalent of about 70 bits of information, as 15
× log2 26 ≈ 70.5). The probability to find such a self-replicator by chance is rather low:

P0 = 26−15 ≈ 6 × 10−22 . (15)

If we would test a million random sequences a second on a parallel cluster of 1,000 CPUs,
a random search to find a single self-replicating sequence would take over 50,000 years,
on average. Now, it makes no sense to test sequences of length 15 because presumable
the per-site entropy of such a compressed replicator is about zero, so there is virtually no
redundancy. Let us imagine that instead we test sequences of length 100 that have the same
information content of 15 mers. In that case, we expect the average per-site entropy of the
self-replicator to be about 0.85 mers, so that IS = 100 × (1 − 0.85) = 15, that is, the per-
site entropy gap for self-replicators of this type is !H = 0.15. P0 is of course still given by
Eq. 15, which still all but rules out a random search.

What if we change the abiotic entropy to the one that we expect for a replicator? We
can estimate this biotic entropy Hb from the entropy profile for avidians studied by Dorn
et al. (2011), reproduced in Fig. 1 for a typical case. This distribution has an average entropy
of ≈ 0.87 mers per site. Let us imagine then that avidian instructions are not produced with

 0

 0.05

 0.1

 0.15

p

inst

Fig. 1 Probability distribution of instructions (in random order on the x-axis) for an adapted avidian self-
replicatorwith D=29 (from Dorn et al. 2011). The largest fraction is the nop-A instructionwhich is special in
avida as it is used to initialize empty instructions. The dashed line is the uniform prior, with entropy Ha = 1



Information-Theoretic Considerations

equal likelihood Ha = 1 (the uniform prior given by the dashed line in Fig. 1) but with an
entropy more like the actual observed entropy, say Ha ≈ 0.9. This innocuous change will
change the probability P0 to the probability P⋆

P0 → P⋆ = 26−100(0.9−0.85) = 26−5 . (16)

The effective information appears to have been reduced from 15 to 5! The probability to find
the self-replicator now is P⋆ ≈ 8.8×10−8. When Rupp et al. performed a random search for
self-replicators of length 100 using the biased Ha (Rupp et al. 2006), that is, by replacing
monomers not uniformly randomly but in a biased manner according to the probabilities we
see in Fig. 1, they found 10 self-replicators in the 2×108 they tried, that is, a rate of 5×10−8

which is well in line with the reduced estimate above. But we should keep in mind that it is
important here to not just mimic the abiotic entropy (after all this can be achieved with any
number of distributions), but to mimic the distribution that appears in biotic polymers, such
as the one in Fig. 1 for avidians, so that the entropy gap is reduced as in Eq. 14.

Of course, the entropy gap for biomolecules could be much more severe than for digital
organisms. We know, for example, that the information content of the HIV-1 protease (a
99 mer molecule) is approximately 75 mers (Gupta and Adami 2014). The probability to
find such a molecule by random search is astronomically low, P0 = 20−75 ≈ 2.64 ×
10−96. Now, it is of course well known that the probability distribution describing the abiotic
generation of amino acids is far from uniform. Indeed, if we restrict ourselves to only the 20
amino acids used in biochemistry, the abiotic distribution actually has a significantly smaller
entropy than the biotic one, simply because the heavy amino acids are not formed abiotically
at all, see (Dorn et al. 2011). It is clear that the biotic distribution has evolved to be far from
the initial abiotic distribution, so we cannot anymore assume qj = πj (1+εj ). Let us instead
investigate what happens to P0 if we change the abiotic distribution away from uniform.
In a 99-mer molecule with 75 mers of information, the average entropy per site is 24/99
≈ 0.2424, that is, we write the information content of the protease as IP = 99∗(1−0.2424).
If we assume that the abiotic entropy per monomer is 0.5 rather than the 1.0 coming from
the uniform assumption, the probability to find this molecule by chance changes to

P⋆ = 20−99(0.5−0.2424) ≈ 7.5 × 10−32 , (17)

an enhancement of about 64 orders of magnitude. When such extreme amplifications of the
likelihood of spontaneous discovery of information are possible, scenarios that were previ-
ously deemed impossible (Shapiro 2000) could move much closer to reality. For example
(even though I do not believe that the first self-replicator was a protein) the abundance
distribution of amino acids (and other molecules such as mono-carboxylic acids) found in
meteorites is much closer to that found in sediment than the distribution found in synthesis
experiments (Dorn et al. 2011), indicating that the abiotic formation distribution is strongly
dependent on local environment, and that those environments more conducive to mimic
biotic distributions may well occur outside of Earth.

To be fair, nobody expects life to originate from a self-replicator of about 100 instruc-
tions drawn from an alphabet of 20-30. I presented these examples just to illustrate how
abiotic monomer distributions that are close to the biotic distribution can enhance the like-
lihood of stumbling upon a rare self-replicator by chance by many orders of magnitude,
just as the likelihood to find a self-replicator was enhanced tremendously in the biogenesis
experiments with avida by (Rupp et al. 2006).

Indeed, even efforts to create self-replicating sets of molecules in the laboratory that are
not related to terran life support this view. Lincoln and Joyce created a self-replicating sys-
tem encoding about 86 bits of information in the laboratory using existing RNA enzymes
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(even though only 24 of those bits were evolvable, see Lincoln and Joyce (2009)). The spon-
taneous emergence of this replicator is, in a sobering manner, impossible from an unbiased
library, as P0 ≈ 7.7 × 10−25, or three orders of magnitude smaller than the likelihood I
calculated for the spontaneous emergence of an avidian self-replicator.

Clearly, more work is required to test the relationship between spontaneous emergence
and biased monomer abundance distributions. We could, for example, study different prior
(abiotic) distributions and conduct biogenesis experiments in avida just as Rupp et al.
(2006), to see if the correlation between reduced gap and enhanced emergence holds
quantitatively. In the non-digital realm, we could repeat the experiment of Keefe and
Szostak (2001), who searched for proteins that bind ATP within a library of 6 × 1012

randomly generated 80-mer proteins. Among this random set they found four proteins
that bound ATP, suggesting that the information necessary for ATP binding is Is =
− logD(2/3 × 10−12) ≈ 9.4 mers, a value not inconsistent with deletion experiments and
sequence analysis. By creating a biased (rather than random) library that takes into account
the amino acid frequency bias of the ATP binding proteins they found, it should be possi-
ble to increase the fraction of ATP binding proteins found by chance significantly. Indeed,
Hackel et al. showed that biasing protein libraries with conserved domains (zero entropy
regions) but also variable regions constrained by the entropic profile of functional molecules
as described here, leads to an increased rate of finding functional proteins by chance (Hackel
et al. 2010), compared to the rate observed from unbiased libraries.

Even though we still do not know which set of monomers gave rise to the first self-
replicator (if ever there was one), the information-theoretic musings I have presented here
should convince even the skeptics that, within an environment that produces monomers at
relative ratios not too far from those found in a self-replicator, the probabilities can move
very much in favor of spontaneous emergence of life. For every candidate chemistry then
(where a self-replicator can be constructed), we would should look for the environment that
is best suited to produce it.
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